JP2930665B2 - Heat resistant high surface area fibrous alumina and method for producing the same - Google Patents
Heat resistant high surface area fibrous alumina and method for producing the sameInfo
- Publication number
- JP2930665B2 JP2930665B2 JP2148593A JP14859390A JP2930665B2 JP 2930665 B2 JP2930665 B2 JP 2930665B2 JP 2148593 A JP2148593 A JP 2148593A JP 14859390 A JP14859390 A JP 14859390A JP 2930665 B2 JP2930665 B2 JP 2930665B2
- Authority
- JP
- Japan
- Prior art keywords
- alumina
- surface area
- fibrous
- resistant high
- high surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims description 66
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 238000010304 firing Methods 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000000835 fiber Substances 0.000 claims description 7
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 3
- 239000000843 powder Substances 0.000 description 17
- 239000002245 particle Substances 0.000 description 15
- 230000007423 decrease Effects 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- -1 alkaline earth metal aluminate Chemical class 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Catalysts (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱的に安定なアルミナおよびその製造方法
に関するものである。Description: TECHNICAL FIELD The present invention relates to a thermally stable alumina and a method for producing the same.
[従来の技術] ガスタービンの高温ガス発生用や自動車排ガス処理用
に利用される触媒には耐熱性が要求されている。これら
の触媒は通常、アルミナやシリカなどの耐熱性酸化物を
担体または一体型構造体上に被覆し、これに白金(P
t),パラジウム(Pd),ロジウム(Rh)等の触媒成分
を分散してあるが、その分散性は担体の表面積に依存す
る。[Related Art] Heat resistance is required for catalysts used for generating high-temperature gas in gas turbines and for treating exhaust gas from automobiles. These catalysts usually coat a heat-resistant oxide such as alumina or silica on a carrier or an integrated structure, and apply platinum (P)
The catalyst components such as t), palladium (Pd) and rhodium (Rh) are dispersed, and the dispersibility depends on the surface area of the carrier.
アルミナやシリカなどの耐熱性酸化物といえども1,00
0℃を超える高温下では反応時間の経過とともに表面積
の減少が激しく、その結果触媒成分の分散性が低下して
触媒活性が劣化してしまう。高温下におけるアルミナの
表面積減少は、α−アルミナへの結晶化時にアルミナ表
面にある細孔が閉塞するためと考えられる。従って、ア
ルミナの耐熱性を改善すれば、このような高温下におけ
るアルミナの表面積減少をある程度防止できると考えら
れる。そのための方法として、アルミナにアルカリ土類
や希土類金属を添加をしてその結晶化温度を上昇させ、
高温で安定なアルミナにさせることが特開昭54−117387
号公報等に記載されている。Even heat-resistant oxides such as alumina and silica
At a high temperature exceeding 0 ° C., the surface area decreases sharply with the lapse of reaction time, and as a result, the dispersibility of the catalyst component is reduced and the catalyst activity is deteriorated. It is considered that the decrease in the surface area of alumina at a high temperature is due to the closure of pores on the alumina surface during crystallization to α-alumina. Therefore, it is considered that if the heat resistance of alumina is improved, a decrease in the surface area of alumina at such a high temperature can be prevented to some extent. As a method for this, an alkaline earth or rare earth metal is added to alumina to increase its crystallization temperature,
It is possible to make alumina stable at a high temperature.
No., etc.
また、添加したアルカリ土類金属酸化物とアルミナを
反応させ、より耐熱性の優れたアルカリ土類金属のアル
ミネートを生成させる研究も行なわれている。In addition, studies have been conducted on the reaction of the added alkaline earth metal oxide with alumina to produce an alkaline earth metal aluminate having better heat resistance.
[発明が解決しようとする課題] しかし上記のような添加物を加える事なく、アルミナ
のみでその耐熱性を改善する方法が要望されていた。[Problems to be Solved by the Invention] However, there has been a demand for a method of improving the heat resistance of alumina alone without adding the above-mentioned additives.
