JPS63308531A - Optical type gas pressure sensor - Google Patents

Optical type gas pressure sensor

Info

Publication number
JPS63308531A
JPS63308531A JP62144369A JP14436987A JPS63308531A JP S63308531 A JPS63308531 A JP S63308531A JP 62144369 A JP62144369 A JP 62144369A JP 14436987 A JP14436987 A JP 14436987A JP S63308531 A JPS63308531 A JP S63308531A
Authority
JP
Japan
Prior art keywords
light
gas pressure
gas
reference light
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62144369A
Other languages
Japanese (ja)
Other versions
JPH0352901B2 (en
Inventor
Koichi Ikegawa
池川 幸一
Hitoshi Takami
均 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Gas Co Ltd
Original Assignee
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Gas Co Ltd filed Critical Toho Gas Co Ltd
Priority to JP62144369A priority Critical patent/JPS63308531A/en
Publication of JPS63308531A publication Critical patent/JPS63308531A/en
Publication of JPH0352901B2 publication Critical patent/JPH0352901B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable accurate measurement of a gas pressure eliminating explosion-proof processing while being free from effect of turbulence or the like, by determining an attenuation factor of measuring light when the measuring light and reference light passes at a gas pressure measuring point. CONSTITUTION:When driving is started with the energization from power sources 5A and 5B, measuring light 2A from a laser diode 2 and reference light 3A from a laser diode 3 are propagated separately to a optical switch 6, which branches the measuring light 2A and the reference light 3A to be transmitted alternately. The light thus branched is propagated 9 to a gas cell 1. Here, the branched light is transmitted through a lens 10 to be made parallel and passes through a methane gas of the gas cell 1 while the measuring light 2A along is subjected to absorption. After being transmitted through the gas cell 1, light is condensed 11, propagated 12 and received 15 through a light adaptor 13. The light received and propagated is converted 15 to electricity and an electrical signal V corresponding to the measuring light subjected to absorption by a methane gas and an electrical signal VO corresponding to the reference light are outputted. Then, a gas pressure is computed 16 in the basic of a ratio of the electrical signals V and VO.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えばガスセル内のガス圧力を光学的に測定
するためのガス圧力センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a gas pressure sensor for optically measuring gas pressure within a gas cell, for example.

(従来の技術) 従来、ガス圧力を測定する手段として、半円型のC型、
スパイラル型、ヘリカル型等に管を形成し、管内にガス
の圧力が印加されたときに生じる管先変位に基づいて、
ガス圧力を機械的に測定するというブルドン管式圧力セ
ンサや、印加されたガス圧力により変位するダイアフラ
ム電極を設()、このダイアフラム電極の変位に対応し
て変化する静電容量に基づいてガス圧力を測定するとい
う静電容量式圧力センサや、印加されたガス圧力により
変形するシリコンダイアフラムをストレンゲージとして
形成し、このストレンゲージの変形により生じる電気抵
抗の変化を、予め形成されたブリッジ回路から電気信号
として取出1ことによりガス圧力を測定するという半導
体圧力センサ等があった。
(Prior art) Conventionally, as means for measuring gas pressure, semicircular C-type,
The tube is formed into a spiral or helical shape, and based on the displacement of the tip of the tube that occurs when gas pressure is applied inside the tube,
A Bourdon tube pressure sensor is used to mechanically measure gas pressure, and a diaphragm electrode that is displaced by the applied gas pressure () is used to measure gas pressure based on the capacitance that changes in response to the displacement of this diaphragm electrode. A capacitance pressure sensor is used to measure the amount of gas, and a silicon diaphragm that deforms due to applied gas pressure is formed as a strain gauge, and the change in electrical resistance caused by the deformation of this strain gauge is measured using an electric current from a pre-formed bridge circuit. There have been semiconductor pressure sensors and the like that measure gas pressure by taking out a signal.

(発明が解決しようとする問題点) 上記従来のガス圧ノノセンザのうち、ブルドン管式圧力
センサは、いわゆる機械式ガス圧力測定手段であり、こ
の手段によりガス圧力を測定する場合、ガス圧力が一定
であっても周囲温度により管先先端の変位mが違ってく
るため、ガス圧力を正確に測定するということに対して
は問題があった。
(Problems to be Solved by the Invention) Among the conventional gas pressure sensors mentioned above, the Bourdon tube pressure sensor is a so-called mechanical gas pressure measuring means, and when gas pressure is measured by this means, the gas pressure is constant. Even so, there was a problem in accurately measuring the gas pressure because the displacement m of the tip of the tube differed depending on the ambient temperature.

