JPS6253217B2 - - Google Patents

Info

Publication number
JPS6253217B2
JPS6253217B2 JP54153136A JP15313679A JPS6253217B2 JP S6253217 B2 JPS6253217 B2 JP S6253217B2 JP 54153136 A JP54153136 A JP 54153136A JP 15313679 A JP15313679 A JP 15313679A JP S6253217 B2 JPS6253217 B2 JP S6253217B2
Authority
JP
Japan
Prior art keywords
diamond
temperature
reaction chamber
solvent metal
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54153136A
Other languages
Japanese (ja)
Other versions
JPS5678410A (en
Inventor
Shuji Yatsu
Akio Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP15313679A priority Critical patent/JPS5678410A/en
Publication of JPS5678410A publication Critical patent/JPS5678410A/en
Publication of JPS6253217B2 publication Critical patent/JPS6253217B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/061Graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/068Crystal growth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 本発明はダイヤモンドの合成方法に関するもの
である。ダイヤモンドを安定な高温高圧下におい
て第1図に示したような構成の反応室を用いて種
結晶ダイヤモンドより合成する方法は従来からよ
く知られている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for synthesizing diamond. A method of synthesizing diamond from seed crystal diamond under stable high temperature and high pressure using a reaction chamber configured as shown in FIG. 1 is well known.

即ち、第1図は従来の円筒状反応室の軸方向中
央断面を示したもので1が種となるダイヤモンド
結晶、2は溶媒金属、3は炭素供給源、4および
6は圧力媒体であり、5は円筒状のヒーターであ
る。
That is, FIG. 1 shows an axial center cross section of a conventional cylindrical reaction chamber, where 1 is a diamond crystal as a seed, 2 is a solvent metal, 3 is a carbon source, 4 and 6 are pressure media, 5 is a cylindrical heater.

このような構成の反応室を一軸加圧式の超高圧
高温装置に入れ、ダイヤモンドが安定な高圧下で
5のヒーターに通電して加熱する。一般にこの様
式の装置と反応室の構成では反応室の上下方向へ
の熱の流出量が多いために反応室の軸方向中央部
が高温となり、上下端部との間に温度差が生じ、
これによる溶媒金属への炭素の溶解度差を利用し
て低温側である種結晶上にダイヤモンドを生長さ
せるのである。
The reaction chamber configured as described above is placed in a uniaxial pressure type ultra-high pressure and high temperature device, and the diamond is heated by applying electricity to the heater 5 under a stable high pressure. Generally, in this type of apparatus and reaction chamber configuration, there is a large amount of heat flowing in the vertical direction of the reaction chamber, so the axial center of the reaction chamber becomes high temperature, and a temperature difference occurs between the upper and lower ends.
This difference in the solubility of carbon to the solvent metal is used to grow diamond on the seed crystal on the low temperature side.

この第1図の構成のような反応室は、一軸加圧
式の超高圧高温装置を用いた場合に生ずる温度勾
配を巧みに利用したものであり、これは1個の種
結晶または多くても2〜3個の種結晶を使用して
大きなダイヤモンド単結晶を合成する場合には好
適な方法である。しかしながら、この方法では同
時に多数の結晶を合成する場合にはあまり経済的
な方法とはいえない。
The reaction chamber with the configuration shown in Figure 1 skillfully utilizes the temperature gradient that occurs when using a uniaxially pressurized ultra-high pressure and high temperature apparatus, and is made by using one seed crystal or at most two seed crystals. This is a suitable method when a large diamond single crystal is synthesized using ~3 seed crystals. However, this method is not very economical when a large number of crystals are synthesized simultaneously.

超高圧、高温装置では装置内の超高圧、高温を
発生させる領域は極めて狭い範囲に限定されるた
め、装置の運転コストは非常に高くつくのであ
る。
In ultra-high-pressure, high-temperature equipment, the area where ultra-high pressure and high temperature are generated within the equipment is limited to an extremely narrow area, so the operating costs of the equipment are extremely high.

特に良質なダイヤモンド単結晶合成のためには
反応室内を一定の圧力、温度条件に保つて数日も
しくは一週間以上連続運転する必要があり、一回
当りの運転コストは極めて高い。従つて温度差を
利用した単結晶の合成においては使用可能な反応
室内容積を有効に活用する構成が必要である。
In particular, in order to synthesize a high-quality diamond single crystal, it is necessary to maintain constant pressure and temperature conditions in the reaction chamber and operate continuously for several days or a week or more, and the operating cost per operation is extremely high. Therefore, in the synthesis of single crystals using temperature differences, a configuration is required that effectively utilizes the available internal volume of the reaction chamber.

本発明は上記の点に鑑みて種々検討した結果得
られたもので、一軸加圧式の超高圧、高温装置に
限らず他の形式の装置にも適用可能であり、限定
された反応室容積を最も有効に活用して温度差を
利用したダイヤモンド単結晶の合成方法を提供す
るものである。
The present invention was obtained as a result of various studies in view of the above points, and is applicable not only to uniaxial pressure type ultra-high pressure and high temperature equipment, but also to other types of equipment, and can save the limited reaction chamber volume. The present invention provides a method for synthesizing diamond single crystals that makes the most effective use of temperature differences.

本発明の方法を図面に基づいて説明する。 The method of the present invention will be explained based on the drawings.

第2図は一軸加圧式超高圧、高温装置に適用す
る場合の本発明方法で用いる反応室構成を示した
ものであつて第1図と同じく軸方向断面図であ
り、第3図はその横断面図を示すものである。
Figure 2 shows the configuration of the reaction chamber used in the method of the present invention when applied to a uniaxial pressurized ultra-high pressure, high temperature device, and is an axial cross-sectional view like Figure 1, and Figure 3 is a cross-sectional view thereof. It shows a top view.

まず反応室の中心部に加熱用ヒーター15を設
ける。これにより反応室の温度勾配は反応室の中
心部が高く半径方向の外側では低くなる。
First, a heating heater 15 is provided in the center of the reaction chamber. As a result, the temperature gradient in the reaction chamber is high at the center of the reaction chamber and low at the radial outside.

種結晶ダイヤモンド11を外側の圧力媒体16
の内周部に配置し、これに接してダイヤモンド合
成のための溶媒金属12、その内側に炭素供給源
13を同心円状に配置する。なお14はヒーター
15と炭素供給源13ほかを絶縁するための絶縁
スリーブである。
The seed crystal diamond 11 is placed in the outer pressure medium 16.
A solvent metal 12 for diamond synthesis is placed in contact with this, and a carbon supply source 13 is placed concentrically inside thereof. Note that 14 is an insulating sleeve for insulating the heater 15, the carbon supply source 13, and others.

第1図の従来の方法における反応室の構成にお
いてはヒーター5の内側のみが反応室として有効
であり、且つ温度勾配は軸方向の中心部と上下に
生ずるため、ヒーター内部の一横断面のみが単結
晶の合成個所として利用されるにすぎないのであ
るが、第2図のような本発明方法における構成の
反応室では、ヒーター15を中心部に置くことに
よつてその外側の広い領域を単結晶の合成個所と
して利用することができるのであり、このことに
より1回当りの合成数を飛躍的に多くすることが
可能である。第2図の構成では中心部が高温とな
り、半径方向へ向けて次第に温度が低下する。
In the configuration of the reaction chamber in the conventional method shown in FIG. 1, only the inside of the heater 5 is effective as a reaction chamber, and since a temperature gradient occurs above and below the center in the axial direction, only one cross section inside the heater is effective. Although it is only used as a place for synthesizing single crystals, in the reaction chamber configured in the method of the present invention as shown in FIG. It can be used as a site for synthesizing crystals, making it possible to dramatically increase the number of crystals synthesized at one time. In the configuration shown in FIG. 2, the temperature is high at the center, and the temperature gradually decreases in the radial direction.

この構成は原理的に一軸加圧式装置のみなら
ず、六面体アンビル装置、八面体アンビル装置等
の多軸加圧式装置にも適用可能である。
In principle, this configuration is applicable not only to a single-axis pressurization type device but also to a multi-axis pressurization type device such as a hexahedral anvil device and an octahedral anvil device.