[課題を解決するための手段] アルミナの表面積は、アルミナ粉末を構成する微粒子
表面積の総和と考えられる。従って、高表面積アルミナ
を作成するためには、構成するアルミナ粒子を微細なも
のにすればよい。しかし、微細な粒子の集合体は、粒子
間の接触面積も大きく、高温下では粒子間の反応が生
じ、より大きな粒子へと成長し、結局は表面積の減少と
なる。そこで、微細な粒子の集合体でありながらお互い
の接触面積が小さいアルミナ粒子を作製すれば、耐熱性
の優れたアルミナ粉末を調整することができると考えら
れ、本発明が開発された。[Means for Solving the Problems] The surface area of alumina is considered to be the total of the surface areas of the fine particles constituting the alumina powder. Therefore, in order to produce high surface area alumina, it is sufficient to make the constituting alumina particles fine. However, the aggregate of the fine particles has a large contact area between the particles, and a reaction between the particles occurs at a high temperature to grow into a larger particle, resulting in a decrease in the surface area. Therefore, it is considered that if alumina particles having a small contact area with each other are produced while being an aggregate of fine particles, alumina powder having excellent heat resistance can be adjusted, and the present invention has been developed.
すなわち、本発明は耐熱性高表面積繊維状アルミナお
よびその製造方法を提供するものであって、本発明の耐
熱性高表面積繊維状アルミナは、繊維状水酸化アルミニ
ウムから、該繊維状水酸化アルミニウムより成り、α−
アルミナを含有しないアルミナゾルを作製し、このゾル
溶液を霧化して空気または酸素と共に瞬時に乾燥、焼成
後、水中捕集し、これをさらに乾燥したのち、1,200℃
以下で焼成してなることを特徴とする。That is, the present invention provides a heat-resistant high-surface-area fibrous alumina and a method for producing the same, and the heat-resistant high-surface-area fibrous alumina of the present invention is formed from fibrous aluminum hydroxide, And α-
Alumina sol containing no alumina was produced, this sol solution was atomized, dried instantaneously with air or oxygen, fired, collected in water, and further dried at 1,200 ° C
It is characterized by being fired below.
そして、かかる繊維状アルミナは、1,200℃以下で焼
成後、少なくとも30m2/gの比表面積を有するものであ
る。The fibrous alumina has a specific surface area of at least 30 m 2 / g after firing at 1200 ° C. or lower.
なお、繊維状水酸化アルミニウムをゾル化したゾル溶
液をそのまま乾燥、焼成したものは繊維状アルミナ粒子
の集合体とはなるが、繊維間の接触面積が大きく、高温
下では粒子成長が進行するため好ましくない。また、以
下に述べる如く、1,300℃以上の高温では表面積の減少
が著しい。The sol solution obtained by converting the fibrous aluminum hydroxide into a sol is directly dried and calcined to form an aggregate of fibrous alumina particles, but the contact area between the fibers is large, and the particle growth proceeds at high temperatures. Not preferred. Further, as described below, at a high temperature of 1,300 ° C. or more, the surface area is significantly reduced.
[作用] 本発明で製造される耐熱性高表面積繊維状アルミナ
は、接触面積の小さいアルミナ粒子として、繊維状のア
ルミナが3次元的に入り組んだ、空隙率の大きな粒子と
なるため、耐熱性の優れたアルミナ粉末の調整が可能と
なる。[Action] The heat-resistant high-surface-area fibrous alumina produced in the present invention is a large-porosity particle in which fibrous alumina is three-dimensionally intricate as alumina particles having a small contact area. Excellent adjustment of alumina powder becomes possible.
[実施例] 実施例1 20gのアルミニウムイソプロポキシド(AIP)400mlを
熱水に溶解させ、これに1mlの硝酸を添加した溶液を、8
5℃で1時間撹拌したのち室温まで冷却した(溶液
A)。[Example] Example 1 A solution obtained by dissolving 400 g of aluminum isopropoxide (AIP) in hot water and adding 1 ml of nitric acid thereto was added to a solution of 8 g.
