JPH0442360B2 - - Google Patents

Info

Publication number
JPH0442360B2
JPH0442360B2 JP57110398A JP11039882A JPH0442360B2 JP H0442360 B2 JPH0442360 B2 JP H0442360B2 JP 57110398 A JP57110398 A JP 57110398A JP 11039882 A JP11039882 A JP 11039882A JP H0442360 B2 JPH0442360 B2 JP H0442360B2
Authority
JP
Japan
Prior art keywords
diamond
solvent metal
seed crystal
plane
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57110398A
Other languages
Japanese (ja)
Other versions
JPS593100A (en
Inventor
Kazuo Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57110398A priority Critical patent/JPS593100A/en
Priority to ZA834499A priority patent/ZA834499B/en
Priority to US06/506,935 priority patent/US4544540A/en
Priority to DE198383106198T priority patent/DE99486T1/en
Priority to EP83106198A priority patent/EP0099486B1/en
Priority to DE8383106198T priority patent/DE3373788D1/en
Publication of JPS593100A publication Critical patent/JPS593100A/en
Priority to US07/255,249 priority patent/US4927619A/en
Publication of JPH0442360B2 publication Critical patent/JPH0442360B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/02Zone-melting with a solvent, e.g. travelling solvent process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/061Graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/062Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/0625Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/068Crystal growth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本願発明は断面が円形、多角形などの異形状を
有する棒状ダイヤモンド単結晶とその製造法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rod-shaped diamond single crystal having an irregular cross section such as a circle or a polygon, and a method for manufacturing the same.

岩石を掘削するビツトや研削砥石の修正加工を
行うドレツサーの刃先材料としてあらゆる物質の
中で最も高い硬度を有するダイヤモンドが利用さ
れている。これらの工具に用いられるダイヤモン
ドの大きさは概略1mm以上のものが必要とされ、
現在は工業的規模で生産されるに至つていない為
天然品の所謂ボーツと称されるものが使用されて
いる。
Diamond, which has the highest hardness of all substances, is used as the cutting edge material for bits used to excavate rocks and for dressers used to modify grinding wheels. The size of the diamond used in these tools must be approximately 1 mm or larger,
At present, since it has not been produced on an industrial scale, a natural product called botu is used.

ダイヤモンドの耐摩耗性は結晶の面方位によつ
て大幅に変わることが知られており、これら工具
に使用する場合には面方位の選択が重要な問題と
なつている。ところで天然のダイヤモンドは産出
過程で溶解作用を受ける為に自形を有することが
少く、一般に丸味を帯び、溶解の過程に応じて
種々雑多な形状を呈する。その為結晶の面方位を
決定し、工具として良好な使用方向にするには相
当な熟練作業を要しているのが現状である。
It is known that the wear resistance of diamond varies greatly depending on the plane orientation of the crystal, and selection of the plane orientation is an important issue when used in these tools. By the way, natural diamonds are subject to melting during the production process, so they rarely have an automorphic shape, and are generally rounded, taking on various shapes depending on the melting process. Therefore, the current situation is that considerable skill is required to determine the plane orientation of the crystal and make it suitable for use as a tool.

本願発明の目的の一つは、これらの工具に適し
た形状のダイヤモンドを提供することにあり、他
の一つはダイヤモンドの新規な表面状態を提供す
ることにより工具支持体への接合強度を高めるこ
とにある。
One of the purposes of the present invention is to provide diamond with a shape suitable for these tools, and another purpose is to provide a new diamond surface condition to increase the bonding strength to the tool support. There is a particular thing.

即ち本願発明の棒状ダイヤモンド単結晶は、ダ
イヤモンド合成状態で、断面形状が円形、多角形
もしくは星形等の異形状を有すると共に、その等
断面積直径に対して少なくとも1.5倍以上の長さ
を有しかつその長さ方向〈111〉方向又は〈100〉
方向もしくは〈110〉方向であり、その表面がす
りガラス状の凹凸を有することを特徴とするもの
である。
That is, the rod-shaped diamond single crystal of the present invention has an irregular cross-sectional shape such as a circle, a polygon, or a star shape in the diamond synthesis state, and has a length that is at least 1.5 times the diameter of the equal cross-sectional area. And its length direction <111> direction or <100>
direction or <110> direction, and is characterized by its surface having frosted glass-like unevenness.