一軸加圧式装置ではこの構成においても軸方向
の温度勾配が生ずるが、これは反応室の上下の断
熱を工夫するか、またはヒーターの抵抗を中央部
は低く、上下を高くすることによつて軽減するこ
とが可能である。
In a uniaxial pressurization type device, an axial temperature gradient occurs even in this configuration, but this can be reduced by insulating the top and bottom of the reaction chamber or by making the resistance of the heater low in the center and high in the top and bottom. It is possible to do so.

本発明で用いる溶媒金属としてはFe、Ni、
Co、およびこれらを主成分とする合金があり、
このほかにCr、Mn、Al、B、Ti、Zr、Taなどの
元素を含有してもよい。
Solvent metals used in the present invention include Fe, Ni,
There are Co and alloys containing these as main components.
In addition, elements such as Cr, Mn, Al, B, Ti, Zr, and Ta may be contained.

ダイヤモンド結晶合成のための炭素供給源は純
粋な黒鉛またはダイヤモンドの粉末あるいはこれ
らの混合物を用いればよい。
The carbon source for diamond crystal synthesis may be pure graphite or diamond powder, or a mixture thereof.

ヒーターとしては黒鉛棒が好適である。 A graphite rod is suitable as the heater.

また絶縁スリーブとしてはAl2O3の管またはパ
イロフライト、BNの焼結体などが使用される。
Further, as the insulating sleeve, an Al 2 O 3 tube, pyrolite, BN sintered body, etc. are used.

圧力媒体は種結晶ダイヤモンドを設置する場所
をも兼ねるもので、パイロフライトやNaCl等が
適している。
The pressure medium also serves as a place to set up the seed crystal diamond, and pyrolite, NaCl, etc. are suitable.

ダイヤモンド合成の条件は種結晶部および炭素
供給源の何れもがダイヤモンドが安定な圧力、温
度条件内にあり、且つ用いる溶媒金属と炭素の共
晶温度以上であることが必要であり、種結晶部と
炭素供給源との温度差は10〜50℃の範囲に保つこ
とにより良好な結晶が得られる。
The conditions for diamond synthesis are that both the seed crystal part and the carbon source must be under pressure and temperature conditions where diamond is stable, and the temperature must be higher than the eutectic temperature of the solvent metal and carbon. Good crystals can be obtained by keeping the temperature difference between the carbon source and the carbon source within a range of 10 to 50°C.

第1図の従来の炭素室の構成に比較して第2図
の本発明で用いる炭素室の構成では種結晶部と炭
素供給源との温度差が大きくなりやすいが、圧力
媒体の熱的特性を考慮し、また各部分の肉厚を適
切に設計するならば前記した温度差を保つことが
できる。
Compared to the conventional carbon chamber configuration shown in FIG. 1, in the configuration of the carbon chamber used in the present invention shown in FIG. 2, the temperature difference between the seed crystal part and the carbon supply source tends to be large; If this is taken into consideration and the wall thickness of each part is appropriately designed, the temperature difference described above can be maintained.

さらに第1図の従来の反応室構成においては同
図の軸方向上の領域は下部と同様の対照的な構成
が可能のように考えられるが、この場合は軸方向
中央部が高温となるため、温度差による溶媒金属
の比重差と炭素濃度差によつて生じる比重差の双
方が同一方向に作用して溶融した溶媒金属の対流
が起るために安定した結晶生長条件が維持し難
い。
Furthermore, in the conventional reaction chamber configuration shown in Figure 1, it is possible that the axially upper region in the figure could have a contrasting configuration similar to the lower part, but in this case, the axially central part would be at a high temperature. Since both the difference in specific gravity of the solvent metal due to the temperature difference and the difference in specific gravity caused by the difference in carbon concentration act in the same direction, convection of the molten solvent metal occurs, making it difficult to maintain stable crystal growth conditions.

このため第1図の構成では反応室の下部のみが
使用されるのである。
Therefore, in the configuration of FIG. 1, only the lower part of the reaction chamber is used.