After stirring at 5 ° C. for 1 hour, the mixture was cooled to room temperature (solution A).
次に、この溶液Aに約100mlの水を加えてゾル化した
後、これを第1図に示す噴霧燃焼装置の溶液溜め1の溶
液導入口9より溶液溜め1に入れ、超音波発生機2によ
り発生させた1.5MHzの超音波により霧化し、空気または
酸素導入口10より流量計3を通して15/minの流速で溶
液溜め1に導入した酸素とともに、600℃に保たれた電
気炉4中のガラス管7よりなる反応管中に導入し、瞬時
に乾燥、焼結し、略球状のアルミナ粒子として反応管後
部に設置した水中捕集器8により捕集した。これを110
℃で乾燥した後、500℃で5時間焼成して小繊維状のア
ルミナ粉末を得た。なお電気炉4には温度調整のための
熱電対5およびサーモスタット6を設けた。Next, about 100 ml of water was added to this solution A to form a sol, which was then put into the solution reservoir 1 through the solution inlet 9 of the solution reservoir 1 of the spray combustion device shown in FIG. Atomized by the 1.5 MHz ultrasonic wave generated by the above method, together with air or oxygen introduced into the solution reservoir 1 at a flow rate of 15 / min through the flow meter 3 from the oxygen inlet 10 and the oxygen in the electric furnace 4 maintained at 600 ° C. It was introduced into a reaction tube composed of a glass tube 7, dried and sintered instantaneously, and collected as substantially spherical alumina particles by an underwater collector 8 installed at the rear of the reaction tube. This is 110
After drying at ℃, it was calcined at 500 ℃ for 5 hours to obtain small fiber alumina powder. The electric furnace 4 was provided with a thermocouple 5 and a thermostat 6 for temperature adjustment.
実施例2 実施例1の酸素の代わりに空気を使用した以外は実施
例1と同様に行ない、小繊維状のアルミナ粉末を得た。Example 2 The same procedure as in Example 1 was carried out except that air was used instead of oxygen in Example 1, to obtain a fine fiber alumina powder.
比較例1 20gのアルミニウムイソプロポキシド(AIP)を400ml
の熱水に溶解させ、これに1mlの硝酸を添加した溶液
を、85℃で1時間撹拌したのち室温まで冷却した(溶液
A)。Comparative Example 1 400 ml of 20 g of aluminum isopropoxide (AIP)
Was added to 1 ml of hot water, and a solution obtained by adding 1 ml of nitric acid thereto was stirred at 85 ° C. for 1 hour, and then cooled to room temperature (solution A).
次に、この溶液Aに約100mlの水を加えてゾル化した
溶液を110℃で乾燥した後、500℃で5時間焼成して小繊
維状のアルミナ粉末を得た。Next, about 100 ml of water was added to the solution A to form a sol, the solution was dried at 110 ° C., and calcined at 500 ° C. for 5 hours to obtain a fine fiber alumina powder.
溶液Aの一部をピペットで採取しマイクログリッド上
で乾燥して透過型電子顕微鏡で観察した。溶液Aの粒子
構造を示すその顕微鏡写真図を第2図に示す。この溶液
は直径100A、長さ1,000Aの小繊維状の水酸化アルミニウ
ムから構成されていることが判る。A part of the solution A was collected with a pipette, dried on a microgrid, and observed with a transmission electron microscope. FIG. 2 is a micrograph showing the particle structure of the solution A. It can be seen that this solution is composed of fibrous aluminum hydroxide with a diameter of 100A and a length of 1,000A.
実施例1および比較例1で得られた小繊維状のアルミ
ナ粉末を1,400℃までの種々の温度で5時間、空気中で
焼成し、その比表面積測定結果を第3図に示す。本発明
の小繊維状のアルミナ粉末は、1,300℃以上の高温では
表面積の減少は著しいが、1,200℃での焼成では約50m2/
gの高表面積を有していることが判る。The fibrous alumina powder obtained in Example 1 and Comparative Example 1 was calcined in air at various temperatures up to 1,400 ° C. for 5 hours, and the specific surface area measurement results are shown in FIG. The fibrous alumina powder of the present invention has a remarkable decrease in surface area at a high temperature of 1,300 ° C. or higher, but has a sintering temperature of about 50 m 2 /
It turns out that it has a high surface area of g.