又本願発明の棒状ダイヤモンド単結晶の製造法
は、炭素供給源及びこれと接して配置された溶媒
金属及び種結晶からなるダイヤモンド合成反応系
をダイヤモンドが熱力学的に安定な高圧高温下に
もたらし該反応系を収容する反応室内に適切な温
度勾配をつけ、溶媒金属の炭素供給源と接する方
の位置が高温に、種結晶と接する方の位置が低温
になる様に加熱し、溶媒金属を媒体として炭素を
高温部から低温部に輸送させ、該温度勾配による
炭素の溶媒金属への溶解度差を利用して炭素をダ
イヤモンドとして種結晶上に析出させかつ成長さ
せる方法に於いて、溶媒金属の断面の形状が、目
的とする棒状ダイヤモンドの断面形状と同一形状
であり、その長さが等断面積直径の少なくとも
1.5倍以上である様な溶媒金属を使用し溶媒金属
と接して配置されるダイヤモンド種結晶の面が
(111)面又は(100)面もしくは(110)面である
ことを特徴とするものである。
In addition, the method for producing a rod-shaped diamond single crystal of the present invention involves bringing a diamond synthesis reaction system consisting of a carbon source, a solvent metal placed in contact with the carbon source, and a seed crystal under high pressure and high temperature in which diamond is thermodynamically stable. Create an appropriate temperature gradient in the reaction chamber housing the reaction system, and heat the solvent metal so that the part of the solvent metal in contact with the carbon source is at a high temperature and the part in contact with the seed crystal is at a low temperature. In this method, carbon is transported from a high-temperature part to a low-temperature part, and carbon is precipitated and grown as diamond on a seed crystal by utilizing the difference in solubility of carbon in a solvent metal due to the temperature gradient. has the same cross-sectional shape as the target rod-shaped diamond, and its length is at least equal to the equal cross-sectional area diameter.
A diamond seed crystal that uses a solvent metal with a diameter of 1.5 times or more and is arranged in contact with the solvent metal is characterized in that the face of the diamond seed crystal is a (111) face, a (100) face, or a (110) face. .

本願発明による棒状ダイヤモンド単結晶はその
長さ方向に対して予め面方位を選択して合成でき
るので上述の如き面方位の選択は不要であり、工
具として良好な面方位を容易に決定できる長所を
有する。それと共にすりガラス状の凹凸を有する
表面状態を呈し、その表面積が広い為工具支持体
に鑞付もしくは焼結マウントされる場合、平滑な
面を有する天然ダイヤモンドよりも接合強度が増
大し、使用中にダイヤモンドが工具支持体から脱
落するということがなくなるという長所も有す
る。
The rod-shaped diamond single crystal according to the present invention can be synthesized by selecting the plane orientation in advance in the longitudinal direction, so there is no need to select the plane orientation as described above, and it has the advantage that a suitable plane orientation can be easily determined as a tool. have At the same time, it exhibits a ground glass-like uneven surface condition, and its large surface area increases the bonding strength when brazed or sintered on a tool support compared to natural diamond, which has a smooth surface, and during use. Another advantage is that the diamond will not fall off the tool support.

第10図,11図,12図に本願発明の棒状ダ
イヤモンド単結晶を示す。各図はそれぞれ断面が
円形、三角形、多角形であるものの概略説明図で
あり、図面上点で示したものは表面のすりガラス
状の凹凸状態を模式的に説明するものである。1
0はすりガラス状の凹凸表面を示す。
10, 11, and 12 show the rod-shaped diamond single crystal of the present invention. Each figure is a schematic explanatory diagram of a cross section having a circular, triangular, or polygonal shape, respectively, and the points indicated in the drawing schematically illustrate the frosted glass-like uneven state of the surface. 1
0 indicates a frosted glass-like uneven surface.

これらの凹凸状態を定量的に表現する事は困難
であるが光学的に規定するならば乱反対により透
過が不可能な程度の凹凸状態と言うことができ
る。
It is difficult to express these unevenness quantitatively, but if defined optically, it can be said that the unevenness is such that transmission is impossible due to irregular opposition.