また、静電容量式圧力センサや、半導体圧力センサを用
いてガス圧力を測定する場合、上記圧力センサに直接、
電気回路が接続されるため、爆発性ガス、引火性ガスの
圧力を測定する場合には圧力センサに防爆処理をしなけ
ればならないという問題があった。
In addition, when measuring gas pressure using a capacitive pressure sensor or a semiconductor pressure sensor, it is necessary to directly connect the
Since an electric circuit is connected, there is a problem in that the pressure sensor must be explosion-proofed when measuring the pressure of explosive or flammable gas.

そのため、上記問題を解決するようなガス圧力センサと
して光学的にガス圧ツノを測定するセンサが要望されて
いたため、本発明においては、従来無かった上記光学式
ガス圧力センサを提供することを解決すべき技術的課題
とするものである。
Therefore, there has been a demand for a sensor that optically measures the gas pressure horn as a gas pressure sensor that solves the above problems.The present invention aims to solve the above problem by providing the above-mentioned optical gas pressure sensor, which has not been available in the past. This is a technical issue that should be addressed.

(問題点を解決するための手段) 上記課題解決のための技術的手段は、被圧力測定ガスに
よって吸収されない波長の基準光と、上記のガスの圧力
に対応した吸収率で同ガスに吸収される波長の測定光と
を一定出力で交互にガス圧力測定箇所に投光し、ガス圧
力測定箇所を透過した基準光と測定光それぞれを電気信
号に変換したうえ、基準光対応の電気信号と測定光対応
の電気信号の比を演算し、同比に基づいC前記ガス圧力
測定箇所のガスの圧力を測定表示する光学式ガス圧力セ
ンサを、前記基準光を発光する基準光発光手段と、前記
測定光を発光する測定光発光手段と、前記基準光と測定
光とを入光したうえ同基準光と測定光とを任意の時分割
タイミングで交互に送光するスイッチング手段と、前記
スイッチング手段から送光された前記両光を前記ガス圧
力測定箇所に伝搬させる第1の光伝送手段と、前記第1
の光伝送手段により前記ガス圧力測定箇所に伝搬された
前記両光が前記ガス圧力測定箇所を透過したあとの両光
を集光して伝送する第2の光伝送手段と、前記第2の光
伝送手段により伝送された前記両光を受光して光電変換
する光電変換手段と、前記光電変換手段から出力された
基準光対応の電気信号と測定光対応の電気信号とを入ツ
ノして基準光対応の電気信号と測定光対応の電気信号の
比を演算したうえ演算された比に基づいて前記ガス圧力
測定箇所のガス圧力を演算する演算手段と、前記演算手
段で演算されたガス圧力を表示する表示手段とを備えた
構成にすることである。
(Means for solving the problem) The technical means for solving the above problem is to use a reference light of a wavelength that is not absorbed by the pressure measurement gas, and a reference light that is absorbed by the gas with an absorption rate corresponding to the pressure of the gas. The reference light and measurement light with a wavelength corresponding to the reference light are alternately projected onto the gas pressure measurement point at a constant output, and each of the reference light and measurement light transmitted through the gas pressure measurement point is converted into an electrical signal, and then the electrical signal corresponding to the reference light and measurement light are converted. An optical gas pressure sensor that calculates a ratio of electrical signals corresponding to optical signals and measures and displays the gas pressure at the gas pressure measurement point based on the ratio, a reference light emitting means that emits the reference light, and the measurement light a measuring light emitting means for emitting light; a switching means for inputting the reference light and the measuring light and alternately transmitting the reference light and the measuring light at arbitrary time-sharing timing; and light transmitting from the switching means. a first optical transmission means for propagating the two light beams transmitted to the gas pressure measurement point;
a second light transmission means for condensing and transmitting both the lights propagated to the gas pressure measurement point by the light transmission means and transmitted through the gas pressure measurement point; A photoelectric conversion means receives and photoelectrically converts both the lights transmitted by the transmission means, and an electric signal corresponding to the reference light and an electric signal corresponding to the measurement light outputted from the photoelectric conversion means are inputted to produce a reference light. a calculation means for calculating the gas pressure at the gas pressure measurement point based on the calculated ratio after calculating the ratio of the corresponding electric signal and the electric signal corresponding to the measurement light; and displaying the gas pressure calculated by the calculation means. The purpose of the present invention is to provide a configuration including a display means for displaying information.

