JPH0442749Y2 - - Google Patents

Info

Publication number
JPH0442749Y2
JPH0442749Y2 JP19154884U JP19154884U JPH0442749Y2 JP H0442749 Y2 JPH0442749 Y2 JP H0442749Y2 JP 19154884 U JP19154884 U JP 19154884U JP 19154884 U JP19154884 U JP 19154884U JP H0442749 Y2 JPH0442749 Y2 JP H0442749Y2
Authority
JP
Japan
Prior art keywords
light
emitting element
optical fiber
signal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19154884U
Other languages
Japanese (ja)
Other versions
JPS61105832U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19154884U priority Critical patent/JPH0442749Y2/ja
Publication of JPS61105832U publication Critical patent/JPS61105832U/ja
Application granted granted Critical
Publication of JPH0442749Y2 publication Critical patent/JPH0442749Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radiation Pyrometers (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、光計測装置に関し、例えば光の透
過量が温度によつて変化する材料を用いて温度を
測定するものの構成に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] This invention relates to an optical measuring device, and relates to a structure for measuring temperature using, for example, a material in which the amount of light transmitted changes depending on the temperature.

〔従来の技術〕[Conventional technology]

第4図は光を使つた温度測定装置の一実施例
で、図において、1は参照光用の発光素子として
のLED、2は信号光用のLED、3はLED1,2
を駆動する駆動部、4はLED1,2を合波する
ハーフミラ、5はLED1,2の光量をモニタす
るモニタ用の検出素子(以下P.D)、6は送信用
の光フアイバ、7は温度を検出する材料(以下セ
ンサ)、8は受信用の光フアイバ、9はセンサ7
を透過した光を検出する信号用のPD、10はPD
5,9を駆動して検出した光を電気に変換する変
換部、11は信号処理部、12は表示部である。
Figure 4 shows an example of a temperature measuring device using light. In the figure, 1 is an LED as a light emitting element for reference light, 2 is an LED for signal light, and 3 is LED 1, 2.
4 is a half-mirror that combines LEDs 1 and 2, 5 is a detection element (hereinafter referred to as PD) for monitoring the light intensity of LEDs 1 and 2, 6 is an optical fiber for transmission, and 7 is for detecting temperature. 8 is the optical fiber for reception, 9 is the sensor 7
10 is a PD for signals that detects the light transmitted through the
A conversion section drives 5 and 9 to convert detected light into electricity, 11 is a signal processing section, and 12 is a display section.

次に動作について説明する。 Next, the operation will be explained.

光の透過量が温度によつて変化するセンサ7に
より温度を測定する装置において、センサ7の温
度変化によつて透過光が変化しない波長の参照光
を発光するLED1と、透過光が温度によつて変
化する波長の信号光を発光するLED2とを駆動
部3にてパルス的に交互に点灯をさせる。ハーフ
ミラ4で合波された光は、光フアイバ6を通しセ
ンサ7へ導かれる。センサ7は2つのLED1,
2の光のうち信号光用のLED2の光量のみを温
度量に対応する光量にして透過させ、参照光用の
LED1からの光はそのまま透過する。この両者
の光を光フアイバ8を介しPD9に導き変換部1
0で電圧に変換される。LED1,2の劣化等に
よる光量低下における誤差を防止する為、モニタ
用のPD5により光量をモニタする。この信号も
電圧変換され信号処理部11で割り算等、信号処
理され、温度を推定・検出し、表示部12に表示
する。
In a device that measures temperature using a sensor 7 in which the amount of transmitted light changes depending on the temperature, there is an LED 1 that emits a reference light of a wavelength that does not change due to the temperature change of the sensor 7, and an LED 1 that emits a reference light whose transmitted light does not change depending on the temperature change of the sensor 7. The driving unit 3 causes the LED 2, which emits signal light of a wavelength that changes with each pulse, to be turned on alternately in a pulsed manner. The light multiplexed by the half mirror 4 is guided to the sensor 7 through the optical fiber 6. Sensor 7 has two LEDs 1,
Among the lights of 2, only the light intensity of LED 2 for signal light is transmitted in a light intensity corresponding to the temperature amount, and the light intensity of LED 2 for signal light is transmitted.
The light from LED1 passes through as is. Both lights are guided to the PD 9 via the optical fiber 8 and the conversion unit 1
0 and converted to voltage. In order to prevent errors in light intensity reduction due to deterioration of LEDs 1 and 2, the light intensity is monitored by a monitor PD5. This signal is also converted into voltage and subjected to signal processing such as division in the signal processing section 11 to estimate and detect the temperature and display it on the display section 12.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

従来の光温度測定装置は、以上のように構成さ
れているので、異なる波長の光を合波し、光量を
モニタする為のハーフミラ4が必要不可欠とな
る。この為、高価・大きくなつた。
Since the conventional optical temperature measuring device is configured as described above, the half mirror 4 for combining lights of different wavelengths and monitoring the light amount is essential. For this reason, it became expensive and large.