以下図面に従つてこの様な特徴を有する棒状ダ
イヤモンド単結晶及びその製造法について説明す
る。
A rod-shaped diamond single crystal having such characteristics and a method for producing the same will be described below with reference to the drawings.

第1図は自形を有する大型ダイヤモンド単結晶
の既知の製造法を示すものである。ダイヤモンド
種結晶1、溶媒金属2、炭素供給源3が円筒状黒
鉛ヒーター5の内部に塩製圧力媒体4を介して積
層配置される。この場合軸方向に自然に形成され
る温度勾配を利用するべく高温である中央部に炭
素供給源を、低温である下端部に種結晶を配置す
る。これらをパイロフイライト等の圧力媒体シリ
ンダー内に配置し、超高圧高温装置に収納し、所
定の圧力まで加圧した後ヒーター5を通じて加熱
する。
FIG. 1 shows a known method for producing large diamond single crystals with euhedral shape. A diamond seed crystal 1, a solvent metal 2, and a carbon supply source 3 are stacked inside a cylindrical graphite heater 5 with a salt pressure medium 4 in between. In this case, in order to take advantage of the temperature gradient that naturally forms in the axial direction, a carbon supply source is placed in the central portion where the temperature is high, and a seed crystal is placed in the lower end portion where the temperature is low. These are placed in a pressure medium cylinder such as pyrofilite, housed in an ultra-high pressure and high temperature device, pressurized to a predetermined pressure, and then heated through a heater 5.

そうすると炭素供給源と種結晶の間で温度差が
発生しこれにより炭素原子が炭素供給源から種結
晶へと輸送され種結晶上にダイヤモンドとなつて
成長する。従つて成長したダイヤモンド7は種結
晶1の溶媒金属と接する面の面方位と同一の面方
位を保つて成長してゆく。即ち種結晶の面が
(100)面であれば成長したダイヤモンド7の頂面
は(100)面となり、(111)面であれば(111)面
となる。
This creates a temperature difference between the carbon source and the seed crystal, and this causes carbon atoms to be transported from the carbon source to the seed crystal and grow as diamonds on the seed crystal. Therefore, the grown diamond 7 grows while maintaining the same surface orientation as that of the surface of the seed crystal 1 that is in contact with the solvent metal. That is, if the seed crystal has a (100) plane, the top surface of the grown diamond 7 will be a (100) plane, and if the seed crystal has a (111) plane, it will have a (111) plane.

また、天然や人工結晶にはめつたに見られない
結晶面、例えば(113)面を種結晶1を加工する
ことにより、人為的に作り出した場合には、成長
したダイヤモンド7の底面は(113)面となる。
Furthermore, if a crystal plane that is rarely seen in natural or artificial crystals, for example, a (113) plane, is artificially created by processing the seed crystal 1, the bottom surface of the grown diamond 7 will be (113). It becomes a surface.

このような既知の製造法では、溶媒金属として
通常成長するダイヤモンドの大きさ以上の直径の
ものが使用される為成長したダイヤモンドは平滑
な面を有する自形のものが得られる。
In such a known production method, since a solvent metal having a diameter larger than the size of the normally grown diamond is used, the grown diamond can be euhedral with a smooth surface.

本願発明は、溶媒金属の直径を成長するダイヤ
モンドの大きさ以下に制限した場合には、その外
形が溶媒金属と同一の形状を有すると共にその外
表面が新規かつ工業的に有用な表面状態を呈する
ことを発見した事によるものである。
The present invention provides that when the diameter of the solvent metal is limited to the size of a growing diamond or less, its outer shape has the same shape as that of the solvent metal, and its outer surface exhibits a new and industrially useful surface condition. This is due to the discovery that

第2図は本願発明の実施態様の一つである円柱
状のダイヤモンド単結晶を1箇合成する場合を示
したものである。この様な場合には溶媒金属8は
円柱状の足をもつた形状に加工されたものが使用
される。第4図はその平面図である。この様な試
料構成体を超高圧高温装置に装填し、所定の圧力
まで加圧した後加熱して一定時間保持すると、第
10図に示される棒状ダイヤモンドが合成され
る。
FIG. 2 shows a case where one cylindrical diamond single crystal is synthesized, which is one of the embodiments of the present invention. In such a case, the solvent metal 8 used is one processed into a shape with cylindrical legs. FIG. 4 is a plan view thereof. When such a sample structure is loaded into an ultra-high pressure and high temperature apparatus, pressurized to a predetermined pressure, heated and held for a certain period of time, a rod-shaped diamond shown in FIG. 10 is synthesized.