実施例1で得られた小繊維状のアルミナ粉末を乾燥
後、500℃、1,200℃および1,400℃の温度で5時間焼成
したアルミナ粉末の粒子構造と透過型電子顕微鏡で観察
した電子顕微鏡写真図を第4図に示す。1,200℃以下の
焼成では、アルミナ粒子は小繊維状アルミナの集合体と
して存在するが、1,400℃では繊維状アルミナの存在が
見られず、いくつかのアルミナ球が溶融して粒子成長し
ていることが判る。The fine fiber alumina powder obtained in Example 1 was dried and then calcined at 500 ° C., 1,200 ° C., and 1,400 ° C. for 5 hours. As shown in FIG. At 1,200 ° C or less, alumina particles exist as aggregates of small fibrous alumina, but at 1,400 ° C, there is no fibrous alumina, and some alumina spheres melt and grow. I understand.
実施例1で得られた小繊維状のアルミナ粉末を、500
℃、1,100℃、1,200℃、1,300℃および1,400℃の温度で
5時間焼成したアルミナ粉末のX線回折スペクトル図を
第5図に示す。1,200℃以下の焼成では、α−アルミナ
の生成は確認されず、回折ピークは全てδ−アルミナ、
θ−アルミナであった。1,300℃以上の焼成でα−アル
ミナの生成は確認され、回折ピークは全てδ−アルミ
ナ、θ−アルミナであった。1,400℃ではα−アルミナ
の単一相になった。500 g of the fibrous alumina powder obtained in Example 1 was
FIG. 5 shows an X-ray diffraction spectrum of the alumina powder calcined at a temperature of 1,100 ° C., 1,200 ° C., 1,300 ° C., and 1,400 ° C. for 5 hours. In firing at 1200 ° C. or less, the formation of α-alumina was not confirmed, and the diffraction peaks were all δ-alumina,
θ-alumina. Formation of α-alumina was confirmed by firing at 1,300 ° C. or more, and all diffraction peaks were δ-alumina and θ-alumina. At 1,400 ° C, it became a single phase of α-alumina.
1,300℃以上での焼成における表面積の減少は、α−
アルミナへの結晶化時に生じる溶融と、それに伴う粒子
成長に起因することが判る。The decrease in surface area during firing at 1,300 ° C or higher is due to α-
It can be seen that this is caused by melting generated during crystallization to alumina and accompanying particle growth.
実施例1で得られた小繊維状のアルミナ粉末を1,200
℃で25時間まで焼成し、アルミナ比表面積の経時変化を
測定し、結果を第6図に示す。10時間焼成までの比表面
積の減少割合はかなり大きいが、15時間以上の焼成では
ほとんど減少が見られず、30m2/gの略一定の値になるこ
とが判る。The fine fiber alumina powder obtained in Example 1 was added to 1,200
Calcination was performed at 25 ° C. for up to 25 hours, and the change over time in the specific surface area of alumina was measured. Although the reduction ratio of the specific surface area until the firing for 10 hours is considerably large, the reduction is hardly observed in the firing for 15 hours or more, and it can be seen that the specific surface area becomes a substantially constant value of 30 m 2 / g.
[発明の効果] 本発明は、アルミナにアルカリ土類や希土類金属を添
加しなくても1,200℃で焼成後の比表面積が30m2/g以上
を有する熱的に安定なアルミナであることが判る。[Effects of the Invention] It can be seen that the present invention is a thermally stable alumina having a specific surface area of not less than 30 m 2 / g after firing at 1,200 ° C without adding an alkaline earth or rare earth metal to alumina. .