この考案は上記の問題を解決すべくハーフミラ
を無くし安価・小形にする事を目的とする。
This invention aims to eliminate the half-mirror and make it cheaper and smaller in order to solve the above problem.

〔問題点を解決するための手段〕[Means for solving problems]

この考案に係る光計測装置は、LEDとモニタ
用のPDとをそれぞれ発光側、受光側を同一方向
にして同一面上に相互に近接して配設するととも
に、送信用の光フアイバの入力側フエルールの端
面を反射面に形成し、上記近接配置した各LED、
PDとフエルールとを所定の間隔を介して対向配
置させたものである。
The optical measurement device according to this invention has an LED and a monitoring PD arranged close to each other on the same plane with the light emitting side and the light receiving side facing the same direction, and the input side of the optical fiber for transmission. The end face of the ferrule is formed into a reflective surface, and each of the LEDs arranged close to each other,
A PD and a ferrule are arranged opposite to each other with a predetermined distance therebetween.

〔作用〕[Effect]

この考案においては、各LED、モニタ用のPD
及び光フアイバのフエルールが所定の位置に配置
されるので、各LEDから出射した光は直接送信
用の光フアイバに入射するとともに、フエルール
で反射してモニタ用のPDにも入射する。
In this idea, each LED, PD for monitor
Since the ferrules of the optical fibers are arranged at predetermined positions, the light emitted from each LED directly enters the optical fiber for transmission, and also reflects from the ferrules and enters the PD for monitoring.

〔考案の実施例〕[Example of idea]

以下、この考案の一実施例について説明する。
第1図において、1は参照光用のLED、2は信
号光用のLED、3はLED1,2を駆動する為の
駆動部、5は光量をモニタするモニタ用のPD,
6は送信用の光フアイバ、7は温度を検出するセ
ンサ、8は受信用の光フアイバ、9はセンサ7を
透過した光を検出する信号用のP.D、10はPD
5,9を駆動して検出した光を電気に変換する変
換部、11は信号処理部、12は検出した温度を
表示する表示部、13,14は送信用の光フアイ
バ6の入力側端部及び受信用の光フアイバ8の出
力側端部にそれぞれ設けられた光フアイバ用のフ
エルールである。
An embodiment of this invention will be described below.
In Fig. 1, 1 is an LED for reference light, 2 is an LED for signal light, 3 is a drive unit for driving LEDs 1 and 2, 5 is a monitor PD that monitors the amount of light,
6 is an optical fiber for transmission, 7 is a sensor for detecting temperature, 8 is an optical fiber for reception, 9 is a PD for a signal that detects the light transmitted through the sensor 7, and 10 is a PD
11 is a signal processing unit, 12 is a display unit that displays the detected temperature, and 13 and 14 are the input side ends of the optical fiber 6 for transmission. and an optical fiber ferrule provided at the output side end of the receiving optical fiber 8, respectively.

次に動作について説明する。 Next, the operation will be explained.

温度により光の透過量が変化する半導体等のセ
ンサ7は第2図aのように波長に対し透過・吸収
量(以下、吸収側)が変化するよう構成されてお
り、この吸収端は温度上昇とともに長波長帯へ移
動する。LEDはセンサの温度変化に関して関係
なく一定量が透過する参照光用のLED1と、セ
ンサの温度に対応して透過光が変化する信号光用
のLED2とより構成されており、各々はパルス
的に交互に駆動部3により点灯をくり返してい
る。ある温度における吸収端、LED1,2の各
波長波形を第2図bに示し、その時の透過量を第
2図cに示す。LED1,2及びPD5は第3図
a,bのように同一チツプ15上に相互に近接し
て配置されている為、第3図cのように反射面1
3aを形成した光フアイバ用のフエルール13を
近づけることにより合波及びフエルール端の反射
により、モニタ用のPD5によりモニタが可能と
なる。合波され光フアイバ6に入射された光は、
センサ7を通り適正な光量となり受信用の光フア
イバ8を介しPD9に導かれる。変換部10でモ
ニタ用のPD5と信号用のPD9との光量を電気量
に変換し信号処理部11に送られる。信号処理部
11は、センサ7の温度に関係なく透過量が一定
な参照光と、センサ7の温度に対応した透過量に
なる信号光及びモニタ用のPD5からの信号光、
参照光と合計4つの信号により割り算等の演算を
してセンサ7の温度を推定・検出する。以上のよ
うな構成によつて、LED1,2の劣化による光
量低下及び光フアイバ6,8の曲げ等による光量
変化等の誤差を無くし正確な温度を表示部12に
示すことができる。
The sensor 7, which is made of semiconductor or the like and whose light transmission amount changes depending on the temperature, is configured so that the transmission/absorption amount (hereinafter referred to as the absorption side) changes with the wavelength, as shown in Figure 2a, and this absorption edge changes as the temperature rises. and move to the long wavelength band. The LED consists of a reference light LED 1 that transmits a constant amount regardless of sensor temperature changes, and a signal light LED 2 that transmits a constant amount of light depending on the sensor temperature. The lighting is repeated alternately by the drive unit 3. The absorption edge at a certain temperature and each wavelength waveform of LEDs 1 and 2 are shown in FIG. 2b, and the amount of transmission at that time is shown in FIG. 2c. Since the LEDs 1, 2 and PD5 are arranged close to each other on the same chip 15 as shown in Fig. 3a and b, the reflective surface 1 as shown in Fig. 3c
By bringing the ferrule 13 for the optical fiber in which the optical fiber 3a is formed close to each other, it becomes possible to perform monitoring using the PD 5 for monitoring due to multiplexing and reflection at the end of the ferrule. The light that has been multiplexed and entered the optical fiber 6 is
The light passes through the sensor 7 and becomes an appropriate amount of light, and is guided to the PD 9 via the optical fiber 8 for reception. The converter 10 converts the amount of light from the monitor PD 5 and the signal PD 9 into an amount of electricity, which is sent to the signal processor 11 . The signal processing unit 11 generates a reference light whose transmission amount is constant regardless of the temperature of the sensor 7, a signal light whose transmission amount corresponds to the temperature of the sensor 7, and a signal light from the PD 5 for monitoring.
The temperature of the sensor 7 is estimated and detected by performing calculations such as division using the reference light and a total of four signals. With the above configuration, it is possible to eliminate errors such as a decrease in light intensity due to deterioration of the LEDs 1 and 2 and a change in light intensity due to bending of the optical fibers 6 and 8, and to display an accurate temperature on the display section 12.

そして、従来使用していたハーフミラ4が不要
になるので装置が安価・小形になる。
Furthermore, since the conventionally used half mirror 4 is no longer necessary, the device becomes inexpensive and compact.

また、この考案は、光を用いて2波長以上の
LEDを必要とする計測、例えば光弾性効果を利
用した光圧力測定装置等の光計測装置においても
同様の効果を奏する。
In addition, this idea uses light to generate wavelengths of two or more wavelengths.
Similar effects can be achieved in measurements that require LEDs, such as optical measurement devices such as optical pressure measurement devices that utilize the photoelastic effect.

〔考案の効果〕[Effect of idea]