これに対して本発明で用いる反応室の構成にお
いては、重力の作用方向と温度差の方向が異なる
ため、このような対流は生じ難い。
On the other hand, in the configuration of the reaction chamber used in the present invention, such convection is difficult to occur because the direction of action of gravity and the direction of temperature difference are different.

しかしこのような対流が問題となる場合は、第
4図に示したように反応室に仕切17を設けるこ
とで軽減することが可能である。
However, if such convection becomes a problem, it can be alleviated by providing a partition 17 in the reaction chamber as shown in FIG.

なお第4図では種結晶ダイヤモンドの設置場所
16′と圧力媒体16とは異種材料で構成するこ
とができる。
In FIG. 4, the seed crystal diamond installation location 16' and the pressure medium 16 can be made of different materials.

以下実施例により本発明を詳細に説明する。 The present invention will be explained in detail below with reference to Examples.

実施例 1 反応室は第2図に示すような構成とし、ヒータ
ーとして直径2.5mmの黒鉛棒を用い、その外側に
外径3.5mm、内径2.5mmのAl2O3製の絶縁スリーブ
を置いた。溶媒金属として外径16mm、内径10mmの
Fe−42Ni製の円筒を使用し、前記スリーブとこ
の溶媒金属との間を325/400メツシユの合成ダイ
ヤモンドと人造黒鉛粉末を重量で3:1に混合し
た粉末で充填した。種結晶として35/40メツシユ
の合成ダイヤモンドをパイロフイライト製の円筒
状圧力媒体の内面に横断面でみて1段目を180度
間隔に埋込んだ次の段は60度ずらして同じく180
度間隔に埋込んだ。このようにして合計6段計18
ケの種結晶を使用した。この構成体をガードル型
超高圧装置を用いて加圧し、55Kbの圧力を加
え、次いでヒーターに通電して温度1400℃まで加
熱した。
Example 1 The reaction chamber was configured as shown in Figure 2, and a graphite rod with a diameter of 2.5 mm was used as a heater, and an insulating sleeve made of Al 2 O 3 with an outer diameter of 3.5 mm and an inner diameter of 2.5 mm was placed outside the rod. . As a solvent metal, the outer diameter is 16 mm and the inner diameter is 10 mm.
A cylinder made of Fe-42Ni was used, and the space between the sleeve and the solvent metal was filled with a 325/400 mesh synthetic diamond and artificial graphite powder mixed in a ratio of 3:1 by weight. Synthetic diamonds of 35/40 mesh are embedded as seed crystals in the inner surface of a cylindrical pressure medium made of pyrofluorite at 180 degree intervals in the first stage.The next stage is shifted 60 degrees and has the same 180 degree spacing.
Embedded in degree intervals. In this way, a total of 6 stages, 18
seed crystals were used. This structure was pressurized using a girdle-type ultra-high pressure device to apply a pressure of 55 Kb, and then the heater was energized and heated to a temperature of 1400°C.

この温度はAl2O3スリーブの外側で反応室軸方
向中央部の温度である。
This temperature is the temperature at the axial center of the reaction chamber outside the Al 2 O 3 sleeve.

この条件に20時間保持したのち加熱を停止し、
減圧後に試料を取出したところ中央部4段合計12
個の種結晶ダイヤモンド上に平均して35mg/個の
単結晶ダイヤモンドが生長していた。
After maintaining this condition for 20 hours, heating was stopped.
When the sample was taken out after decompression, there were 4 rows in the center, totaling 12
On average, 35 mg of single crystal diamond was grown on each seed diamond.

実施例 2 実施と同様の構成の反応室を用いた。Example 2 A reaction chamber with the same configuration as in the experiment was used.

上下方向の温度差を軽減するために反応室の上
下端部に圧力媒体と同一の外径を有し、厚さ3mm
で中央部にヒーターを差込む孔を有するパイロフ
イライト製の断熱円板を置いた。その他は実施例
1と同一条件で合成を行つた。取出した試料を調
べると6段18個の種結晶ダイヤモンド上に全て単
結晶ダイヤモンドが生長していた。そしてこのダ
イヤモンドの平均重量は40mgであり、最大のもの
は60mgであつた。
In order to reduce the temperature difference in the vertical direction, the upper and lower ends of the reaction chamber have the same outer diameter as the pressure medium and have a thickness of 3 mm.
A heat insulating disc made of pyrofluorite with a hole in the center for inserting the heater was placed. The synthesis was otherwise carried out under the same conditions as in Example 1. When the sample was taken out, single-crystal diamond was found to have grown on all 18 seed crystal diamonds in 6 stages. The average weight of these diamonds was 40 mg, and the largest one was 60 mg.

実施例 3 325メツシユ以下のFe、Ni、Al粉末を夫々56.3
%、46.7%、3.0%となるよう配合し混合した。
これを型押成形して1000℃で焼結し、外径16mm、
内径10mm、高さ7.5mmの円筒を作成し、これを溶
媒金属として用いた。反応室は第4図に示す構成
とし、仕切板17として厚み1.7mmのAl2O3板を使
用した。また種結晶ダイヤモンドは外径20mm、内
径16mmのNaCl製の円筒の内面に埋込んだ。その
他は実施例1におけると同様とし、圧力55Kb、
1400℃で40時間保持した。
Example 3 Fe, Ni, and Al powders each having a mesh size of 56.3 or less
%, 46.7%, and 3.0%.
This was molded and sintered at 1000℃, with an outer diameter of 16 mm.
A cylinder with an inner diameter of 10 mm and a height of 7.5 mm was created and used as a solvent metal. The reaction chamber had the configuration shown in FIG. 4, and a 1.7 mm thick Al 2 O 3 plate was used as the partition plate 17. The seed crystal diamond was embedded in the inner surface of a NaCl cylinder with an outer diameter of 20 mm and an inner diameter of 16 mm. Others were the same as in Example 1, with a pressure of 55 Kb,
It was held at 1400°C for 40 hours.

取出した試料を調べたところ18個の種結晶ダイ
ヤモンドの中で15個に単結晶ダイヤモンドが生長
しており、最大のものは一辺約3mmで100mgの重
量であつた。生長したダイヤモンドの合計重量は
900mgであつた。
When the sample was examined, single-crystal diamonds were found to have grown in 15 of the 18 seed diamonds, and the largest one was about 3 mm on a side and weighed 100 mg. The total weight of the grown diamond is
It was 900 mg.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は種結晶ダイヤモンド上へ単結晶ダイヤ
モンドを生長させるために用いる反応室の従来の
構成を示す縦断面図、第2図、第3図は本発明の
方法にて用いる改良された反応室の一実施例の構
成を示すものであつて第2図はその軸方向の縦断
面図、第3図は横断面図を示し、第4図は他の実
施例を示す縦断面図である。 11……種結晶ダイヤモンド、12……溶媒金
属、13……炭素供給源、15……加熱用ヒータ
ー、16……圧力媒体。
FIG. 1 is a vertical cross-sectional view showing a conventional configuration of a reaction chamber used for growing single crystal diamond on a seed crystal diamond, and FIGS. 2 and 3 show an improved reaction chamber used in the method of the present invention. FIG. 2 is a vertical cross-sectional view in the axial direction, FIG. 3 is a cross-sectional view, and FIG. 4 is a vertical cross-sectional view of another embodiment. DESCRIPTION OF SYMBOLS 11...Seed crystal diamond, 12...Solvent metal, 13...Carbon source, 15...Heating heater, 16...Pressure medium.

Claims (1)

【特許請求の範囲】[Claims] 1 反応室の中心の軸方向に加熱用ヒーターを配
置し、これより外側に炭素供給源、さらにその外
側に溶媒金属層を配置し、該溶媒金属層の外周部
に接触する位置に複数個の種結晶ダイヤモンドを
置き、この全体を超高圧高温装置内に入れ、ダイ
ヤモンドが安定な高圧下で溶媒金属と炭素の共晶
温度以上となるように前記加熱用ヒーターで加熱
し、反応室内に生じる中心部より半径方向へ向か
う温度勾配による溶媒金属への炭素の溶解度差を
利用して種結晶ダイヤモンドよりダイヤモンドを
生長させることを特徴とするダイヤモンドの合成
方法。
1. A heating heater is placed in the axial direction at the center of the reaction chamber, a carbon supply source is placed outside of this heater, a solvent metal layer is placed further outside of this, and a plurality of heaters are placed in contact with the outer periphery of the solvent metal layer. A seed crystal diamond is placed, the whole is placed in an ultra-high-pressure high-temperature device, and the diamond is heated with the heating heater under stable high pressure so that the temperature is higher than the eutectic temperature of the solvent metal and carbon. A method for synthesizing diamond, which is characterized by growing diamond from a seed crystal diamond by utilizing the difference in solubility of carbon in a solvent metal caused by a temperature gradient moving in the radial direction from the center.
JP15313679A 1979-11-26 1979-11-26 Synthesis of diamond Granted JPS5678410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15313679A JPS5678410A (en) 1979-11-26 1979-11-26 Synthesis of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15313679A JPS5678410A (en) 1979-11-26 1979-11-26 Synthesis of diamond

Publications (2)

Publication Number Publication Date
JPS5678410A JPS5678410A (en) 1981-06-27
JPS6253217B2 true JPS6253217B2 (en) 1987-11-09

Family

ID=15555782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15313679A Granted JPS5678410A (en) 1979-11-26 1979-11-26 Synthesis of diamond

Country Status (1)

Country Link
JP (1) JPS5678410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357408A (en) * 1986-08-28 1988-03-12 Satake Eng Co Ltd Grain crushing preventer for elevator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164605A (en) * 1983-03-09 1984-09-17 Showa Denko Kk Method for synthesizing diamond
JPS59169918A (en) * 1983-03-14 1984-09-26 Showa Denko Kk Synthesis of diamond
US5273730A (en) * 1988-03-08 1993-12-28 Sumitomo Electric Industries, Ltd. Method of synthesizing diamond
CN102764612A (en) * 2012-08-21 2012-11-07 中南钻石股份有限公司 Artificial diamond composite structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357408A (en) * 1986-08-28 1988-03-12 Satake Eng Co Ltd Grain crushing preventer for elevator

Also Published As

Publication number Publication date
JPS5678410A (en) 1981-06-27

Similar Documents

Publication Publication Date Title
US2992900A (en) Method for producing improved diamond crystals
EP0157393B1 (en) Method of synthesizing diamond
Pacalo et al. Reversals of the orthoenstatite‐clinoenstatite transition at high pressures and high temperatures
US4073380A (en) High pressure reaction vessel for quality control of diamond growth on diamond seed
Bacon et al. A crystallographic study of solid benzene by neutron diffraction
US5273730A (en) Method of synthesizing diamond
Narayan et al. A major revision of iron meteorite cooling rates—An experimental study of the growth of the Widmanstätten pattern
US3268457A (en) Method of creating electrically semiconducting diamond
JPS6253217B2 (en)
US3249404A (en) Continuous growth of crystalline materials
Wentorf Jr Diamond, synthetic
US4340576A (en) High pressure reaction vessel for growing diamond on diamond seed and method therefor
JPS6329581B2 (en)
JPS60210512A (en) Method for synthesizing diamond
US3310501A (en) Preparation of elongated needle-like diamond having electrically conductive properties
Cordes et al. Thermal decomposition of solid alkali perchlorates
US3507616A (en) Preparation of large crystal refractory metal monocarbides
EP0332353B1 (en) A method of synthesizing diamond
Balascio et al. Growth of single crystal hexagonal selenium from supercritical ammonia
Takaki et al. The Production of Single Crystals of Metals and Alloys with any Desired Orientation by Solidification at High Temperature
JP2932300B2 (en) Diamond synthesis method
JPS58125690A (en) Synthesis of diamond
Substyk The origin of synthetic polycrystalline skeletal diamonds
JP3259383B2 (en) Method of synthesizing diamond single crystal
Wilson Synthesis of beryl under high pressure and temperature