(作 用) 上記構成の光学式ガス圧力センサによれば、基準光発光
手段から、被圧力測定ガスによって吸収されない波長の
基準光が発光される一方、測定光発光手段から、ガス圧
力測定箇所のガスの圧力に対応した吸収率で同ガスに吸
収される波長の測定光が発光されると、スイッチング手
段は、基準光と測定光を入光したうえ、基準光と測定光
を所定の時分割タイミングで分波し、基準光と測定光と
を交互に送光する。スイッチング手段により交互に送光
された基準光と測定光は第1の光伝送手段によりガス圧
力測定箇所に伝搬され、ガス圧力測定箇所のガス中を透
過する。ガス圧力測定箇所を透過した前記両光は第2の
光伝送手段により集光され、光電変換手段に伝送される
。光電変換手段では第2の光伝送手段によって伝送され
た前記両光を受光してそれぞれを電気信号に変換したう
え、基準光対応の電気信号と測定光対応の電気信号を演
算手段に出力する。演算手段では上記両電気信号の比が
演算され、さらに演算された比に基づき、ガス圧力測定
箇所のガス圧力が演算される。
(Function) According to the optical gas pressure sensor having the above configuration, the reference light emitting means emits reference light having a wavelength that is not absorbed by the gas to be measured, while the measurement light emitting means emits reference light at the gas pressure measurement location. When measurement light of a wavelength that is absorbed by the gas with an absorption rate corresponding to the pressure of the gas is emitted, the switching means inputs the reference light and measurement light and divides the reference light and measurement light into predetermined time divisions. The light is separated at the appropriate timing and the reference light and measurement light are sent alternately. The reference light and measurement light alternately transmitted by the switching means are propagated to the gas pressure measurement point by the first light transmission means, and are transmitted through the gas at the gas pressure measurement point. The two lights that have passed through the gas pressure measurement point are collected by the second light transmission means and transmitted to the photoelectric conversion means. The photoelectric conversion means receives the two lights transmitted by the second optical transmission means, converts them into electrical signals, and outputs an electrical signal corresponding to the reference light and an electrical signal corresponding to the measurement light to the calculation means. The calculation means calculates the ratio of the two electrical signals, and further calculates the gas pressure at the gas pressure measurement location based on the calculated ratio.

前記演算手段で演亦されたガス圧力は、表示用の電気信
号に変換され、表示手段に出力される。
The gas pressure calculated by the calculation means is converted into an electric signal for display and output to the display means.

同表示手段は表示用の電気信号を入ノjしてガス圧力値
を表示する。
The display means inputs an electric signal for display and displays the gas pressure value.

(実施例) 次に、本発明の一実施例を図に従って説明する。(Example) Next, one embodiment of the present invention will be described with reference to the drawings.

図に示すように、本実施例の光学式ガス圧力センザはガ
ス圧力測定箇所としてのガスセル1内のメタン(CH4
)ガスの圧力を測定するものである。上記メタンガスを
光学的に測定するため、波長が1.3μ11(ミクロン
メータ)帯の測定光を発光させるレーデダイオード2と
、波長がメタンガスに吸収されない領域にある基準光を
発光さぜるレーザダイオード3とが設けられている。上
記レーザダイオード2及びレーザダイオード3それぞれ
に対して発光用の電流を通電するため、レーザダイオー
ド2,3にはそれぞれ電gi5A及び5Bが接続される
As shown in the figure, the optical gas pressure sensor of this embodiment has methane (CH4
) It measures the pressure of gas. In order to optically measure the methane gas, a radar diode 2 emits measurement light with a wavelength of 1.3μ11 (micrometer) band, and a laser diode emits reference light whose wavelength is in a region not absorbed by methane gas. 3 is provided. In order to supply current for light emission to each of the laser diode 2 and laser diode 3, electric currents gi5A and 5B are connected to the laser diodes 2 and 3, respectively.