また第11図及び第12図に示される三角形状
の断面形状及び四角形状の断面形状を有する棒状
ダイヤモンドを合成するには第5図並びに第6図
の平面図で示される形状の溶媒金属を使用すれば
良い。又第3図は1回に多数個の棒状ダイヤモン
ドを合成する場合を示したものであり、溶媒金属
9は第7図,第8図,第9図に示される形態のも
のが使用される。
Furthermore, in order to synthesize rod-shaped diamonds having the triangular and square cross-sectional shapes shown in FIGS. 11 and 12, solvent metals having the shapes shown in the plan views of FIGS. 5 and 6 are used. Just do it. Further, FIG. 3 shows the case where a large number of rod-shaped diamonds are synthesized at one time, and the solvent metal 9 used is one of the shapes shown in FIGS. 7, 8, and 9.

これらの断面形状を有する棒状ダイヤモンドを
製造するには溶媒金属の太さの選定が重要であ
る。即ちダイヤモンドの成長速度が早い時には比
較的等断面積直径が大きくてよいが、成長速度が
遅い様な条件で行う場合にはそれに応じて等断面
積直径を小さくする必要がある。
In order to manufacture rod-shaped diamonds having these cross-sectional shapes, it is important to select the thickness of the solvent metal. That is, when the growth rate of diamond is fast, the diameter of the equal cross-sectional area may be relatively large, but when the growth rate is slow, the diameter of the equal cross-sectional area must be made smaller accordingly.

この様な場合に等断面積直径が大きな溶媒金属
を使用すると溶媒金属の断面形状を有せず表面が
平滑で自形を有するダイヤモンドが成長し棒状と
ならなくなる。成長速度に応じた適切な等断面積
直径が存在する。
In such a case, if a solvent metal with an equal cross-sectional area and a large diameter is used, a diamond will grow that does not have the cross-sectional shape of the solvent metal, has a smooth surface, and has an automorphic shape, and will not be rod-shaped. There is an appropriate equal cross-sectional area diameter depending on the growth rate.

実験によると成長速度が1〜3mg/Hの場合に
は直径が3mm以下が好適であり、4〜5mg/Hの
場合には直径が4mm以下が好ましい。通常成長速
度が5mg/Hを越えると合成されたダイヤモンド
に不純物として溶媒金属が多量に含有され、工具
支持体に接合する時や使用中にダイヤモンドが割
れ使用に耐えなくなる。この為成長速度は5mg/
H以下であることが好ましいので合成に使用する
溶媒金属の等断面積直径は概略4mm以下がよい。
According to experiments, when the growth rate is 1 to 3 mg/H, the diameter is preferably 3 mm or less, and when the growth rate is 4 to 5 mg/H, the diameter is preferably 4 mm or less. Normally, if the growth rate exceeds 5 mg/H, the synthesized diamond will contain a large amount of solvent metal as an impurity, and the diamond will crack during bonding to a tool support or during use, making it unusable. Therefore, the growth rate is 5mg/
Since it is preferable that the diameter is 4 mm or less, the equal cross-sectional area diameter of the solvent metal used in the synthesis is preferably about 4 mm or less.

この様にして合成された棒状ダイヤモンドは通
常等断面積直径の少なくとも1.5倍以上の長さを
有するのが特徴である。
Rod-shaped diamonds synthesized in this manner are typically characterized by having a length that is at least 1.5 times the diameter of the same cross-sectional area.

溶媒金属の材質は公知のものが使用される。即
ちFe、Ni,Co及びこれらを主成分とする合金
で、合金元素としてこの他にCr,Mn,Al,Ti,
Zr,B等の元素を含有してもよい。
Known materials are used for the solvent metal. In other words, it is Fe, Ni, Co, and alloys containing these as main components.Other alloying elements include Cr, Mn, Al, Ti,
It may contain elements such as Zr and B.