第1図は、本発明の耐熱性高表面積繊維状アルミナを製
造するための噴霧燃焼装置の概要を示す説明図、 第2図は、実施例1および比較例1で用いた溶液Aの粒
子構造を示した電子顕微鏡写真図、 第3図は、実施例1および比較例1で得られた小繊維状
のアルミナ粉末を1,400℃までの種々の温度で5時間、
空気中で焼成した時の、温度と比表面積の関係図、 第4図は、実施例1で得られた小繊維状のアルミナ粉末
を乾燥後、500℃、1,200℃、1,400℃の各温度で5時間
焼成したアルミナ粉末の粒子構造を示した電子顕微鏡写
真図、 第5図は、実施例1で得られた小繊維状のアルミナ粉末
を500℃、1,100℃、1,200℃、1,300℃、1,400℃の各温
度で5時間焼成したアルミナ粉末のX線回折スペクトル
図、および 第6図は、実施例1で得られた小繊維状のアルミナ粉末
を1,200℃で25時間まで焼成し、アルミナ比表面積の経
時変化を測定した図である。 1……溶液溜め、2……超音波発生機、3……流量計、
4……電気炉、5……熱電対、6……サーモスタット、
7……ガラス管、8……補集器、9……溶液導入口、10
……空気または酸素導入口。FIG. 1 is an explanatory view showing an outline of a spray combustion apparatus for producing a heat-resistant high surface area fibrous alumina of the present invention. FIG. 2 is a particle structure of a solution A used in Example 1 and Comparative Example 1. FIG. 3 shows the fibrillar alumina powder obtained in Example 1 and Comparative Example 1 at various temperatures up to 1,400 ° C. for 5 hours.
Fig. 4 is a graph showing the relationship between temperature and specific surface area when fired in air. Fig. 4 shows the results of drying the fibrous alumina powder obtained in Example 1 at 500 ° C, 1,200 ° C, and 1,400 ° C. FIG. 5 is an electron micrograph showing the particle structure of the alumina powder fired for 5 hours. FIG. 5 is a graph showing the fibrous alumina powder obtained in Example 1 at 500 ° C., 1,100 ° C., 1,200 ° C., 1,300 ° C. and 1,400 ° C. X-ray diffraction spectrum of alumina powder calcined at each temperature for 5 hours, and FIG. It is the figure which measured the secular change. 1 ... solution reservoir, 2 ... ultrasonic generator, 3 ... flow meter,
4 ... electric furnace, 5 ... thermocouple, 6 ... thermostat,
7: glass tube, 8: collector, 9: solution inlet, 10
... Air or oxygen inlet.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 角田 範義 愛知県豊橋市北山町字東浦2―1 高師 住宅4棟302号室 (58)調査した分野(Int.Cl.6,DB名) C01F 7/00 - 7/76 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Noriyoshi Kakuda 2-1 Higashiura, Kitayama-cho, Toyohashi-shi, Aichi Takashi Residence, Room No. 302 (58) Field surveyed (Int. Cl. 6 , DB name) C01F 7 / 00-7/76
Claims (2)
アルミナを含有しないアルミナゾルを霧化し、空気また
は酸素と共に瞬時に乾燥、焼成後、水中捕集し、これを
さらに乾燥したのち、1,200℃以下で焼成したアルミナ
であって、1,200℃以下で焼成後、少なくとも30m2/gの
比表面積を有することを特徴とする耐熱性高表面積繊維
状アルミナ。(1) a fiber comprising aluminum hydroxide;
Atomized alumina sol containing no alumina, dried instantaneously with air or oxygen, fired, collected in water, dried further, fired at 1200 ° C or less, fired at 1200 ° C or less, A heat-resistant high surface area fibrous alumina having a specific surface area of at least 30 m 2 / g.