また、レーザダイオ“−ド2,3から発光された定出力
の測定光2A及び基準光3Aを受光し、時分割によるタ
イミングで測定光2Aと基準光3Aを交互に送光する光
スィッチ6が設けられる。レーザダイオード2と光スイ
ツチ6間には、レーザダイオード2から発光された測定
光2Aを光スィッチ6まで伝搬する光ファイバ7が設け
られる。
Further, an optical switch 6 is provided which receives the constant output measurement light 2A and reference light 3A emitted from the laser diodes 2 and 3, and alternately sends the measurement light 2A and reference light 3A at time-sharing timing. An optical fiber 7 is provided between the laser diode 2 and the optical switch 6 to propagate measurement light 2A emitted from the laser diode 2 to the optical switch 6.

また、レーザダイオード3と光スイツチ6間には、レー
ザダイオード3から発光された基準光3Aを光スィッチ
6まで伝搬するため、光ファイバ8A及び、通過光の光
量を減衰調節する光減衰器8が設けられ、さらに光ファ
イバ8Bが設けられる。
Further, between the laser diode 3 and the optical switch 6, in order to propagate the reference light 3A emitted from the laser diode 3 to the optical switch 6, an optical fiber 8A and an optical attenuator 8 are provided to attenuate and adjust the amount of light passing through. Further, an optical fiber 8B is provided.

光スィッチ6は、光ファイバ9を介してガスセル1と接
続されており、光ファイバ9は光スイッチ6から送光さ
れた直列状の分波光をガスセル1まで伝搬するものであ
る。
The optical switch 6 is connected to the gas cell 1 via an optical fiber 9, and the optical fiber 9 propagates the serial demultiplexed light sent from the optical switch 6 to the gas cell 1.

ガスセル1の入光側には、光ファイバ9の端末部からの
分波光を透過させて平行光線にするためのレンズ10が
設【プられる一方、ガスセル1の出光側には、ガスセル
1を透過した平行光線状の分波光を集光するレンズ11
が設けられている。レンズ11で集光された光は、ガス
セル1内のメタンガスの圧力に対応して波長が1.3μ
m帯の測定光2Aのみが吸収されたものであり、この集
光はガスセル1の出光側に接続された光ファイバ12に
より伝搬される。従って光ファイバ12により伝搬され
る伝搬光は、測定光2Aの波高が基準光3Aの波高より
低下した波形となる。光ファイバ12により伝搬された
伝搬光は光アダプタ13、及び光ファイバ14を介して
フォトダイオード(PD) 15まで伝送され、受光さ
れる。フォトダイオード15′C″受光された伝搬光は
同フォトダイオード15で光電変換され、測定光2A対
応の電気信号Vと、基準光3△対応の電気信号VOとし
て出力される。フォトダイオード15には、フォトダイ
オード15から出力された上記電気信号V、VOを入力
してガス圧力を演算する演算回路16が接続される。演
算回路16には、同演算回路16で演算されたガス圧力
値を表示させるだめの表示器17が接続されている。
A lens 10 is installed on the light input side of the gas cell 1 to transmit the demultiplexed light from the end of the optical fiber 9 and make it into a parallel beam. A lens 11 that condenses the separated light in the form of parallel rays.
is provided. The light focused by the lens 11 has a wavelength of 1.3μ corresponding to the pressure of methane gas in the gas cell 1.
Only the m-band measurement light 2A is absorbed, and this focused light is propagated by the optical fiber 12 connected to the light output side of the gas cell 1. Therefore, the propagated light propagated through the optical fiber 12 has a waveform in which the wave height of the measurement light 2A is lower than the wave height of the reference light 3A. The propagated light propagated by the optical fiber 12 is transmitted to a photodiode (PD) 15 via an optical adapter 13 and an optical fiber 14, and is received. The propagating light received by the photodiode 15'C'' is photoelectrically converted by the photodiode 15 and output as an electric signal V corresponding to the measurement light 2A and an electric signal VO corresponding to the reference light 3Δ. , an arithmetic circuit 16 is connected which calculates the gas pressure by inputting the electric signals V and VO outputted from the photodiode 15.The arithmetic circuit 16 displays the gas pressure value calculated by the arithmetic circuit 16. A display device 17 is connected.

次に、上記構成によるガスセル1のメタンガスの圧力を
測定するための光学式ガス圧力センサの作用を説明する
Next, the operation of the optical gas pressure sensor for measuring the pressure of methane gas in the gas cell 1 with the above configuration will be explained.

電源5A、5Bから、レーザダイオード2及びレーザダ
イオード3それぞれに対して駆動電流が通電されると、
レーザダイオード2から測定光2Aが、またレーザダイ
オード3から基準光3Aがそれぞれ定出力光量で発光さ
れる。レーザダイオード2から発光された測定光2Aは
光ファイバ7により光スィッチ6まで伝搬され、また、
レーザダイオード3から発光された基準光3Aは光ファ
イバ8A、光減衰器8、光ファイバ8Bを介して光スィ
ッチ6まで伝搬される。光スイッチ6は測定光2Aと基
準光3Aとを入光し、時分割タイミングに対応して測定
光2Aど基準光3Aを分波して交互に送光する。光スイ
ッチ6から送光された分波光は光ファイバ9によりガス
セル1まで伝搬され、ガスセル1に入光される。分波光
がガスセル1に入光されるとぎに、同分波光はレンズ1
0を透過し、平行光線にされる。平行光線にされた分波
光はガスセル1のメタンガス中を透過し、そ−1〇 − の透過過程で、メタンガスのガス圧力に対応して測定光
2Aのみが吸収作用を受ける。ガスセル1を透過したあ
との光はレンズ11により集光され、光ファイバ12に
より伝搬され、光アダプタ13を介してフォトダイオー
ド15により受光される。
When driving current is applied to the laser diode 2 and the laser diode 3 from the power supplies 5A and 5B,
A measurement light 2A is emitted from the laser diode 2, and a reference light 3A is emitted from the laser diode 3, each with a constant output light amount. The measurement light 2A emitted from the laser diode 2 is propagated to the optical switch 6 by the optical fiber 7, and
Reference light 3A emitted from laser diode 3 is propagated to optical switch 6 via optical fiber 8A, optical attenuator 8, and optical fiber 8B. The optical switch 6 receives the measurement light 2A and the reference light 3A, and splits the measurement light 2A and the reference light 3A into the measurement light 2A and the reference light 3A in accordance with the time division timing and sends them alternately. The demultiplexed light transmitted from the optical switch 6 is propagated to the gas cell 1 through the optical fiber 9, and is input into the gas cell 1. When the demultiplexed light enters the gas cell 1, the demultiplexed light enters the lens 1.
0 and become parallel rays. The parallel beam of demultiplexed light passes through the methane gas in the gas cell 1, and during the transmission process, only the measurement light 2A is absorbed in response to the gas pressure of the methane gas. The light after passing through the gas cell 1 is collected by a lens 11, propagated by an optical fiber 12, and received by a photodiode 15 via an optical adapter 13.

フォトダイオード15は上記伝搬光を受光して光電変換
し、メタンガスにより吸収作用を受けた測定光対応の電
気信号Vと基準光対応の電気信号VOを出力する。両電
気信号■及びVOは演算回路16に入力され、演算回路
16において、上記両電気信号V、VOの比に基づいて
ガス圧力が演算される。
The photodiode 15 receives and photoelectrically converts the propagating light, and outputs an electrical signal V corresponding to the measurement light absorbed by methane gas and an electrical signal VO corresponding to the reference light. Both electric signals (1) and VO are input to an arithmetic circuit 16, and the gas pressure is calculated in the arithmetic circuit 16 based on the ratio of the two electric signals V and VO.

上記演算回路16でガス圧力が演算されると、同ガス圧
力は電気信号に変換され、表示器17に出力される。表
示器17では上記ガス圧力対応の電気信号が入力される
と、ガス圧力を数字で表示する。
When the gas pressure is calculated by the calculation circuit 16, the gas pressure is converted into an electric signal and output to the display 17. When the electric signal corresponding to the gas pressure is inputted to the display 17, the gas pressure is displayed numerically.

尚、上記実施例においては、ガス圧力測定箇所をガスセ
ル1としたが、ガスセル1の苔わりに先導波路をガス圧
力測定箇所としても、同様にガス圧力を測定することが
できる。
In the above embodiment, the gas pressure measurement point is the gas cell 1, but the gas pressure can be similarly measured by using the leading waveguide instead of the moss of the gas cell 1 as the gas pressure measurement point.