ダイヤモンド結晶合成の為の炭素供給源(第1
図の3)は純粋な黒鉛またはダイヤモンドの粉末
あるいはこれ等の混合物を用いる。なおダイヤモ
ンド合成の条件は種結晶部および炭素供給源のい
ずれもが、ダイヤモンドが安定な圧力、温度条件
内にあり、且つ用いる溶媒金属と炭素の共晶点以
上にあることが必要条件で種結晶部と炭素供給源
との温度差は10〜50℃の範囲に保つと良好な結晶
が得られる。
Carbon source for diamond crystal synthesis (first
3) in the figure uses pure graphite or diamond powder or a mixture thereof. The conditions for diamond synthesis are that both the seed crystal part and the carbon source are under stable pressure and temperature conditions for the diamond, and are above the eutectic point of the solvent metal and carbon used. Good crystals can be obtained by keeping the temperature difference between the carbon source and the carbon source within the range of 10 to 50°C.

以下実施例により本願発明を具体的に述べる。 The present invention will be specifically described below with reference to Examples.

実施例 1 第2図に示した試料構成を用いた。種結晶1と
して人工合成で得られた30/40メツシユの大きさ
のものを用いた。溶媒金属と接する面として
(100)面を選んだ。溶媒金属8として58Fe−
42Niの合金を用い、第4図に示す様な円形の足
をもつ形状に加工した。その直径は2mmとし、足
の長さを4mmとし上部円板状の寸法としては直径
7mm、厚さ1mmとした。その上に分光分析用黒鉛
粉末160mgと粒度325/400メツシユの人工合成ダ
イヤモンド粉末240mgとを混合し、直径7mm、厚
さ4mmの円板状に型押したものを炭素供給源3と
して使用した。
Example 1 The sample configuration shown in FIG. 2 was used. As seed crystal 1, a 30/40 mesh size obtained by artificial synthesis was used. The (100) plane was chosen as the plane in contact with the solvent metal. 58Fe− as solvent metal 8
Using 42Ni alloy, it was machined into a shape with circular legs as shown in Figure 4. Its diameter was 2 mm, the leg length was 4 mm, and the dimensions of the upper disk were 7 mm in diameter and 1 mm in thickness. On top of this, 160 mg of graphite powder for spectroscopic analysis and 240 mg of artificially synthesized diamond powder with a particle size of 325/400 mesh were mixed and pressed into a disk shape with a diameter of 7 mm and a thickness of 4 mm, which was used as carbon source 3.

これらを塩製圧力媒体4の中に配置し、黒煙製
円筒状ヒーター5とパイロフイライト製圧力媒体
6とで試料構成体を作成した。これらの試料構成
体を超高圧高温装置を用いてダイヤモンドが安定
な圧力まで加圧し、54Kbの圧力を加え、次いで
ヒーター5に通伝加熱し、温度1420℃の条件で20
時間保持した。温度、圧力の順で解除し、試料を
回収したところ直径2mm、長さ約3.5mmの円柱状
ダイヤモンドが合成された。重量は約30mgであ
り、その外周表面はすりガラス状の凹凸状態を呈
し不透明の結晶であつた。X線回折により結晶方
位を同定した所円柱の下面が種結晶と同じく
(100)面であつた。
These were placed in a pressure medium 4 made of salt, and a sample structure was prepared using a cylindrical heater 5 made of black smoke and a pressure medium 6 made of pyrofluorite. These sample structures were pressurized to a pressure at which the diamond was stable using an ultra-high pressure and high temperature device, a pressure of 54 Kb was applied, and then heated by conduction to the heater 5 for 20 minutes at a temperature of 1420°C.
Holds time. When the temperature and pressure were released in that order and the sample was collected, a cylindrical diamond with a diameter of 2 mm and a length of about 3.5 mm was synthesized. The weight was about 30 mg, and the outer peripheral surface was an opaque crystal with frosted glass-like unevenness. The crystal orientation was identified by X-ray diffraction, and it was found that the lower surface of the cylinder was the same as the seed crystal (100) plane.

実施例 2 溶媒金属としてFe−5Alの合金を用い、形状と
しては第5図の様に一辺が2mmの正三角形の足と
した。種結晶の面は(111)面を選択した。圧力、
温度条件は56Kb、1480℃とし15時間保持した。
その他の条件は実施例1と同一の条件で行つた。
Example 2 An alloy of Fe-5Al was used as the solvent metal, and the shape was an equilateral triangle with each side of 2 mm as shown in FIG. The (111) plane was selected as the plane of the seed crystal. pressure,
The temperature conditions were 56Kb and 1480℃, which were maintained for 15 hours.
Other conditions were the same as in Example 1.

得られたダイヤモンドは第11図の如き三角形
の断面を有する棒状ダイヤモンドであり、その長
さは約3mmであつた。その重量は約15mgであり、
その外表面は凹凸状態を有し不透明であつた。合
成された結晶の面方位をX線回折で調べた所三角
形の底面が(111)面であつた。
The obtained diamond was a rod-shaped diamond having a triangular cross section as shown in FIG. 11, and its length was about 3 mm. Its weight is about 15mg,
Its outer surface was uneven and opaque. When the plane orientation of the synthesized crystal was examined by X-ray diffraction, the base of the triangle was found to be a (111) plane.

実施例 3 第3図に示す試料構成を用いた。溶媒金属9と
して純Niを用い、形状は一辺が2mmである正方
形状で長さが5.5mmである足を4本作成し、直径
7mm、厚さ1mmの円板と積み重ね、第9図に示さ
れる配置とした。それぞれの足の下面に種結晶1
として30/40メツシユサイズのダイヤモンドを
各々1箇配置した。2箇は(100)面他の2箇は
(111)面を種結晶の面とした。圧力、温度条件は
56Kb、1400℃とし25時間保持した。その他は実
施例1と同一の条件とした。第12図で示される
様な正方形の断面を有する棒状ダイヤモンドが4
本得られた。4本のうち2本は約5mmの長さであ
り、他の2本は約3.5mmであつた。それぞれの重
量は約70mg、約50mgであつた。長さの長い方の結
晶方位を同定した所底面が(100)面であり、長
さの短い方の底面が(111)面であつた。
Example 3 The sample configuration shown in FIG. 3 was used. Using pure Ni as the solvent metal 9, four square legs with a side of 2 mm and a length of 5.5 mm were made and stacked with a disk with a diameter of 7 mm and a thickness of 1 mm, as shown in Figure 9. The layout was such that the 1 seed crystal on the underside of each foot
One 30/40 mesh size diamond was placed on each. In two cases, the (100) plane and in the other two cases, the (111) plane was used as the seed crystal plane. Pressure and temperature conditions are
56Kb, kept at 1400℃ for 25 hours. Other conditions were the same as in Example 1. There are four rod-shaped diamonds with a square cross section as shown in Figure 12.
I got the book. Two of the four were approximately 5 mm long, and the other two were approximately 3.5 mm. The weight of each was approximately 70 mg and approximately 50 mg. When the crystal orientation of the longer one was identified, the bottom plane was the (100) plane, and the bottom plane of the shorter one was the (111) plane.

実施例 4 種結晶1として人工合成で得られた20/25メツ
シユの大きさのものを用いた。この結晶をダイヤ
モンド研摩盤により研摩加工し(113)面を作り
出した。この結晶面を溶媒金属8の下面と接する
様に配置した。
Example 4 As seed crystal 1, a 20/25 mesh size obtained by artificial synthesis was used. This crystal was polished using a diamond grinder to create (113) planes. This crystal plane was arranged so as to be in contact with the lower surface of the solvent metal 8.

その他の条件は実施例1と同一の条件で行い24
時間保持した後試料を回収したところ、直径約2
mm、長さ約3.8mmの第10図に示す様な丸棒状ダ
イヤモンドが得られた。X線回折により結晶方位
を同定した所円柱の底面は種結晶と同じ(100)
面であつた。
Other conditions were the same as in Example 124
When the sample was collected after holding for a period of time, the diameter was approximately 2.
A round rod-shaped diamond as shown in FIG. 10 with a length of about 3.8 mm was obtained. The crystal orientation was identified by X-ray diffraction, and the bottom of the cylinder was the same as the seed crystal (100).
It was hot on the face.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は自形を有する大型ダイヤモンド単結晶
を合成する為使用される従来の試料構成を示す縦
断面図、第2図及び第3図は本願発明の棒状ダイ
ヤモンドを合成するのに使用される試料構成を示
す縦断面図で、第2図は1回に1個のダイヤモン
ドを得る場合、第3図は1回に多数個のダイヤモ
ンドを得る場合のものである、第4図,第5図,
第6図は第2図で使用される溶媒金属の形状を説
明する為の平面図、第7図,第8図,第9図は第
3図で使用される溶媒金属の形状を説明する為の
平面図、第10図,第11図,第12図は本願発
明の棒状にダイヤモンドを模式的に示す説明図で
ある。 1…種結晶ダイヤモンド、2,8,9…溶媒金
属、3…炭素供給源、4…塩製圧力媒体、5…黒
鉛ヒーター、6…パイロフイライト圧力媒体、1
0…すりガラス状の凹凸表面。
Figure 1 is a vertical cross-sectional view showing a conventional sample configuration used to synthesize a large diamond single crystal with euhedral shape, and Figures 2 and 3 are used to synthesize the rod-shaped diamond of the present invention. These are vertical cross-sectional views showing the sample structure. Figure 2 shows the case where one diamond is obtained at a time, and Figure 3 shows the case where many diamonds are obtained at one time. Figures 4 and 5. ,
Figure 6 is a plan view for explaining the shape of the solvent metal used in Figure 2, and Figures 7, 8, and 9 are for explaining the shape of the solvent metal used in Figure 3. The plan view, FIGS. 10, 11, and 12 are explanatory diagrams schematically showing a rod-shaped diamond according to the present invention. DESCRIPTION OF SYMBOLS 1... Seed crystal diamond, 2, 8, 9... Solvent metal, 3... Carbon supply source, 4... Salt pressure medium, 5... Graphite heater, 6... Pyrofluorite pressure medium, 1
0...An uneven surface like frosted glass.

Claims (1)

【特許請求の範囲】 1 ダイヤモンド合成状態で、断面形状が円形、
多角形もしくは星形等の異形状を有すると共に、
その等断面積直径に対して少なくとも1.5倍以上
の長さを有し、かつその長さ方向が〈111〉方向
又は〈100〉方向もしくは〈110〉方向であり、そ
の表面がすりガラス状の凹凸を有することを特徴
とする棒状ダイヤモンド単結晶。 2 炭素供給源及びこれと接して配置された溶媒
金属及び種結晶からなるダイヤモンド合成反応系
をダイヤモンドが熱力学的に安定な高圧高温下に
もたらし該反応系を収容する反応室内に適切な温
度勾配をつけ、溶媒金属の炭素供給源と接する方
の位置が高温に、種結晶と接する方の位置が低温
になる様に加熱し、溶媒金属を媒体として炭素を
高温部から低温部に輸送させ、該温度勾配による
炭素の溶媒金属への溶解度差を利用して炭素をダ
イヤモンドとして種結晶上に析出させかつ成長さ
せる方法に於いて、溶媒金属の断面の形状が、目
的とする棒状ダイヤモンドの断面形状と同一形状
であり、その長さが等断面積直径の少なくとも
1.5倍以上である様な溶媒金属を使用し溶媒金属
と接して配置されるダイヤモンド種結晶の面が
(111)面又は(100)面もしくは(110)面である
ことを特徴とする棒状ダイヤモンド単結晶の製造
法。
[Claims] 1. In the diamond synthesis state, the cross-sectional shape is circular;
It has an unusual shape such as a polygon or star shape, and
It has a length that is at least 1.5 times the equal cross-sectional area diameter, and its length direction is the <111> direction, the <100> direction, or the <110> direction, and its surface has frosted glass-like unevenness. A rod-shaped diamond single crystal characterized by having. 2. A diamond synthesis reaction system consisting of a carbon source, a solvent metal placed in contact with the carbon source, and a seed crystal is brought to a high pressure and high temperature where diamond is thermodynamically stable, and an appropriate temperature gradient is created within the reaction chamber housing the reaction system. is heated so that the part of the solvent metal in contact with the carbon supply source is at a high temperature and the part in contact with the seed crystal is at a low temperature, and the carbon is transported from the high temperature part to the low temperature part using the solvent metal as a medium. In the method of precipitating and growing carbon as diamond on a seed crystal using the difference in solubility of carbon to solvent metal due to the temperature gradient, the cross-sectional shape of the solvent metal is the same as the cross-sectional shape of the target rod-shaped diamond. has the same shape as, and its length is at least equal to the diameter of the cross-sectional area.
A rod-shaped diamond monomer is used in which a diamond seed crystal is placed in contact with the solvent metal and the plane of the diamond seed crystal is a (111) plane, a (100) plane, or a (110) plane. Method of manufacturing crystals.
JP57110398A 1982-06-25 1982-06-25 Rod-like diamond single crystal and its production Granted JPS593100A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP57110398A JPS593100A (en) 1982-06-25 1982-06-25 Rod-like diamond single crystal and its production
ZA834499A ZA834499B (en) 1982-06-25 1983-06-20 Diamond single crystals,a process of manufacturing and tools for using same
US06/506,935 US4544540A (en) 1982-06-25 1983-06-22 Diamond single crystals, a process of manufacturing and tools for using same
DE198383106198T DE99486T1 (en) 1982-06-25 1983-06-24 DIAMOND SINGLE CRYSTALS, METHOD FOR THEIR PRODUCTION AND TOOLS FOR USE THEREOF.
EP83106198A EP0099486B1 (en) 1982-06-25 1983-06-24 Diamond single crystals, a process of manufacturing and tools for using same
DE8383106198T DE3373788D1 (en) 1982-06-25 1983-06-24 Diamond single crystals, a process of manufacturing and tools for using same
US07/255,249 US4927619A (en) 1982-06-25 1988-10-11 Diamond single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57110398A JPS593100A (en) 1982-06-25 1982-06-25 Rod-like diamond single crystal and its production

Publications (2)

Publication Number Publication Date
JPS593100A JPS593100A (en) 1984-01-09
JPH0442360B2 true JPH0442360B2 (en) 1992-07-13

Family

ID=14534789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57110398A Granted JPS593100A (en) 1982-06-25 1982-06-25 Rod-like diamond single crystal and its production

Country Status (2)

Country Link
JP (1) JPS593100A (en)
ZA (1) ZA834499B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499113A (en) * 1978-01-23 1979-08-04 Sumitomo Electric Industries Diamond sintered body and preparation thereof
JPS5786146A (en) * 1980-11-17 1982-05-29 Matsushita Electric Ind Co Ltd Diamond parts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499113A (en) * 1978-01-23 1979-08-04 Sumitomo Electric Industries Diamond sintered body and preparation thereof
JPS5786146A (en) * 1980-11-17 1982-05-29 Matsushita Electric Ind Co Ltd Diamond parts

Also Published As

Publication number Publication date
JPS593100A (en) 1984-01-09
ZA834499B (en) 1984-03-28

Similar Documents

Publication Publication Date Title
US4544540A (en) Diamond single crystals, a process of manufacturing and tools for using same
US3233988A (en) Cubic boron nitride compact and method for its production
CA2073613C (en) Diamond synthesis
US6616725B2 (en) Self-grown monopoly compact grit
KR100503542B1 (en) Diamond growth
EP0157393B1 (en) Method of synthesizing diamond
JP5759903B2 (en) High pressure high temperature (HPHT) method for producing single crystal diamond
US4089933A (en) Method of producing polycrystalline diamond aggregates
JPH09286694A (en) Diamond synthesis
JPS6338208B2 (en)
JPH0745012B2 (en) Method for producing crushable diamond particles
JP6281955B2 (en) Functionalization of cubic boron nitride and manufacturing method thereof
US5503104A (en) Synthetic diamond product
JPH0442360B2 (en)
JP4216499B2 (en) Diamond cluster growth
JP2015531317A (en) Single crystal diamond or CBN characterized by microfracturing during grinding
JPH1114524A (en) Diamond indenter
JPH0437650A (en) Fracture resisting diamond and processing of diamond-combined article
JPS6253217B2 (en)
JPS6329581B2 (en)
JPS5879899A (en) Synthesis of diamond
JP6250659B2 (en) Peculiar cubic boron nitride crystal and method for producing the same
JPH0380533B2 (en)
CN103097011B9 (en) For the preparation of HTHP (HPHT) method of single-crystal diamond
JP3259383B2 (en) Method of synthesizing diamond single crystal