JPH0442089B2 - - Google Patents

Info

Publication number
JPH0442089B2
JPH0442089B2 JP10428585A JP10428585A JPH0442089B2 JP H0442089 B2 JPH0442089 B2 JP H0442089B2 JP 10428585 A JP10428585 A JP 10428585A JP 10428585 A JP10428585 A JP 10428585A JP H0442089 B2 JPH0442089 B2 JP H0442089B2
Authority
JP
Japan
Prior art keywords
steel plate
straightening
width direction
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10428585A
Other languages
Japanese (ja)
Other versions
JPS61262428A (en
Inventor
Haruo Kaji
Kensho Akyama
Kyoshi Iwai
Izuo Takahashi
Yoshikazu Oobanya
Koichi Higuchi
Akinori Ootomo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10428585A priority Critical patent/JPS61262428A/en
Publication of JPS61262428A publication Critical patent/JPS61262428A/en
Publication of JPH0442089B2 publication Critical patent/JPH0442089B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は厚鋼板の加速冷却方法、詳しくは条切
り加工性に優れた厚鋼板の加速冷却方法に関す
る。 (従来技術とその問題点) 高強度、高靭性および溶接性の優れた厚鋼板を
製造するため、熱間圧延直後の鋼板を水冷するこ
とにより行われる加速冷却方法は、造船用鋼板を
初めとする各種高張力厚鋼板の製造に実用化され
ている。 かかる加速冷却において、材質の均一性を確保
し、鋼板形状を良好に保つためには、鋼板全面に
わたつて均一な冷却をすることが最も重要であ
る。しかし、実際の製造においては、冷却装置に
は不具合がなくても、プレートクラウンや冷却直
前の鋼板温度分布、さらに冷却中の水乗り効果な
どにより冷却に不均一が生じ、冷却後の鋼板にお
いて温度不均一を避けることができない場合があ
る。 そのため、従来、冷却後の歪を少なくするた
め、冷却完了後一定の復熱時間をおき、鋼板板厚
方向の温度差がなくなつた時点で矯正する方法
(特公昭55−38406号参照)、耳波および板幅方向
の機械的性質の不均一を防止するため、加速冷却
後にオンラインで矯正および500℃〜Ac1点まで
の範囲の温度への再加熱をこの順序または逆の順
序で施すことにより行う方法(特公昭59−34213
号公報参照)が提案されている。 しかしながら、上記第一の方法では、冷却後復
熱時間を置いて板厚方向の温度差がなくなつた時
点で鋼板を矯正し、良好な大板形状の確保を図る
に過ぎないため、条切り切断すると、大きな横曲
がりが発生するという問題が残る。 また、上記第二の方法では、新たな再加熱炉を
設置するというコスト上の問題は別にしても、加
熱時間が数分程度と短いため、板幅方向に温度不
均一性が残り易く、良好な条切り形状の確保に必
要な許容値を満足するのは難しく、上記第一の方
法は同様に条切り切断すると、大きな横曲がりが
発生するという問題がある。 (本発明の着眼点) 本発明は上記従来方法の欠点を解決すべく、鋭
意研究の結果、熱間加工後水冷される加速冷却鋼
板では、冷却前の鋼板の温度不均一が冷却によつ
て助長され、圧延後空冷あるいは焼きならしされ
る従来鋼板に比べ、水冷およびその後の空冷過程
において発生する残留応力が大きくなる傾向があ
るとともに、大板形状においては形状を損なわな
い範囲での残留応力が許容されるに対し、条切り
形状においては幅方向温度不均一(板幅方向温度
分布曲線における条切り幅あたりの最高値と最低
値との差)△Tと横曲がり量δとが次の関係式: △T=8・W・δ/α・I2 (W;条切り幅、α;線膨張係数、I;鋼板長
さ) で近似することができ、この関係式から理解でき
るように、条切りされる範囲での応力差は横曲が
りとして発生するため、温度矯正後に存在する鋼
板内の幅方向温度不均一(板幅方向温度分布曲線
における最高値と最低値との差、以下、幅方向不
均一)が許容値以上あつた場合、条切り加工前の
鋼板の大板形状は良好であつても条切り切断する
と、大きな横曲がりが発生することを見出し、本
発明を完成するに至つた。 (発明の要旨) 本発明の要旨は、「厚鋼板を熱間圧延後または
熱間矯正後に加速冷却した後、該厚鋼板をオンラ
インにて矯正する製造方法において、 加速冷却後の矯正過程で該厚鋼板の表面温度分
布を計測し、板幅方向温度分布曲線における最高
値と最低値との差が10℃以下になつた時点での矯
正をオンライン矯正過程での最終矯正とすること
を特徴とする厚鋼板の加速冷却方法。」にある。 本発明において、オンライン矯正過程で最終矯
正を行うのは、かかる矯正によつてその矯正直前
にまで発生している残留応力を解放するためであ
る。 板幅方向温度分布曲線における最高値と最低値
との差を測定するのは、第1図に示す加速冷却鋼
板(板厚50mm、板幅2175mm、板長さ144550mm)の
ホツトレベラー矯正直前の幅方向温度分布(鋼板
中央部)と第2図に示すその鋼板を条切り幅400
mmで切断したときの横曲がり量とその幅方向温度
分布から推定した横曲がり量からわかるように、
加速冷却鋼板のホツトレベラー矯正直前の幅方向
温度分布(鋼板中央部)とその鋼板を横切り幅
400mmで切断したときの横曲がり量とよく一致し
ており、ホツトレベラー矯正直前の幅方向温度分
布(鋼板中央部)の不均一が小さい方が条切り切
断後の横曲がり量も小さくなるからである。 かかる測定は加速冷却後の矯正過程で行うのが
好ましく、厚鋼板の加速冷却後、矯正直前または
矯正中に鋼板の表面温度分布を計測することによ
つて行われる。 そして、その最終矯正直前の幅方向温度不均一
度を10℃以下に制限するのは、第3図に示す幅方
向温度不均一度と横曲がり量との関係(板厚30
mm、板長さ16000mmおよび25000mmで、条切り幅
400mm)から造船のロンジ材等における条切り横
曲がり量の許容値1mm/m以下を確保するには幅
方向温度不均一度は10℃以下にする必要があるか
らである。 本発明における矯正温度は矯正前に生じている
残留応力を解放することにあるので、できるだけ
高温域で行うのが好ましく、矯正機の能力にもよ
るが矯正温度としては、400℃以上が好ましい。 温度不均一度を10℃以下にするまでに数分間を
要するような場合は生産性を考慮して通常矯正機
の後方に位置しているクーリングベツドを使用す
るのがよい。 以下、実施例に基づき本発明をさらに具体的に
説明する。 (実施例) 下記第1表に示す条件下に従来方法で製造した
鋼板の条切り横曲がり量と本発明方法を適用して
製造した鋼板の横曲がり量とを比較すると、従来
例では20〜30mm/16.5mの横曲がりが発生するの
に対し、本発明ではその半分以下の横曲がりしか
発生しなかつた。
(Industrial Application Field) The present invention relates to an accelerated cooling method for a thick steel plate, and more particularly, to an accelerated cooling method for a thick steel plate that has excellent strip-cutting properties. (Prior art and its problems) In order to manufacture thick steel plates with high strength, high toughness, and excellent weldability, the accelerated cooling method is used to water-cool steel plates immediately after hot rolling, including steel plates for shipbuilding. It has been put to practical use in the production of various high-tensile steel plates. In such accelerated cooling, it is most important to uniformly cool the entire surface of the steel plate in order to ensure uniformity of the material and maintain a good shape of the steel plate. However, in actual manufacturing, even if there are no defects in the cooling system, uneven cooling may occur due to the plate crown, the temperature distribution of the steel sheet immediately before cooling, and the water riding effect during cooling, resulting in the temperature of the steel sheet after cooling. Heterogeneity may not be avoided. Therefore, conventionally, in order to reduce the distortion after cooling, a certain recuperation time is allowed after cooling is completed, and the steel sheet is straightened when the temperature difference in the thickness direction disappears (see Japanese Patent Publication No. 55-38406). To prevent ear waves and non-uniformity of mechanical properties across the width of the sheet, after accelerated cooling, online straightening and reheating to temperatures ranging from 500℃ to 1 point Ac should be performed in this order or in the reverse order. Method performed by
(see Publication No. 2003) has been proposed. However, in the first method described above, the steel plate is simply straightened after cooling and reheating time until the temperature difference in the plate thickness direction disappears to ensure a good large plate shape. When cut, the problem remains that large lateral bends occur. In addition, in the second method, apart from the cost problem of installing a new reheating furnace, the heating time is only a few minutes, so temperature non-uniformity tends to remain in the width direction of the sheet. It is difficult to satisfy the tolerance required to ensure a good strip shape, and the first method described above has a problem in that large lateral bending occurs when strips are cut in the same way. (Point of View of the Present Invention) In order to solve the drawbacks of the above-mentioned conventional methods, the present invention has conducted intensive research and found that in accelerated cooling steel sheets that are water-cooled after hot working, the temperature non-uniformity of the steel sheet before cooling is caused by cooling. Compared to conventional steel sheets, which are air-cooled or normalized after rolling, the residual stress generated during the water-cooling and subsequent air-cooling processes tends to be larger. On the other hand, in the strip shape, the temperature non-uniformity in the width direction (the difference between the highest value and the lowest value per strip width in the temperature distribution curve in the strip width direction) △T and the amount of lateral bending δ has the following relationship. It can be approximated by the formula: △T=8・W・δ/α・I 2 (W: strip width, α: linear expansion coefficient, I: steel plate length), and as can be understood from this relational expression, Since the stress difference in the range where strips are cut occurs as lateral bending, the temperature non-uniformity in the width direction (the difference between the highest and lowest values in the temperature distribution curve in the width direction of the steel sheet, hereinafter referred to as the width It was discovered that if the directional non-uniformity (direction non-uniformity) exceeds the allowable value, even if the shape of the large steel plate before strip cutting is good, large lateral bending will occur when strip cutting is performed. Ivy. (Summary of the Invention) The gist of the present invention is to provide a manufacturing method in which a thick steel plate is accelerated cooled after hot rolling or hot straightening, and then the thick steel plate is straightened online. The surface temperature distribution of a thick steel plate is measured, and the final correction in the online straightening process is performed when the difference between the highest value and the lowest value in the plate width direction temperature distribution curve becomes 10°C or less. "A method for accelerated cooling of thick steel plates." In the present invention, the reason why the final correction is performed in the online correction process is to release the residual stress that has been generated immediately before the correction. The difference between the highest and lowest values in the temperature distribution curve in the sheet width direction is measured in the width direction of the accelerated cooling steel sheet (thickness 50 mm, sheet width 2175 mm, sheet length 144550 mm) immediately before hot leveler straightening as shown in Figure 1. The temperature distribution (center of the steel plate) and the steel plate shown in Figure 2 are cut into strips with a width of 400 mm.
As can be seen from the amount of lateral bending when cutting in mm and the amount of lateral bending estimated from the temperature distribution in the width direction,
Temperature distribution in the width direction (in the center of the steel plate) immediately before hot leveler straightening of the accelerated cooling steel plate and the width across the steel plate
This is in good agreement with the amount of lateral bending when cutting at 400 mm, and this is because the smaller the unevenness of the temperature distribution in the width direction (center part of the steel plate) immediately before straightening with the hot leveler, the smaller the amount of lateral bending after strip cutting. . Such measurements are preferably carried out during the straightening process after accelerated cooling, and are carried out by measuring the surface temperature distribution of the steel plate after accelerated cooling of the steel plate, immediately before straightening, or during straightening. The reason why the temperature non-uniformity in the width direction is limited to 10°C or less just before the final straightening is due to the relationship between the temperature non-uniformity in the width direction and the amount of lateral bending (plate thickness 30°C) shown in Figure 3.
mm, board length 16000mm and 25000mm, strip width
400 mm) to ensure that the permissible amount of horizontal bending in shipbuilding longitudinal materials is less than 1 mm/m, the temperature non-uniformity in the width direction needs to be less than 10°C. Since the purpose of the straightening temperature in the present invention is to release residual stress generated before straightening, it is preferable to carry out the straightening at a temperature as high as possible.Although it depends on the capacity of the straightening machine, the straightening temperature is preferably 400°C or higher. If it takes several minutes to reduce the temperature non-uniformity to 10°C or less, it is better to use a cooling bed, which is usually located at the rear of the straightening machine, in consideration of productivity. Hereinafter, the present invention will be explained in more detail based on Examples. (Example) Comparing the amount of lateral bending of a steel plate manufactured by a conventional method under the conditions shown in Table 1 below with the amount of lateral bending of a steel plate manufactured by applying the method of the present invention, it is found that in the conventional example, While lateral bending of 30 mm/16.5 m occurred, in the present invention, only half or less of the lateral bending occurred.

【表】 (発明の作用効果) 以上説明したところから明らかなように、本発
明によれば、厚鋼板を熱間圧延後または熱間矯正
後に加速冷却した後、該厚鋼板をオンラインにて
矯正して製造するにあたり、加速冷却後の矯正過
程で該厚鋼板の表面温度分布を計測し、板幅方向
温度分布曲線における最高値と最低値との差が10
℃以下になつた時点での矯正をオンライン矯正過
程での最終矯正とするので、鋼板の大板形状が良
好であることは勿論、条切り切断等の条切り加工
を行つても、従来方法では発生していた横曲がり
を極力低減することができる。 また、本発明では、冷却後の幅方向の温度分布
を測定すれば足りるので、新たにオンラインに再
加熱炉を設ける必要もなく、容易に実施できる利
点がある。
[Table] (Operations and Effects of the Invention) As is clear from the above explanation, according to the present invention, after a thick steel plate is acceleratedly cooled after hot rolling or hot straightening, the thick steel plate is straightened online. The surface temperature distribution of the thick steel plate was measured during the straightening process after accelerated cooling, and the difference between the highest and lowest values in the width direction temperature distribution curve was determined to be 10
Since straightening when the temperature drops below ℃ is the final straightening in the online straightening process, not only does the shape of the large steel plate remain good, but even when strip cutting is performed, it is not possible with conventional methods. The lateral bending that has occurred can be reduced as much as possible. Further, in the present invention, it is sufficient to measure the temperature distribution in the width direction after cooling, so there is no need to newly install a reheating furnace on-line, and there is an advantage that it can be easily implemented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加速冷却鋼板のホツトレベラー矯正直
前の幅方向温度分布(鋼板中央部)を示すグラフ
で、第2図はその鋼板を条切り幅400mmで切断し
たときの横曲がり量とその幅方向温度分布から推
定した横曲がり量を示すグラフ、第3図は幅方向
温度不均一度と横曲がり量との関係を示すグラフ
である。
Figure 1 is a graph showing the temperature distribution in the width direction (center part of the steel plate) of an accelerated cooling steel plate immediately before straightening with a hot leveler, and Figure 2 is a graph showing the amount of lateral bending and the temperature in the width direction when the steel plate is cut with a strip width of 400 mm. A graph showing the amount of lateral bending estimated from the distribution, and FIG. 3 is a graph showing the relationship between the degree of temperature non-uniformity in the width direction and the amount of lateral bending.

Claims (1)

【特許請求の範囲】 1 厚鋼板を熱間圧延後または熱間矯正後に加速
冷却した後、該厚鋼板をオンラインにて矯正する
製造方法において、 加速冷却後の矯正過程で該厚鋼板の表面温度分
布を計測し、板幅方向温度分布曲線における最高
値と最低値との差が10℃以下になつた時点での矯
正をオンライン矯正過程での最終矯正とすること
を特徴とする厚鋼板の加速冷却方法。
[Scope of Claims] 1. A manufacturing method in which a thick steel plate is acceleratedly cooled after hot rolling or hot straightening, and then straightened on-line, wherein the surface temperature of the thick steel plate is adjusted in the straightening process after accelerated cooling. Acceleration of a thick steel plate characterized by measuring the distribution and making the final correction in the online straightening process when the difference between the highest value and the lowest value in the plate width direction temperature distribution curve becomes 10°C or less Cooling method.
JP10428585A 1985-05-15 1985-05-15 Accelerating cooling method for thick steel plate Granted JPS61262428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10428585A JPS61262428A (en) 1985-05-15 1985-05-15 Accelerating cooling method for thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10428585A JPS61262428A (en) 1985-05-15 1985-05-15 Accelerating cooling method for thick steel plate

Publications (2)

Publication Number Publication Date
JPS61262428A JPS61262428A (en) 1986-11-20
JPH0442089B2 true JPH0442089B2 (en) 1992-07-10

Family

ID=14376656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10428585A Granted JPS61262428A (en) 1985-05-15 1985-05-15 Accelerating cooling method for thick steel plate

Country Status (1)

Country Link
JP (1) JPS61262428A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557349A (en) * 1990-11-08 1993-03-09 Sumitomo Metal Ind Ltd Method for restraining camber at the time of stripe-cutting thick steel plate
EP1452247B1 (en) * 2001-10-10 2011-01-26 JFE Steel Corporation Method of manufacturing steel plate

Also Published As

Publication number Publication date
JPS61262428A (en) 1986-11-20

Similar Documents

Publication Publication Date Title
CN1278792C (en) Metal plate flatness controlling method and device
JPH0442089B2 (en)
JP4289480B2 (en) Straightening method to obtain steel plate with good shape with little variation in residual stress
JPH11290946A (en) Method for straightening thick steel plate
JP2826002B2 (en) Hot rolling method to reduce edge cracks in grain-oriented electrical steel sheets
JPH06254615A (en) Manufacture of thick steel plate excellent in shape and device therefor
KR100368210B1 (en) Hot rolling method for minimizing bending deformation of strip
JPH08300040A (en) Straightening method of thick steel plate
KR970004960B1 (en) Method of acceleration cooling
JPH06254616A (en) Manufacture of thick steel plate excellent in shape and device therefor
JP3653895B2 (en) Hot rolling method for ultra low carbon steel
JP3526763B2 (en) Warpage prevention method in steel plate rolling
JPH10113713A (en) Production of steel plate of controlled cooling
JP2604518B2 (en) Steel plate straightening method
JPH10244301A (en) Hot rolling equipment and method therefor
JPH03128122A (en) Accelerated cooling method of thick steel plate
JP3291188B2 (en) Manufacturing method of steel sheet with excellent toughness
JPH0569001A (en) Manufacture of extremely thick steel plate
JPH07284811A (en) Production of thick steel plate without seam flaw
JPH0442091B2 (en)
JPH04300007A (en) Method for rolling
JPS6324052B2 (en)
JPS60115306A (en) Thick plate manufacturing installation
JPH027726B2 (en)
JP2005103600A (en) Method for hot-rolling continuously cast slab of high nickel alloy steel

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term