(発明の効果) 以上のように本発明においては、被測定ガスによって吸
収される波長の測定光と、被測定ガスによって吸収され
ない波長の基準光とをガス圧力測定箇所を通過させたと
きの測定光の減衰率に基づいて光学的にガス圧力を測定
するため、ガス圧力測定に際して防爆処理をする必要が
なく、かつ外乱等の影響を受けることなく正確にガス圧
力を測定する光学式ガス圧カセンザを提供することがで
きるという効果がある。
(Effects of the Invention) As described above, in the present invention, measurement is performed when measurement light having a wavelength that is absorbed by the gas to be measured and reference light having a wavelength that is not absorbed by the gas to be measured are passed through a gas pressure measurement point. An optical gas pressure sensor that measures gas pressure optically based on the attenuation rate of light, so there is no need for explosion-proof treatment when measuring gas pressure, and it accurately measures gas pressure without being affected by external disturbances. It has the effect of being able to provide

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示す光学的なガス圧力測定系統
図である。 1・・・ガスセル 2・・・レーザダイオード 2A・・・測 定 光 3・・・レーザダイオード 5A、 5B・・・電   源 6・・・光スィッチ 7・・・光ファイバ 8・・・光減衰器 8A、8B・・・光ファイバ 9・・・光ファイバ 13・・・光アダプタ 14・・・光ファイバ 15・・・フォトダイオード 16・・・演算回路 17・・・表 示 器
The figure is an optical gas pressure measurement system diagram showing an embodiment of the present invention. 1... Gas cell 2... Laser diode 2A... Measurement Light 3... Laser diode 5A, 5B... Power supply 6... Optical switch 7... Optical fiber 8... Optical attenuation Devices 8A, 8B...Optical fiber 9...Optical fiber 13...Optical adapter 14...Optical fiber 15...Photodiode 16...Arithmetic circuit 17...Indicator

Claims (1)

【特許請求の範囲】[Claims] 被圧力測定のガスによつて吸収されない波長の基準光と
、上記ガスの圧力に対応した吸収率で同ガスに吸収され
る波長の測定光とを一定出力で交互にガス圧力測定箇所
に投光し、ガス圧力測定箇所を透過した基準光と測定光
それぞれを電気信号に変換したうえ、基準光対応の電気
信号と測定光対応の電気信号の比を演算し、同比に基づ
いて前記ガス圧力測定箇所のガスの圧力を測定表示する
光学式ガス圧力センサであつて、前記基準光を発光する
基準光発光手段と、前記測定光を発光する測定光発光手
段と、前記基準光と測定光とを入光したうえ同基準光と
測定光とを任意の時分割タイミングで交互に送光するス
イッチング手段と、前記スイッチング手段から送光され
た前記両光を前記ガス圧力測定箇所に伝搬させる第1の
光伝送手段と、前記第1の光伝送手段により前記ガス圧
力測定箇所に伝搬された前記両光が前記ガス圧力測定箇
所を透過したあとの両光を集光して伝送する第2の光伝
送手段と、前記第2の光伝送手段により伝送された前記
両光を受光して光電変換する光電変換手段と、前記光電
変換手段から出力された基準光対応の電気信号と測定光
対応の電気信号とを入力して基準光対応の電気信号と測
定光対応の電気信号の比を演算したうえ演算された比に
基づいて前記ガス圧力測定箇所のガス圧力を演算する演
算手段と、前記演算手段で演算されたガス圧力を表示す
る表示手段とを備えたことを特徴とする光学式ガス圧力
センサ。
A reference light with a wavelength that is not absorbed by the gas whose pressure is being measured and a measurement light with a wavelength that is absorbed by the gas with an absorption rate corresponding to the pressure of the gas are alternately projected onto the gas pressure measurement point at a constant output. Then, each of the reference light and measurement light transmitted through the gas pressure measurement point is converted into an electrical signal, the ratio of the electrical signal corresponding to the reference light and the electrical signal corresponding to the measurement light is calculated, and the gas pressure is measured based on the ratio. An optical gas pressure sensor that measures and displays the pressure of gas at a location, the sensor comprising a reference light emitting means for emitting the reference light, a measurement light emitting means for emitting the measurement light, and a combination of the reference light and the measurement light. a switching means for receiving the light and transmitting the same reference light and measurement light alternately at arbitrary time division timing; and a first for transmitting both the lights transmitted from the switching means to the gas pressure measurement point. an optical transmission means, and a second optical transmission for condensing and transmitting both the lights after the two lights propagated to the gas pressure measurement point by the first light transmission means pass through the gas pressure measurement point. means, photoelectric conversion means for receiving and photoelectrically converting both the lights transmitted by the second optical transmission means, and an electric signal corresponding to the reference light and an electric signal corresponding to the measurement light output from the photoelectric conversion means. a calculation means that calculates the ratio of the electric signal corresponding to the reference light and the electric signal corresponding to the measurement light by inputting the above, and calculates the gas pressure at the gas pressure measurement point based on the calculated ratio; An optical gas pressure sensor comprising: display means for displaying calculated gas pressure.
JP62144369A 1987-06-10 1987-06-10 Optical type gas pressure sensor Granted JPS63308531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62144369A JPS63308531A (en) 1987-06-10 1987-06-10 Optical type gas pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62144369A JPS63308531A (en) 1987-06-10 1987-06-10 Optical type gas pressure sensor