以上のように、この考案によれば、各LED及
びモニタ用のPDと光フアイバのフエルールとを
所定の位置に対向配置させたので、光を合波させ
るための特別の器具を必要とせず、安価で小形に
なるという効果がある。
As described above, according to this invention, each LED, a monitor PD, and an optical fiber ferrule are arranged facing each other at predetermined positions, so there is no need for any special equipment to combine light. It has the effect of being inexpensive and compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の一実施例を示す構成図、第
2図aは吸収端波長の温度移動、同図bはLED
の波長波形と吸収端波長、同図cは同図bにおけ
る透過光強度を示す図、第3図は同一チツプ上に
配された参照光用、信号光用LED及びモニタ用
PDの配置図で、同図a及びbはそれぞれ側面図、
正面図、同図cは2つのLEDからの光が光フア
イバに入射する様子を示す説明図、第4図は従来
の光温度測定装置の構成図である。 図において、1,2は発光素子としてのLED、
5はモニタ用の検出素子としてのPD、6,8は
それぞれ送信用及び受信用の光フアイバ、7は材
料としてのセンサ、9は信号用のPD、11は信
号処理部、13,14はフエルールである。な
お、各図中、同一符号は同一または相当部分を示
す。
Figure 1 is a configuration diagram showing an embodiment of this invention, Figure 2 a shows the temperature shift of the absorption edge wavelength, and Figure 2 b shows the LED
Figure 3 shows the wavelength waveform and absorption edge wavelength of , Figure c shows the transmitted light intensity in figure b, Figure 3 shows the reference light LED, signal light LED, and monitor light arranged on the same chip.
In the layout diagram of the PD, a and b are side views, respectively.
FIG. 4 is a front view, FIG. In the figure, 1 and 2 are LEDs as light emitting elements,
5 is a PD as a detection element for monitoring, 6 and 8 are optical fibers for transmission and reception, respectively, 7 is a sensor as a material, 9 is a PD for signals, 11 is a signal processing unit, and 13 and 14 are ferrules. It is. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【実用新案登録請求の範囲】 (1) 発光素子、特定の波長の光の透過特性が被測
定量の関数として変化する材料、上記発光素子
から出射した光を上記材料に導く送信用の光フ
アイバ、上記材料を透過した光を受信用の光フ
アイバを介して受光し電気量に変換する信号用
の検出素子、上記発光素子から出射した光をモ
ニタするため上記出射した光を上記材料を介さ
ずに受光し電気量に変換するモニタ用の検出素
子、上記各検出素子の出力から被測定量を演算
する信号処理部を備えたものにおいて、上記発
光素子とモニタ用の検出素子とをそれぞれ発光
側,受光側を同一方向にして同一面上に相互に
近接して配設するとともに、上記送信用の光フ
アイバの入力側フエルールの端面を反射面に形
成し、上記近接配置した各素子と上記送信用の
光フアイバの入力側フエルールとを所定の間隔
を介して対向配置させたことを特徴とする光計
測装置。 (2) 発光素子は材料の光の透過特性が被測定量の
関数として変化する特定の波長の信号光を発光
する信号光用の発光素子と、上記材料の光の透
過特性が被測定量の変化にかかわらず一定であ
る波長の参照光を発光する参照光用の発光素子
とからなることを特徴とする実用新案登録請求
の範囲第1項記載の光計測装置。 (3) 被測定量は温度であることを特徴とする実用
新案登録請求の範囲第1項または第2項記載の
光計測装置。
[Claims for Utility Model Registration] (1) A light-emitting element, a material whose transmission characteristics for light of a specific wavelength change as a function of a measured quantity, and a transmission optical fiber that guides the light emitted from the light-emitting element to the material. , a signal detection element that receives the light transmitted through the material via a receiving optical fiber and converts it into an electrical quantity, and a signal detection element that monitors the light emitted from the light emitting element without passing the emitted light through the material. In the apparatus, the light emitting element and the monitoring detecting element are connected to each other on the light emitting side. , are arranged close to each other on the same plane with their light receiving sides in the same direction, and the end face of the input side ferrule of the transmitting optical fiber is formed as a reflective surface, so that each of the elements disposed close to each other and the transmitting An optical measurement device characterized in that a reliable optical fiber and an input side ferrule are arranged opposite to each other with a predetermined distance therebetween. (2) A light-emitting element is a light-emitting element for signal light that emits signal light of a specific wavelength whose light transmission characteristics change as a function of the measured quantity; The optical measuring device according to claim 1, which is a utility model, and comprises a reference light emitting element that emits a reference light having a constant wavelength regardless of changes. (3) The optical measurement device according to claim 1 or 2 of the utility model registration claim, wherein the measured quantity is temperature.
JP19154884U 1984-12-18 1984-12-18 Expired JPH0442749Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19154884U JPH0442749Y2 (en) 1984-12-18 1984-12-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19154884U JPH0442749Y2 (en) 1984-12-18 1984-12-18

Publications (2)

Publication Number Publication Date
JPS61105832U JPS61105832U (en) 1986-07-05
JPH0442749Y2 true JPH0442749Y2 (en) 1992-10-09

Family

ID=30748988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19154884U Expired JPH0442749Y2 (en) 1984-12-18 1984-12-18

Country Status (1)

Country Link
JP (1) JPH0442749Y2 (en)

Also Published As

Publication number Publication date
JPS61105832U (en) 1986-07-05

Similar Documents

Publication Publication Date Title
EP0214040B1 (en) Fiber-optic sensor
US5396325A (en) Optical sensor
EP0153924B1 (en) Measuring apparatus and method
CN1632485A (en) Distributed optical fiber grating temperature detection system for high voltage electric power equipment
EP0291148B1 (en) Optical sensor
US4865416A (en) Optical sensing arrangements
JPH0442749Y2 (en)
US4946275A (en) Fiber optic position transducer
KR19990014765A (en) Compensation and status monitoring device of fiber intensity-modulation sensor
JPS62150117A (en) Optical converter
US4607162A (en) Sensing apparatus for measuring a physical quantity
JPS61225627A (en) Photometer
KR100275654B1 (en) Grating strain sensor system using inclined fiber bragg grating demodulator
JPS6144334A (en) Temperature measuring device
JPS63308531A (en) Optical type gas pressure sensor
JPH11183290A (en) Optical fiber measuring system
JPS61225626A (en) Photometer
JPS61213738A (en) Optical fiber temperature measuring sensor
JPS63121722A (en) Temperature distribution detector
JP2000046655A (en) Radiation thermometer having light receiving loss compensation function and temperature measuring method therefor
JP2918761B2 (en) Optical position detector
JPS6244640A (en) Measuring instrument for temperature and pressure
RU2245568C2 (en) Automatic refraction meter
SU930023A1 (en) Device for measuring temperature
JP3110139B2 (en) Optical fiber temperature sensor