水酸化アルミニウムより成り、α−アルミナを含有しな
いアルミナゾルを作製し、該ゾル溶液を霧化して空気ま
たは酸素と共に瞬時に乾燥、焼成後、水中捕集し、これ
をさらに乾燥したのち、1,200℃以下で焼成することを
特徴とする耐熱性高表面積繊維状アルミナの製造方法。2. An alumina sol comprising fibrous aluminum hydroxide and containing no α-alumina is prepared from fibrous aluminum hydroxide, and the sol solution is atomized, dried instantaneously with air or oxygen, and calcined. A method for producing a heat-resistant high surface area fibrous alumina, which comprises collecting water in water, further drying it, and firing it at 1200 ° C or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2148593A JP2930665B2 (en) | 1990-06-08 | 1990-06-08 | Heat resistant high surface area fibrous alumina and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2148593A JP2930665B2 (en) | 1990-06-08 | 1990-06-08 | Heat resistant high surface area fibrous alumina and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0442809A JPH0442809A (en) | 1992-02-13 |
JP2930665B2 true JP2930665B2 (en) | 1999-08-03 |
Family
ID=15456225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2148593A Expired - Lifetime JP2930665B2 (en) | 1990-06-08 | 1990-06-08 | Heat resistant high surface area fibrous alumina and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2930665B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5925592A (en) * | 1995-10-04 | 1999-07-20 | Katoh; Akira | Process for preparing alumina carrier |
JP4639536B2 (en) * | 2001-06-15 | 2011-02-23 | スズキ株式会社 | Exhaust gas purification catalyst and method for producing the same |
CN111009642A (en) * | 2019-11-13 | 2020-04-14 | 浙江工业大学 | Al2O3Face-coated LiNi0.6Co0.2Mn0.2O2Positive electrode material and preparation method thereof |
CN114887583B (en) * | 2022-04-27 | 2023-10-31 | 北京科技大学 | Mesoporous alumina loaded Cu 2 Preparation method of O adsorbent |
-
1990
- 1990-06-08 JP JP2148593A patent/JP2930665B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0442809A (en) | 1992-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6030914A (en) | Zirconia fine powder and method for its production | |
JP2789313B2 (en) | Alumina-, cerium-oxide and zirconium oxide-based compositions with high reducibility, their preparation, and their use in the preparation of catalysts | |
US6165934A (en) | Material and system for catalytic reduction of nitrogen oxide in an exhaust stream of a combustion process | |
Xu et al. | Synthesis of solid, spherical CeO2 particles prepared by the spray hydrolysis reaction method | |
Lu et al. | A novel way to synthesize yttrium aluminum garnet from metal–inorganic precursors | |
JPH08224469A (en) | Highly heat-resistant catalyst carrier, its production, highly heat-resistant catalyst and its production | |
JPS5810137B2 (en) | Oxidation catalyst composition | |
JP6670386B2 (en) | Methane oxidation catalyst | |
JP4416830B2 (en) | COMPOSITE OXIDE FOR EXHAUST GAS PURIFICATION CATALYST, PROCESS FOR PRODUCING THE SAME, COATING FOR EXHAUST GAS PURIFICATION CATALYST AND DIESEL EXHAUST PURIFICATION FILTER | |
JP6803176B2 (en) | Method for manufacturing porous alumina particle material | |
JPH07284672A (en) | Production of catalyst | |
JP2930665B2 (en) | Heat resistant high surface area fibrous alumina and method for producing the same | |
EP0285339A1 (en) | Metal oxide and metal sulfide particles and production thereof | |
JP2001347167A (en) | Exhaust gas cleaning catalyst | |
JP2004016838A (en) | Catalyst for purifying exhaust gas, method for producing the catalyst, and method for using catalyst | |
JPH1045412A (en) | Heat resistant transition alumina and its production | |
JPH0445452B2 (en) | ||
WO2007094514A1 (en) | Complex oxide for oxidation catalyst and filter | |
US5171728A (en) | Catalyst for oxidizing carbon-containing compounds and method for the production of the same | |
JP3276330B2 (en) | Method for producing spherical powder and spherical powder produced by this method | |
JP2533703B2 (en) | Catalyst for high temperature steam reforming reaction of hydrocarbon and method of using the same | |
JPH0435220B2 (en) | ||
JPS63242917A (en) | Production of heat resistant alumina complex oxide | |
JP5564962B2 (en) | Exhaust gas purification filter | |
JP3102082B2 (en) | Production method of heat-resistant transition alumina |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |