JPH0442076B2 - - Google Patents

Info

Publication number
JPH0442076B2
JPH0442076B2 JP61270377A JP27037786A JPH0442076B2 JP H0442076 B2 JPH0442076 B2 JP H0442076B2 JP 61270377 A JP61270377 A JP 61270377A JP 27037786 A JP27037786 A JP 27037786A JP H0442076 B2 JPH0442076 B2 JP H0442076B2
Authority
JP
Japan
Prior art keywords
membrane
treatment
activated carbon
chamber
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61270377A
Other languages
Japanese (ja)
Other versions
JPS62117693A (en
Inventor
Hikoyoshi Kanayama
Akira Sakazaki
Juzaburo Kumagai
Hiroshi Makita
Koichi Karakawa
Hitoshi Yano
Masaaki Iwamoto
Takashi Shimamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUI SEKYU KAGAKU KOGYO KK
MITSUI ZOSEN ENJINIARINGU KK
Original Assignee
MITSUI SEKYU KAGAKU KOGYO KK
MITSUI ZOSEN ENJINIARINGU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUI SEKYU KAGAKU KOGYO KK, MITSUI ZOSEN ENJINIARINGU KK filed Critical MITSUI SEKYU KAGAKU KOGYO KK
Priority to JP61270377A priority Critical patent/JPS62117693A/en
Publication of JPS62117693A publication Critical patent/JPS62117693A/en
Publication of JPH0442076B2 publication Critical patent/JPH0442076B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はし尿廃水の高度処理法に関し、詳しく
は低コストでし尿を脱色する方法に関する。 [発明の背景] 近年、し尿の高度処理法の研究が進み、有機物
に関しては略々完全に近い程度に除去できるまで
に至つた。しかし、し尿の特有の色については、
処理技術が完全でなく、BODやCODが除去され
た処理水も色がついていれば放流出来ないのが実
情であり、そのためし尿の脱色を可能にするプロ
セスの開発が望まれている。 従来、し尿処理の脱色プロセスとしては、 生物処理設備(固液分離手段として遠心分離を
採用) 凝集沈殿処理設備 砂濾過処理設備+砂の逆洗設備 活性炭吸着処理設備+活性炭逆洗設備 からなるプロセス(例えばアタカ工業社のIZプロ
セス)が知られている。 このプロセスの特徴は、凝集沈殿処理設備によ
つてし尿の色度を粗取りし、活性炭吸着処理砂濾
過処理設備によつて色度の最終処理を行うもので
ある。砂濾過処理設備を設けているのは活性炭吸
着処理の目詰まりを防止するためでこのプロセス
では必須の設備である。また砂濾過処理設備には
砂の逆洗設備が必須であり、さらに活性炭逆洗設
備も必須である。 このプロセスにおいて遠心分離後のし尿の色度
は、通常2400〜2500度と高いが、凝集沈殿処理に
よつて150〜250度に低下し色度の粗取りが行わ
れ、次いで活性炭によつて処理される。活性炭処
理すると一時的には色度が30度以下になるが活性
炭がすぐに飽和に達し、長期的に色度を低下させ
ることはできず、また活性炭の取り換えが早期に
必要となる欠点がある。 このため活性炭処理設備の前でオゾン酸化処理
を行う方法が好ましい方法として採用されてい
る。このオゾン酸化処理を行えば色度が60〜70度
程度に低下するので、活性炭の負荷が低下し、前
記のプロセスよりは長期間にわたつて30以下の色
度を得ることができる効果がある。 しかしオゾン酸化処理と活性炭処理の組合せに
よつて長期的に30以下の色度を得ようとすると、
活性炭の目詰まりの問題があるので、砂濾過処理
設備が必要となる。この砂濾過処理設備は逆洗設
備等の付帯設備を多く必要とし、設備コストをア
ツプさせるだけでなく、メンテナンスが煩雑とな
る欠点があり、また新たに発生した逆洗排水を凝
集沈殿処理設備に戻して処理することとすると凝
集沈殿処理設備の負荷を増加させる欠点があり、
さらに逆洗時にし尿の連続処理を可能にするには
砂濾過器の予備器を設ける必要があり設備コスト
アツプさせる欠点がある。 また砂濾過処理設備を設けたとしてもssが完全
に除去される訳ではないので、活性炭の目詰まり
が生じることは避けられないことである。そのた
め活性炭の逆洗設備を必要とし、コスト高となる
こと及び洗浄排水の処理の要すること等前記砂濾
過設備の逆洗と同様にコスト高の問題がある。 [発明の目的] そこで、本発明の目的は、低設備コストで、か
つ煩雑なメンテナンスを必要とせずに脱色を完全
に行うことができるし尿の脱色方法を提供するこ
とにある。 [問題点を解決するための手段] 本発明者は、上記目的を解決するために鋭意検
討の結果、次の知見を得た。 即ち、生物処理後の固液分離手段としては、
種々の方法があるが、生物処理における汚泥管理
の容易性、ssの流出の制限等を考慮すると限外濾
過膜による方法が特に優れていることを見いだし
た。しかしこの限外濾過膜を用いた場合には膜透
過水の色度が500〜600度と高く、従来の凝集沈殿
処理後の色度150〜200度よりもかえつて高いこと
が判つた。 そこで本発明者は従来の方法に従い活性炭の前
処理としてオゾン酸化処理を行つたが、色度が
500〜600度のし尿を60度程度に低下するには大型
のあるいは数基のオゾン酸化処理設備等を設ける
必要があるため、従来のプロセスに対し格別コス
トダウンにもならなず、また設備のメンテナンス
も複雑になるなどの欠点があることが判つた。 本発明者はこれらの欠点を解消し、低コストで
かつメンテナンスも容易な方法について更に研究
を進めた結果、限外濾過膜の透過水をオゾン酸化
処理せずにそのまま活性炭吸着処理したところ驚
くべきことに従来より高い500〜600度の色度の透
過水であつても全く無色になるということを見い
出し、本発明に至つたものである。 即ち本発明に係るし尿の脱色方法は、し尿を実
質的に希釈することなく生物反応槽に受入れ、該
反応槽内の活性汚泥と接触混合して生物反応を行
ない、その後直ちに該活性汚泥を含む懸濁液を膜
透過水と濃縮液とに分離する限外濾過膜(以下、
必要によりUF膜という)に送り、該分離された
濃縮液の一部を前記反応槽内に返送すると共に前
記膜透過水を活性炭処理して脱色することを特徴
とする。 なお本明細書において、色度とはJIS KO102
−1985に基き測定した値であり、約30程度以下で
あれば透明の液であることを示している。 [作用] 本発明によれば、生物処理後の固液分離手段と
してUF膜を採用し、このUF膜と活性炭の組合せ
だけで、長期間に渡つて脱色を可能にすることが
できる。即ち、UF膜により固液分離するとし尿
の色度は500〜600度となり、従来の凝集沈殿処理
水の色度(150〜200度)より高くなつてしまうに
も拘らず、オゾン酸化処理を必要とすることな
く、長期間に渡つて脱色を可能にすることができ
る。この理由は定かでないが、色の成分の内比較
的分子量の高いもの(膜性能である所定の分画分
子量以上のもの)は、膜を透過せず低分子量の成
分のみが透過し、そのため活性炭では低分子量に
均一化された成分のみを吸着処理すればよいの
で、活性炭の飽和吸着容量を従来より高く採るこ
とができ、従つて色度の低い透明な処理水を得る
ことができるものと思われる。 また固液分離手段としてUF膜を採用している
ので、ssの流出がないため、活性炭の目詰まりが
ない。そのために活性炭の逆洗設備を必要としな
い。また前処理設備として砂濾過処理設備を設け
る必要がなく、更に砂の逆洗設備を設ける必要が
ない。故に設備コストを低下させることができ、
かつ煩雑なメンテナンスを要しない。 [具体的構成] 以下、本発明について詳説する。 本発明の処理対象とするし尿は、例えば、汲み
取りし尿(BOD13500mg/程度)、し尿浄化槽
汚泥(BOD7000mg/程度)、し尿消化槽脱離液
(BOD2400mg/程度)等が挙げられる。 本発明における生物反応処理は、任意であり、
例えば一般的な一段または多段の好気性及び/又
は嫌気性による公知の生物反応が行われ、有機
物、窒素成分等が酸化又は還元により分解除去さ
れる。 本発明においては生物反応処理後の固液分離手
段としてUF膜が採用されており、このUF膜によ
り固液分離すると、し尿の色度は500〜600度とな
り、従来の凝集沈殿処理水の色度(150〜200度)
よりは高い結果となる。 この高い色度を有するUF膜透過水の脱色を効
果的に行う活性炭吸着処理は、従来公知の処理設
備を用いて行うことなうことができる。例えば固
定床式、流動床式、メリーゴーランド式等の吸着
塔に粒状等の活性炭を充填して、この吸着塔に下
方または上方からUF膜透過水を通水して無色に
脱色することができる。 [実施例] 本発明の方法の一実施例を第1図に基づき説明
する。 まず、第1図で、バキユーム車等によつて収集
されたし尿(以下、原液という)は受入槽4は受
け入れられ、受入槽4で原液に含まれている比較
的大きな砂、石等の挟雑物が沈降によつて除去さ
れる。受入槽4内の原液は図示しないポンプによ
つて粗めスクリーン10に供給され、し尿中の繊
維状物質、ゴム製品、その他の浮遊性夾雑物等の
固形物質が除去される。分離された固形物質は従
来の方法によつて処分すれば良く、例えば脱水機
等を用いて脱水後焼却処分することもできる。 次いで粗めスクリーン10の通過液は目開きの
小さな所謂微細目スクリーン12に供給され、原
液中の不活性固形物(し渣)が除去される。 この目開きの小さなスクリーンは比較的微細な
固形物まで除去するために目開き0.1mm乃至0.5mm
の微細目スクリーンを用いることが好ましい。本
実施例では微細目スクリーン12には目開き0.2
mmのスクリーンが用いられている。 上記のように目開きの大きなスクリーンと目開
きの小さなスクリーンとを組み合わせて用いるこ
とにより、活性汚泥への負荷の軽減と限外濾過膜
の保護をはかることができる。 微細目スクリーン12で分離された固形物は、
例えば従来公知のスクリユウプレス等の脱水機を
用いて脱水後焼却処分すればよい。 上記スクリーンを通過した原液は貯留槽8に貯
留される。貯留槽8において原液の濃度の均一化
が図られる。貯留槽8内の原液は、供給手段3を
構成する原液送入ポンプ14を介して生物反応槽
16に供給される。 原液はそのまま(実質的に希釈されることな
く)、ポンプ14によつて生物反応槽16に送ら
れる。 生物反応槽16は、7つの室16A,16B,
16C,16D,16E,16F,16G)に区
画されている。 この生物反応槽16は、原液が流入される第1
室16Aから第4室16Dまでの前処理槽18
と、第5室16Eから処理液を流出する第7室1
6Gまでの後段処理槽20とに区分されている。 各室は鉛直方向の仕切り壁によつて仕切られ、
各室の処理液は第1室16Aから第7室16Gに
向つて従来公知の方法によつて順次送液される。
処理液の送液方式はオーバーフロー方式によつて
もよいし、第2図に示すように、オーバーフロー
と底流式の組合せによつてもよい。17Aはオー
バーフロー用の仕切り壁であり、17Bは底流用
の仕切り壁である。第2図のようにすると、例え
ば空気を第1室16A、第3室16Cおよび第5
室16Eに供給することによつて、好気性に設定
された第1室16Aから嫌気性に設定された第2
室16Bへ処理液をオーバーフローによつて移動
させると共に嫌気性に設定された第2室16Bお
よび第4室16Dから好気性に設定された第3室
16Cおよび第5室16Eへ処理液を底部から移
動させることができる。 また生物反応槽16には、第3図に示すように
消泡スプレー50が設けられていてもよい。この
場合、更に各室の仕切り板51の溢流部付近に邪
魔板52を設け、邪魔板と邪魔板との間に消泡ス
プレー50が併設されていてもよい。この構成に
よつて隣室への泡の流入が防止される。 第1図に戻つて前段処理槽18において、第1
室16Aと、第4室16Dとは、循環ポンプ22
を介して循環パイプ24によつて接続されてい
る。 一方、貯留槽8は循環ポンプ22の吸込み側で
循環パイプ24に接続されている。従つて貯留槽
8からの原液は循環されている処理液に混合され
ながら生物反応槽16に流量Qで送入される。 第1室16Aにおいて循環パイプ24の先端に
は、原液と循環液の混合液を挿入する際に空気を
導入するための曝気インジエクター(商品名:三
井−バイエルインジエクター式散気装置)26が
設けられている。この曝気インジエクター26に
よつて曝気空気の細分化と室内の攪拌の効率化が
図られる。また、この循環ポンプ22によつて最
大120Qの処理液が循環されている。本実施例で
は約40Qで循環されている。 活性汚泥槽16に挿入された原液は循環液とと
もに第1室16Aから順次オーバーフローしなが
ら各室を通過し、第7室に達する。第2室16
B、第3室16C、第4室16D、第6室16F
および第7室16Gには夫々空気を供給するため
に通常用いられている曝気装置30,31,3
2,36,38が設置されている。これらの曝気
装置に供給される空気量は各々独立して調節可能
に構成されている。第1室16A、第5室16E
が嫌気性雰囲気に保持され、第2室16B、第3
室16C、第4室16D、第6室16Fそして第
7室16Gは好気性雰囲気に保持されている。 供給工程において原液は、前段処理槽に供給さ
れる際、1つの室に供給されることに限らない。
例えば第2図のように室が3つ以上に区画されて
いる場合、第1室及び第3室に同時に供給しても
よい。後段処理槽20の各室は、前段処理槽と同
様に、複数であればいくつの室に区画されていて
もよく相対的に好気性または嫌気性の雰囲気に任
意に独立して設定可能であることが好ましい。し
かも、本実施例の如く後段処理槽内の処理液を限
外濾過装置へ供給するための最後の室及び最後か
ら2番目の室は好気性に設定されることが好まし
い。この場合、粘着性を有する嫌気性菌が、限外
濾過膜の直前で増殖されないから、限外濾過膜に
これらの菌が付着することによつて生じる濾過性
能の低下を防止し、膜の洗浄回数を減ずることが
できる。生物反応槽16において前段槽18及び
後段槽20には、嫌気性雰囲気及び好気性雰囲気
の組み合わせによつて効果的にし尿が活性汚泥処
理される。 第7室はパイプ39及び循環ポンプ40を介し
て限外濾過装置42に接続されている。限外濾過
装置42に用いられるUF膜は、分画分子量1000
乃至300万の範囲のものが用いられる。本実施例
では、ポリアクリロニトリル製分画分子量15000
乃至20000のUF膜(ローヌプーラン社製アイリス
)が用いられている。処理液はUF膜に対して
クロスフロー方式で流され、膜透過水と濃縮液と
に分離される。 限外濾過装置42からはその濃縮液を前段槽1
6の第4室16D及び後段槽18の第7室16G
に返送するための返送パイプ46が配設されてい
る。返送パイプ46からは濃縮液の残部を余剰汚
泥として系外に排出するための余剰汚泥パイプ4
8が分岐されている。 後段処理槽(第7室)の処理液を限外濾過装置
42に供給し、ここで処理液は濃縮液として高度
に濃縮され、くり返し前段及び後段処理槽に返送
されるので処理液中の難分解性有機物質も高濃度
(MLSS6000〜25000ppm)に活性汚泥によつて繰
り返しあるいは長時間に亘つて分解される。 限外濾過装置42は膜透過水パイプ43を介し
て活性炭吸着設備44に接続されている。膜透過
水パイプからは膜透過水の一部を第7室に戻すた
めの膜透過水返送パイプ45が分岐されている。 本実施例において活性炭吸着設備44には、粒
状活性炭を充填した固定床式の吸着塔が用いられ
る。 活性炭の通水速度(sv)は、従来公知の範囲で
よいが活性炭の前に設けられたUF膜で完全にss
が除去されるため通常の活性炭処理によるsvより
も高く採ることも可能である。 活性炭吸着設備44において膜透過水中の色度
を低下させ、且つBODやCOD等の有機性溶解物
質を除去した後、処理水として放流される。なお
処理水には膜処理との相乗効果によつて大腸菌等
の細菌群はほとんど存在しないが、系外から侵入
した大腸菌等の細菌を殺菌するために塩素等によ
り消毒してもよい。 [実験例] 実験例 1 第1図に示す装置を用いて以下の実験を行つ
た。 貯留槽8に生し尿を受け入れ、無稀釈下で濃度
調整を行いこれを原液とした。この原液の供給量
を300/日(Q)とし、生物反応槽に供給して
処理し、UF膜により固液分離した結果、膜透過
水の組成は下記のようになつた。 (膜透過水の組成) BOD 20mg/ COD 250mg/ ss trace 色度 550度 上記膜透過水を活性炭で処理した結果、最終処
理水の組成は下記のようになつた。 (活性炭処理水の組成) BOD 10mg/ COD 27mg/ ss trace 色度 9度 比較実験例 1 実験例1において、下記のフローのように生物
反応後固液分離手段として遠心分離機を用い、次
いで分離液を凝集沈殿処理し、次いで砂濾過処理
した後、活性炭処理を1カ月続けた。その結果初
期には下記の表に示す結果が得られたが、1週間
後には砂濾過が目詰まりし運転に継続が不可能に
なつた。そのため砂の逆洗を行い処理を継続させ
たが、1ケ月後には活性炭も目詰まりし、処理の
継続が不可能になつた。
[Industrial Application Field] The present invention relates to an advanced treatment method for human waste wastewater, and more particularly to a method for decolorizing human waste at low cost. [Background of the Invention] In recent years, research into advanced treatment methods for human waste has progressed, and it has now become possible to almost completely remove organic matter. However, regarding the unique color of human urine,
The reality is that treatment technology is not perfect and even treated water from which BOD and COD have been removed cannot be discharged if it is colored.Therefore, there is a desire to develop a process that can decolorize human waste. Traditionally, the decolorization process for human waste treatment includes biological treatment equipment (centrifugal separation is used as the solid-liquid separation method), flocculation sedimentation treatment equipment, sand filtration treatment equipment + sand backwashing equipment, activated carbon adsorption treatment equipment + activated carbon backwashing equipment. (For example, Ataka Kogyo's IZ process) is known. The feature of this process is that the chromaticity of human waste is roughly removed using coagulation and sedimentation processing equipment, and the chromaticity is final processed using activated carbon adsorption treatment and sand filtration processing equipment. Sand filtration treatment equipment is provided to prevent clogging of the activated carbon adsorption treatment, and is essential equipment for this process. In addition, sand filtration treatment equipment requires sand backwashing equipment, and activated carbon backwashing equipment is also essential. In this process, the color of human waste after centrifugation is usually as high as 2,400 to 2,500 degrees, but it is reduced to 150 to 250 degrees by coagulation and sedimentation, and the color is roughly removed, and then treated with activated carbon. be done. Activated carbon treatment temporarily reduces the chromaticity to below 30 degrees, but the activated carbon quickly reaches saturation, making it impossible to reduce the chromaticity in the long term, and the activated carbon has the disadvantage of requiring early replacement. . For this reason, a method in which ozone oxidation treatment is performed in front of activated carbon treatment equipment has been adopted as a preferred method. This ozone oxidation treatment reduces the chromaticity to about 60 to 70 degrees, which reduces the load on activated carbon and has the effect of being able to obtain a chromaticity of 30 or less over a longer period of time than the above process. . However, if you try to obtain a chromaticity of 30 or less in the long term by a combination of ozone oxidation treatment and activated carbon treatment,
Because of the problem of activated carbon clogging, sand filtration equipment is required. This sand filtration treatment equipment requires a lot of ancillary equipment such as backwash equipment, which not only increases the equipment cost but also has the disadvantage of complicating maintenance. If it is returned for treatment, it has the disadvantage of increasing the load on the coagulation and sedimentation treatment equipment.
Furthermore, in order to enable continuous treatment of human waste during backwashing, it is necessary to provide a spare device for the sand filter, which has the disadvantage of increasing equipment costs. Furthermore, even if sand filtration treatment equipment is provided, ss is not completely removed, so it is inevitable that activated carbon will become clogged. Therefore, activated carbon backwashing equipment is required, resulting in high costs and the same problems as the backwashing of sand filtration equipment, such as the need to treat washing waste water. [Object of the Invention] Therefore, an object of the present invention is to provide a method for decolorizing human waste that can completely decolorize it at low equipment cost and without requiring complicated maintenance. [Means for Solving the Problems] The inventors of the present invention have made the following findings as a result of intensive studies to solve the above objects. That is, as a solid-liquid separation means after biological treatment,
Although there are various methods, we have found that the method using ultrafiltration membranes is particularly superior in terms of ease of sludge management in biological treatment, restriction of SS outflow, etc. However, when this ultrafiltration membrane was used, it was found that the chromaticity of the membrane-permeated water was as high as 500 to 600 degrees, which was even higher than the chromaticity of 150 to 200 degrees after conventional coagulation and precipitation treatment. Therefore, the present inventor performed ozone oxidation treatment as a pretreatment of activated carbon according to the conventional method, but the chromaticity was
In order to reduce human waste at 500 to 600 degrees to about 60 degrees, it is necessary to install large-scale or several ozone oxidation treatment facilities, so it does not significantly reduce costs compared to conventional processes, and it requires less equipment. It was found that there are drawbacks such as complicated maintenance. As a result of further research into a low-cost and easy-to-maintain method to eliminate these drawbacks, the inventors found a surprising result when the permeated water of the ultrafiltration membrane was treated with activated carbon adsorption without being subjected to ozone oxidation treatment. In particular, we discovered that even permeated water with a chromaticity of 500 to 600 degrees, which is higher than conventional methods, becomes completely colorless, leading to the present invention. That is, in the method for decolorizing human waste according to the present invention, human waste is received into a biological reaction tank without being substantially diluted, brought into contact with and mixed with activated sludge in the reaction tank to perform a biological reaction, and then immediately containing the activated sludge. An ultrafiltration membrane (hereinafter referred to as
A part of the separated concentrated liquid is returned to the reaction tank, and the water permeated through the membrane is treated with activated carbon to decolorize it. In this specification, chromaticity refers to JIS KO102
-1985, and a value of about 30 or less indicates a transparent liquid. [Function] According to the present invention, a UF membrane is employed as a solid-liquid separation means after biological treatment, and decolorization can be achieved for a long period of time simply by the combination of this UF membrane and activated carbon. In other words, when solid-liquid separation is performed using a UF membrane, the color of night soil becomes 500 to 600 degrees, which is higher than the color of conventional coagulation-sedimentation water (150 to 200 degrees), but ozone oxidation treatment is necessary. Decolorization can be achieved over a long period of time without causing any damage. The reason for this is not clear, but color components with relatively high molecular weights (more than the predetermined molecular weight cut-off, which is membrane performance) do not pass through the membrane, and only low-molecular-weight components pass through the membrane, which is why activated carbon Since it is only necessary to adsorb components that have been homogenized to have a low molecular weight, the saturated adsorption capacity of activated carbon can be increased compared to conventional methods, and it is therefore possible to obtain transparent treated water with low chromaticity. It will be done. Furthermore, since a UF membrane is used as the solid-liquid separation means, there is no outflow of ss, so there is no clogging of activated carbon. Therefore, activated carbon backwashing equipment is not required. Further, there is no need to provide sand filtration processing equipment as pre-treatment equipment, and furthermore, there is no need to provide sand backwashing equipment. Therefore, equipment costs can be reduced,
And no complicated maintenance is required. [Specific Configuration] The present invention will be explained in detail below. Examples of the human waste to be treated in the present invention include pumped human waste (about 13,500 mg/BOD), human waste septic tank sludge (about 7,000 mg/BOD), human waste digester desorbed liquid (about 2,400 mg/BOD), and the like. Biological reaction treatment in the present invention is optional,
For example, a conventional one-stage or multi-stage aerobic and/or anaerobic biological reaction is carried out, and organic substances, nitrogen components, etc. are decomposed and removed by oxidation or reduction. In the present invention, a UF membrane is adopted as a solid-liquid separation means after biological reaction treatment, and when solid-liquid separation is performed using this UF membrane, the color of human waste becomes 500 to 600 degrees, which is the same color as that of conventional coagulation-sedimentation-treated water. degrees (150-200 degrees)
This results in a higher result. The activated carbon adsorption treatment that effectively decolorizes the water permeated through the UF membrane having high chromaticity can be performed using conventionally known treatment equipment. For example, a fixed bed type, fluidized bed type, merry-go-round type adsorption tower, etc. is filled with granular activated carbon, and water permeated through the UF membrane is passed through the adsorption tower from below or above to decolorize the water. [Example] An example of the method of the present invention will be described based on FIG. First, in Fig. 1, human waste (hereinafter referred to as the undiluted solution) collected by a vacuum vehicle or the like is received in the receiving tank 4, and the receiving tank 4 is filled with relatively large sand, stones, etc. contained in the undiluted solution. Impurities are removed by sedimentation. The stock solution in the receiving tank 4 is supplied to a rough screen 10 by a pump (not shown), and solid substances such as fibrous substances, rubber products, and other floating impurities in the human waste are removed. The separated solid substance may be disposed of by a conventional method, for example, it may be dehydrated using a dehydrator or the like and then incinerated. Next, the liquid passing through the coarse screen 10 is supplied to a so-called fine screen 12 having small openings, and inert solids (sludge) in the raw liquid are removed. This screen with small openings has openings of 0.1mm to 0.5mm to remove even relatively fine solids.
It is preferred to use a fine mesh screen. In this embodiment, the fine mesh screen 12 has a mesh opening of 0.2.
mm screen is used. By using a screen with large openings and a screen with small openings in combination as described above, it is possible to reduce the load on activated sludge and protect the ultrafiltration membrane. The solids separated by the fine screen 12 are
For example, it may be dehydrated using a conventionally known dehydrator such as a screw press and then incinerated. The stock solution that has passed through the screen is stored in a storage tank 8. In the storage tank 8, the concentration of the stock solution is made uniform. The stock solution in the storage tank 8 is supplied to the biological reaction tank 16 via the stock solution feed pump 14 that constitutes the supply means 3 . The stock solution is sent as is (substantially undiluted) to the biological reactor 16 by the pump 14. The biological reaction tank 16 has seven chambers 16A, 16B,
16C, 16D, 16E, 16F, 16G). This biological reaction tank 16 is a first tank into which the stock solution is introduced.
Pretreatment tank 18 from chamber 16A to fourth chamber 16D
and a seventh chamber 1 from which the processing liquid flows out from the fifth chamber 16E.
It is divided into a post-processing tank 20 up to 6G. Each room is separated by a vertical partition wall.
The processing liquid in each chamber is sequentially transferred from the first chamber 16A to the seventh chamber 16G by a conventionally known method.
The method for feeding the processing liquid may be an overflow method or, as shown in FIG. 2, a combination of an overflow and an underflow method. 17A is a partition wall for overflow, and 17B is a partition wall for underflow. If it is configured as shown in FIG.
The first chamber 16A, which is set to be aerobic, is supplied to the second chamber 16E, which is set to be anaerobic.
The processing liquid is transferred to the chamber 16B by overflow, and the processing liquid is transferred from the bottom from the second chamber 16B and fourth chamber 16D, which are set to be anaerobic, to the third chamber 16C and fifth chamber 16E, which are set to be aerobic. It can be moved. Further, the biological reaction tank 16 may be provided with a defoaming spray 50 as shown in FIG. In this case, a baffle plate 52 may be further provided near the overflow part of the partition plate 51 of each chamber, and a defoaming spray 50 may be provided between the baffle plates. This configuration prevents bubbles from flowing into adjacent rooms. Returning to FIG. 1, in the pre-treatment tank 18, the first
The chamber 16A and the fourth chamber 16D are connected to the circulation pump 22.
It is connected by a circulation pipe 24 via. On the other hand, the storage tank 8 is connected to the circulation pipe 24 on the suction side of the circulation pump 22. Therefore, the stock solution from the storage tank 8 is sent to the biological reaction tank 16 at a flow rate Q while being mixed with the circulating treatment solution. In the first chamber 16A, an aeration injector (trade name: Mitsui-Beyer injector type aeration device) 26 is installed at the tip of the circulation pipe 24 to introduce air when inserting the mixture of stock solution and circulating fluid. It is being This aeration injector 26 makes it possible to fragment the aeration air and improve the efficiency of stirring the room. Furthermore, the circulation pump 22 circulates a maximum of 120Q of processing liquid. In this embodiment, the cycle is approximately 40Q. The stock solution inserted into the activated sludge tank 16 passes through each chamber while sequentially overflowing from the first chamber 16A together with the circulating fluid, and reaches the seventh chamber. 2nd room 16
B, 3rd room 16C, 4th room 16D, 6th room 16F
and aeration devices 30, 31, 3 which are normally used to supply air to the seventh chamber 16G, respectively.
2, 36, and 38 are installed. The amount of air supplied to these aeration devices can be adjusted independently. 1st room 16A, 5th room 16E
is maintained in an anaerobic atmosphere, and the second chamber 16B and the third chamber
The chamber 16C, the fourth chamber 16D, the sixth chamber 16F, and the seventh chamber 16G are maintained in an aerobic atmosphere. In the supply process, when the stock solution is supplied to the pre-treatment tank, it is not limited to being supplied to one chamber.
For example, when the chamber is divided into three or more as shown in FIG. 2, the first chamber and the third chamber may be supplied at the same time. Each chamber of the post-processing tank 20, like the pre-processing tank, may be divided into any number of chambers as long as it is plural, and can be arbitrarily and independently set to a relatively aerobic or anaerobic atmosphere. It is preferable. Furthermore, as in this embodiment, it is preferable that the last chamber and the second to last chamber for supplying the treatment liquid in the latter treatment tank to the ultrafiltration device are set to be aerobic. In this case, sticky anaerobic bacteria are not allowed to proliferate immediately before the ultrafiltration membrane, which prevents the filtration performance from decreasing due to the adhesion of these bacteria to the ultrafiltration membrane, and makes it easier to clean the membrane. The number of times can be reduced. In the biological reaction tank 16, the human waste is effectively processed into activated sludge in the front stage tank 18 and the rear stage tank 20 by a combination of an anaerobic atmosphere and an aerobic atmosphere. The seventh chamber is connected to an ultrafiltration device 42 via a pipe 39 and a circulation pump 40. The UF membrane used in the ultrafiltration device 42 has a molecular weight cutoff of 1000.
A range of 3,000,000 to 3,000,000 is used. In this example, polyacrylonitrile with a molecular weight cutoff of 15,000
A UF membrane of 20,000 to 20,000 (Iris manufactured by Rhone-Poulenc) is used. The treated liquid is passed through the UF membrane in a cross-flow manner, and is separated into membrane-permeated water and concentrated liquid. The concentrated liquid is sent from the ultrafiltration device 42 to the pre-stage tank 1.
6's fourth chamber 16D and the seventh chamber 16G of the latter stage tank 18
A return pipe 46 is provided for returning the product to the factory. A surplus sludge pipe 4 is connected to a return pipe 46 for discharging the remainder of the concentrated liquid as surplus sludge to the outside of the system.
8 are branched. The treated liquid in the downstream treatment tank (chamber 7) is supplied to the ultrafiltration device 42, where the treated liquid is highly concentrated as a concentrated liquid and repeatedly sent back to the front and downstream treatment tanks to remove any impurities in the treated liquid. Decomposable organic substances are also decomposed to high concentrations (MLSS 6000 to 25000 ppm) by activated sludge repeatedly or over long periods of time. The ultrafiltration device 42 is connected to activated carbon adsorption equipment 44 via a membrane permeated water pipe 43. A membrane-permeated water return pipe 45 for returning part of the membrane-permeated water to the seventh chamber is branched from the membrane-permeated water pipe. In this embodiment, the activated carbon adsorption equipment 44 uses a fixed bed type adsorption tower filled with granular activated carbon. The water flow rate (sv) of activated carbon can be within the conventionally known range, but it can be completely reduced to ss with the UF membrane installed in front of the activated carbon.
is removed, so it is possible to achieve a higher sv than with normal activated carbon treatment. After reducing the chromaticity of the membrane-permeated water and removing organic dissolved substances such as BOD and COD in the activated carbon adsorption equipment 44, the water is discharged as treated water. Although there are almost no bacteria such as Escherichia coli in the treated water due to the synergistic effect with the membrane treatment, chlorine or the like may be used to disinfect the water in order to kill bacteria such as Escherichia coli that have invaded from outside the system. [Experimental Example] Experimental Example 1 The following experiment was conducted using the apparatus shown in FIG. Human urine was received in the storage tank 8, and the concentration was adjusted without dilution, and this was used as a stock solution. The supply rate of this stock solution was set at 300/day (Q), and as a result of supplying it to a biological reaction tank for treatment, and performing solid-liquid separation using a UF membrane, the composition of the membrane-permeated water was as follows. (Composition of membrane permeate water) BOD 20mg/ COD 250mg/ ss trace Chromaticity 550 degrees As a result of treating the above membrane permeate water with activated carbon, the composition of the final treated water was as follows. (Composition of activated carbon treated water) BOD 10mg / COD 27mg / ss trace Chromaticity 9 degrees Comparison Experimental Example 1 In Experimental Example 1, as shown in the flow below, a centrifuge was used as a solid-liquid separation means after the biological reaction, and then the separation After the liquid was subjected to coagulation and sedimentation treatment and then sand filtration treatment, activated carbon treatment was continued for one month. Initially, the results shown in the table below were obtained, but after one week, the sand filter became clogged and it became impossible to continue operation. Therefore, the process was continued by backwashing the sand, but after a month, the activated carbon became clogged and it became impossible to continue the process.

【表】 [発明の効果] 本発明によれば、生物処理後の固液分離手段と
してUF膜を採用し、このUF膜と活性炭の組合せ
だけで、長期間に渡つて脱色を可能にすることが
できる。即ち、UF膜により固液分離するとし尿
の色度は500〜600度となり、従来の凝集沈殿処理
水の色度(150〜200度)より高くなつてしまうに
も拘らず、オゾン酸化処理を必要とすることな
く、長期間に渡つて脱色を可能にすることができ
る。 また固液分離手段としてUF膜を採用している
ので、ssの流出がないため、活性炭の目詰まりが
ない。そのために活性炭の逆洗設備を必要としな
い。また前処理設備として砂濾過処理設備を設け
る必要がなく、更に砂の逆洗設備を設ける必要が
ない。故に設備コストを低下させることができ、
かつ煩雑なメンテナンスを要しない。 さらに本発明によれば、生物反応後の固液分離
手段として限外濾過膜を採用したため、従来、生
物処理に固液分離手段として採用されている沈殿
槽での汚泥の沈降性を考慮する必要がなくなり、
また生物反応槽内の汚泥濃度を物理的に制御でき
るように成り、従つて反応槽内の活性汚泥濃度を
高めることができ、高負荷高濃度運転が可能とな
つた。
[Table] [Effects of the Invention] According to the present invention, a UF membrane is employed as a solid-liquid separation means after biological treatment, and decolorization can be achieved for a long period of time simply by the combination of this UF membrane and activated carbon. I can do it. In other words, when solid-liquid separation is performed using a UF membrane, the color of night soil becomes 500 to 600 degrees, which is higher than the color of conventional coagulation-sedimentation water (150 to 200 degrees), but ozone oxidation treatment is necessary. Decolorization can be achieved over a long period of time without causing any damage. Furthermore, since a UF membrane is used as the solid-liquid separation means, there is no outflow of ss, so there is no clogging of activated carbon. Therefore, activated carbon backwashing equipment is not required. Further, there is no need to provide sand filtration processing equipment as pre-treatment equipment, and furthermore, there is no need to provide sand backwashing equipment. Therefore, equipment costs can be reduced,
And no complicated maintenance is required. Furthermore, according to the present invention, since an ultrafiltration membrane is adopted as a solid-liquid separation means after a biological reaction, it is necessary to consider the sedimentation property of sludge in a settling tank, which has conventionally been adopted as a solid-liquid separation means for biological treatment. is gone,
In addition, it has become possible to physically control the sludge concentration in the biological reaction tank, and therefore the activated sludge concentration in the reaction tank can be increased, making it possible to operate under high load and at high concentration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の一実施例を示す概略説
明図、第2図及び第3図は処理槽の他の例を示す
概略断面図である。 4……受入槽、8……貯留槽、10……粗目ス
クリーン、12……微細目スクリーン、16……
生物反応槽、42……限外濾過装置、44……活
性炭吸着設備。
FIG. 1 is a schematic explanatory diagram showing one embodiment of the method of the present invention, and FIGS. 2 and 3 are schematic sectional views showing other examples of the processing tank. 4... Receiving tank, 8... Storage tank, 10... Coarse screen, 12... Fine screen, 16...
Biological reaction tank, 42... ultrafiltration device, 44... activated carbon adsorption equipment.

Claims (1)

【特許請求の範囲】[Claims] 1 し尿を実質的に希釈することなく生物反応槽
に受入れ、該反応槽内の活性汚泥と接触混合して
生物反応を行ない、その後直ちに該活性汚泥を含
む懸濁液を膜透過水と濃縮液とに分離する限外濾
過膜に送り、該分離された濃縮液の一部を前記反
応槽内に返送すると共に前記膜透過水を活性炭処
理して脱色することを特徴とするし尿の脱色方
法。
1. Human waste is received into a biological reaction tank without being substantially diluted, contacted and mixed with activated sludge in the reaction tank to perform a biological reaction, and then the suspension containing the activated sludge is immediately mixed with membrane permeated water and concentrated liquid. A method for decolorizing night soil, which comprises sending the water to an ultrafiltration membrane that separates it into two parts, returning a part of the separated concentrated liquid to the reaction tank, and decolorizing the membrane-permeated water by treating it with activated carbon.
JP61270377A 1986-11-12 1986-11-12 Decoloring method for night soil Granted JPS62117693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61270377A JPS62117693A (en) 1986-11-12 1986-11-12 Decoloring method for night soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61270377A JPS62117693A (en) 1986-11-12 1986-11-12 Decoloring method for night soil

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59267725A Division JPH0630791B2 (en) 1984-12-19 1984-12-19 Human waste processing method and apparatus

Publications (2)

Publication Number Publication Date
JPS62117693A JPS62117693A (en) 1987-05-29
JPH0442076B2 true JPH0442076B2 (en) 1992-07-10

Family

ID=17485406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61270377A Granted JPS62117693A (en) 1986-11-12 1986-11-12 Decoloring method for night soil

Country Status (1)

Country Link
JP (1) JPS62117693A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0470931A3 (en) * 1990-08-08 1992-05-13 Ciba-Geigy Ag Soil and waste water treatment
KR100429610B1 (en) * 2001-07-04 2004-05-04 (주)에코 멤브레인 system for processing a waste water by using a active catbon column
KR100882802B1 (en) 2008-10-28 2009-02-10 한성크린텍주식회사 Biological treating and filtering system for wastewater and the method of recycling the wastewater

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061051A (en) * 1973-10-01 1975-05-26
JPS5394444A (en) * 1977-01-29 1978-08-18 Sanki Eng Co Ltd Method of treating waste water containing highly concentrated ammonia nitrogen
JPS5660691A (en) * 1979-10-23 1981-05-25 Ebara Infilco Co Ltd Treatment of waste water containing organic substance
JPS5684697A (en) * 1979-12-08 1981-07-10 Ebara Infilco Co Ltd Treatment of high concentration organic waste water
JPS5710393A (en) * 1980-06-23 1982-01-19 Ebara Infilco Co Ltd Treatment of high concentration organic waste water
JPS59109293A (en) * 1982-12-16 1984-06-23 Ebara Infilco Co Ltd Biological denitrification method of waste water

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061051A (en) * 1973-10-01 1975-05-26
JPS5394444A (en) * 1977-01-29 1978-08-18 Sanki Eng Co Ltd Method of treating waste water containing highly concentrated ammonia nitrogen
JPS5660691A (en) * 1979-10-23 1981-05-25 Ebara Infilco Co Ltd Treatment of waste water containing organic substance
JPS5684697A (en) * 1979-12-08 1981-07-10 Ebara Infilco Co Ltd Treatment of high concentration organic waste water
JPS5710393A (en) * 1980-06-23 1982-01-19 Ebara Infilco Co Ltd Treatment of high concentration organic waste water
JPS59109293A (en) * 1982-12-16 1984-06-23 Ebara Infilco Co Ltd Biological denitrification method of waste water

Also Published As

Publication number Publication date
JPS62117693A (en) 1987-05-29

Similar Documents

Publication Publication Date Title
US3773659A (en) System for processing wastes
JP2001070967A (en) Cleaning system for laundry waste water
DE60316195T2 (en) METHOD AND DEVICE FOR TREATING WATERS CONTAINING, IN PARTICULAR, SUSPENDED CONTAMINANTS
EP0503649A1 (en) Process and apparatus for biological purification of waste waters polluted with non biodegradable or hardly biodegradable substances
KR20190138975A (en) Liquefied fertilizer purification apparatus using porous ceramic membrane
JPH07155784A (en) Treatment of organic waste water
JPH09248572A (en) Membrane filter and method thereof
US7374687B2 (en) Method of decolorizing stock-raising treatment water
JPH06320190A (en) Method and device for treating sewage water
ZA200201560B (en) Method and device for purifying and treating waste water in order to obtain drinking water.
JPH0442076B2 (en)
JPS62197197A (en) Treatment of organic drain
JPS61185400A (en) Apparatus for treating excretion sewage
JPH0639396A (en) Method for treating waste water
JPS61146397A (en) Method and apparatus for treating night soil
JP2007185660A (en) Method and apparatus for treating organic waste water
JP2863739B2 (en) Organic wastewater treatment method
JPH02172598A (en) Treatment of organic sewage
JPH0471700A (en) Sludge treating device
JPH0141118B2 (en)
JP2525124Y2 (en) Sewage septic tank
DE102021110765A1 (en) Process for cleaning polluted water
JPS596984A (en) Treatment of waste water with activated sludge
JPH0751239B2 (en) How to purify water
JPS63221893A (en) Treatment of organic sewage

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term