Publications (2)

Publication Number Publication Date
JPS63308531A true JPS63308531A (en) 1988-12-15
JPH0352901B2 JPH0352901B2 (en) 1991-08-13

Family

ID=15360513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62144369A Granted JPS63308531A (en) 1987-06-10 1987-06-10 Optical type gas pressure sensor

Country Status (1)

Country Link
JP (1) JPS63308531A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185796A (en) * 1999-12-27 2001-07-06 Hitachi Metals Ltd Laser device and device to which the same is applied and method for using the same
JP2021025789A (en) * 2019-07-31 2021-02-22 株式会社フジキン Flow rate measurement system and flow rate measurement method
WO2021148083A1 (en) * 2020-01-20 2021-07-29 Ums Gmbh & Co. Kg Gas sensor comprising a sporadically operated reference light source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542097A (en) * 1978-09-15 1980-03-25 Asea Ab Optical measuring instrument

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542097A (en) * 1978-09-15 1980-03-25 Asea Ab Optical measuring instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185796A (en) * 1999-12-27 2001-07-06 Hitachi Metals Ltd Laser device and device to which the same is applied and method for using the same
JP2021025789A (en) * 2019-07-31 2021-02-22 株式会社フジキン Flow rate measurement system and flow rate measurement method
WO2021148083A1 (en) * 2020-01-20 2021-07-29 Ums Gmbh & Co. Kg Gas sensor comprising a sporadically operated reference light source

Also Published As

Publication number Publication date
JPH0352901B2 (en) 1991-08-13

Similar Documents

Publication Publication Date Title
US4356396A (en) Fiber optical measuring device with compensating properties
JPH0364812B2 (en)
JPH085686A (en) Field sensor
CN106769737B (en) Optical fiber type dust concentration measuring device
JPS63308531A (en) Optical type gas pressure sensor
EP0079988A1 (en) Optical fibre transmission instrumentation
US4607162A (en) Sensing apparatus for measuring a physical quantity
JPH068724B2 (en) Optical detector
CN107478577A (en) Multiplexing fiber-optic gas sensing system based on weak optical fiber Bragg grating and optical time domain reflectometer
RU2539681C1 (en) Fibre-optic linear acceleration converter based on optical tunnelling effect
JPH0550710B2 (en)
RU81574U1 (en) FIBER OPTICAL MEASURING SYSTEM (OPTIONS)
JPS6217621A (en) Optical power meter
JPH11110673A (en) Pressure measuring device using non acoustic optical pressure sensor, or tdm(time division multiple transmission) array of non acoustic optical pressure sensor and method therefor
JPH0249115A (en) Displacement measuring instrument and pressure measuring instrument utilizing such instrument
JP2669359B2 (en) Distortion measuring method and device
JPS6144334A (en) Temperature measuring device
JPS60146112A (en) Light reflection type detector
JPS6488373A (en) Optical fiber sensor
SU1454055A1 (en) Fibre-optics system for measuring pressure
JPH0524031Y2 (en)
JPH0257909A (en) Measuring apparatus of displacement and measuring apparatus of pressure
JPS625605Y2 (en)
JPS6035234A (en) Pressure measuring device
JPH0442749Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees