JPH0441638A - Shape memory alloy - Google Patents

Shape memory alloy

Info

Publication number
JPH0441638A
JPH0441638A JP14456290A JP14456290A JPH0441638A JP H0441638 A JPH0441638 A JP H0441638A JP 14456290 A JP14456290 A JP 14456290A JP 14456290 A JP14456290 A JP 14456290A JP H0441638 A JPH0441638 A JP H0441638A
Authority
JP
Japan
Prior art keywords
alloy
shape memory
memory alloy
workability
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14456290A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yamauchi
清 山内
Naoharu Yamamoto
直治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP14456290A priority Critical patent/JPH0441638A/en
Publication of JPH0441638A publication Critical patent/JPH0441638A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PURPOSE:To obtain a shape memory alloy improved in workability and showing elasticity at a biological temp., in an alloy constituted of specified ratios of Ti, Ni and Cu, by substituting at least either specified amt. of Ni and Ti by C. CONSTITUTION:The above shape memory alloy contg. a Ti-Ni-Cu alloy expressed by the formula of Ti50Ni50-xCux{where (x)=5 to 15} and in which at least either of the above Ni and Ti is substituted by C in the range of 0.25 to 5.0at% is subjected to work hardening and is thereafter subjected to aging treatment substantially in the range of 400 to 550 deg.C, by which the shape memory alloy showing superplasticity at a biological temp. can be obtd.

Description

【発明の詳細な説明】 し産業上の利用分野〕 本発明は形状記憶合金に関するものである。[Detailed description of the invention] Field of industrial use] The present invention relates to shape memory alloys.

[従来の技術] 従来、T1Ni及びTiN1X (但し、 X−Fe、
Cu、Cr、V・・・)合金が、熱弾性型マルテンサイ
ト変態の逆変態に付随して、顕著な形状記憶効果及び超
弾性を示すことがよく知られている。
[Prior art] Conventionally, T1Ni and TiN1X (however, X-Fe,
It is well known that Cu, Cr, V...) alloys exhibit remarkable shape memory effects and superelasticity accompanying the reverse transformation of thermoelastic martensitic transformation.

また 7iNiCu合金については、形状記憶効果の出
現確認は、オランダ国より出願された特開昭46−15
02号公報に示されている。
Regarding the 7iNiCu alloy, the appearance of the shape memory effect was confirmed in Japanese Unexamined Patent Publication No. 46-15 filed by the Netherlands.
This is shown in Publication No. 02.

更に、Cu添加によってNi濃度の変態温度依存性を鋭
くさせ、工業的に再現性のある製造を可能にできること
は、米国より出願された特開昭53−28518号公報
に示されている。
Furthermore, Japanese Patent Laid-Open No. 53-28518, filed in the United States, shows that the dependence of Ni concentration on transformation temperature can be sharpened by adding Cu, thereby enabling industrially reproducible production.

また本発明者らは、C添加T1Ni合金が1本質的なT
1Ni合金の特性を損なわず、形状記憶特性の改善に役
立つことができることを見出だしている(東北大選研當
報S、57.6第38巻。
The inventors also found that the C-added T1Ni alloy has one essential T1Ni alloy.
It has been found that it can help improve the shape memory properties of the 1Ni alloy without impairing its properties (Tohoku University Senken Report S, 57.6, Vol. 38).

特開昭63−11636号公報)。(Japanese Unexamined Patent Publication No. 11636/1983).

[発明が解決しようとする課題] しかしながら1上述した従来のTiN1Cu合金は、C
u添加量の増加と伴に、T1Cuの析出物が増加し、加
工性が悪くな傾向を示す。特に。
[Problems to be Solved by the Invention] However, the conventional TiN1Cu alloy described above is
As the amount of u added increases, the amount of T1Cu precipitates increases, and the workability tends to deteriorate. especially.

Cu添加量が10at%を越えると、極端に加工性は悪
くなる。このため、その溶解法としては、溶解後、急冷
銅鋳型等に鋳込み、T1Cuの析出を抑える必要があっ
た。
When the amount of Cu added exceeds 10 at%, workability becomes extremely poor. Therefore, as a melting method, it was necessary to suppress the precipitation of T1Cu by casting it into a quenched copper mold or the like after melting.

ところが、この溶解方法によれば、溶解インゴットを大
きくすることが不可能であった。すなわち、インゴット
を大きくすることは、急冷効果が弱くなることとなり1
本来抑えなければならないT1Cuが析出してしまう欠
点がある。
However, according to this melting method, it was impossible to increase the size of the melted ingot. In other words, increasing the size of the ingot weakens the quenching effect.
There is a drawback that T1Cu, which should originally be suppressed, precipitates.

更に、工業的な溶解法として、高周波真空溶解によって
得た合金を鉄等の鋳型に鋳込むことがよく用いられてい
る。
Furthermore, as an industrial melting method, casting an alloy obtained by high frequency vacuum melting into a mold made of iron or the like is often used.

しかしこの方法では、Cu添加が、5at%程度で限界
となり、それ以上のCu添加の合金では。
However, in this method, the Cu addition reaches a limit at about 5 at%, and in alloys with more Cu addition.

殆んどの場合、熱間等による加工時点で、ワレ。In most cases, cracks occur during hot processing.

カケを生じさせることとなっていた。It was supposed to cause chips.

一方、TiN1Cu合金は、工業的にはNi濃度の変態
温度依存性を弱める効果はあるものの。
On the other hand, although TiN1Cu alloy has the effect of weakening the dependence of Ni concentration on transformation temperature from an industrial perspective.

逆に、所望の変態温度を得難い難点があった。即ち、T
 i 5oN i 5o−xc u xなる式でXを変
化させても1合金の変態温度は、Ms点でほぼ50℃前
後である。
On the contrary, it was difficult to obtain the desired transformation temperature. That is, T
Even if X is changed according to the formula i5oNi5o-xcux, the transformation temperature of one alloy is approximately 50° C. at the Ms point.

また、変態温度を下げるために、N1m度を化学量論値
(50at%)より増加させることか考えられるが、加
工性は量論値よりはずれるに従い悪くなり、生体温度(
=37℃)以下で超弾性を示す温度、すなわち、Ms点
を30℃以下とすることが困難となる。
Also, in order to lower the transformation temperature, it may be possible to increase N1m degree above the stoichiometric value (50 at%), but the processability deteriorates as it deviates from the stoichiometric value, and the biological temperature (
= 37° C.) or lower, it becomes difficult to maintain the temperature at which superelasticity is exhibited, that is, the Ms point to be 30° C. or lower.

尚、これを解決する手段として、Cr、Fe等の第4元
素を添加することは、前記の特開昭53−28518号
公報に示されているが、変態温度を下げる効果は認めら
れるものの加工性の改善には至っていないのが現状であ
る。
As a means to solve this problem, the addition of a fourth element such as Cr or Fe is shown in the above-mentioned Japanese Patent Application Laid-Open No. 53-28518, but although it is recognized to be effective in lowering the transformation temperature, it is difficult to process. The current situation is that sexual performance has not improved.

そこで1本発明の技術的課題は、上記欠点に鑑みTiN
1Cu合金の機能的特長を損わず、加工性を改善し、且
つ、生体温度で超弾性を示す領域まで十分に変態温度を
下げた形状記憶合金を提供することにある。
Therefore, one technical problem of the present invention is to solve the problem of TiN in view of the above drawbacks.
The object of the present invention is to provide a shape memory alloy that does not impair the functional features of the 1Cu alloy, has improved workability, and has a transformation temperature sufficiently lowered to a region that exhibits superelasticity at biological temperatures.

[課題を解決するための手段] 本発明によれば+ T i soN i 5O−xCu
 x (但し。
[Means for Solving the Problems] According to the present invention + T i soN i 5O-xCu
x (However.

x−5〜15)なる式で表されるTiN1Cu合金を含
み、当該Ni及びTiの少なくともどちらか一方を、 
0.25〜5.Oat%の範囲内で、Cと置換されて成
ることを特徴とする形状記憶合金が得られる。
x-5 to 15), containing at least one of Ni and Ti,
0.25-5. A shape memory alloy characterized in that C is substituted within the range of Oat% is obtained.

また1本発明によれば、前記形状記憶合金を。According to one aspect of the present invention, the shape memory alloy is provided.

加工硬化した後、実質的に400〜550℃の範囲内で
1時効処理を施し、少なくとも生体温度で超弾性を示す
ことを特徴とする形状記憶合金の処理方法が得られる。
After work hardening, a single aging treatment is performed substantially within the range of 400 to 550° C., thereby obtaining a method for processing a shape memory alloy characterized in that it exhibits superelasticity at least at biological temperature.

[実施例] 次に本発明の実施例を図面を参照して説明する。[Example] Next, embodiments of the present invention will be described with reference to the drawings.

まず、高周波真空溶解法によって得た合金を。First, an alloy obtained by high frequency vacuum melting method.

鋳鉄鋳型による徐冷および水冷銅鋳型による急冷の2種
類の鋳込み方法をによって、インゴットを作成した。そ
れらを900℃の容体化処理後、熱間加工を行った。
Ingots were produced using two types of casting methods: slow cooling using a cast iron mold and rapid cooling using a water-cooled copper mold. After a 900° C. compacting treatment, they were subjected to hot working.

表−1に本発明合金の一例として阻1〜磁6゜比較合金
としてNo、 7〜13の各々合金の熱間加工性のテス
ト結果を示した。
Table 1 shows the hot workability test results of alloys No. 1 to No. 1 to Magnetic No. 6 as examples of the present invention alloys, and No. 7 to No. 13 as comparative alloys.

表−1 O・・・良好 △・・・やや難 ×・・・不可 比較合金中、鋳込方法が徐冷によると、Cu添加10a
t%のNQ、 8は、熱間加工でワレが生じ加工できな
かった。尚、急冷によるNo、10合金は十分に加工で
きたが、これは急冷によってTi Cuの析出を制御で
きたためと思われる。しかし、Cu添加15at%はい
づれの方法によっても加工はできなかった。
Table-1 O...Good △...Slightly difficult ×...Uncomparable Among the alloys, if the casting method is slow cooling, Cu addition 10a
t% NQ, 8 cracked during hot working and could not be processed. It should be noted that alloy No. 10 could be sufficiently processed by rapid cooling, but this is probably because the precipitation of TiCu could be controlled by rapid cooling. However, Cu addition of 15 at% could not be processed by any of the methods.

また、変態点を下げるために、Ni濃度をlat%増加
させたNo、13合金は急冷によっても、加工はできな
かった。
Furthermore, alloy No. 13, in which the Ni concentration was increased by lat% in order to lower the transformation point, could not be processed even by rapid cooling.

一方7本発明合金よれば、徐冷によってもいづれの合金
をも加工することができた。尚、Cu濃度の高(・Cu
添加15at%のNα3及びNo、6合金出は、ワレが
生じ易(、加工性は十分に改善されたとは云い難かった
On the other hand, according to the seven invention alloys, any of the alloys could be processed by slow cooling. In addition, if the Cu concentration is high (・Cu
The Nα3 and No.6 alloys with an additive content of 15 at% were prone to cracking (and it was difficult to say that the workability was sufficiently improved).

第1図にTi5゜Ni4o−ycLJ+oc)’ t:
y−i〜5)およびT i 5O−YN i 4O−F
CLl 1o (V −1〜2)の各々の合金のMs点
とC添加量の関係を示した。
In Figure 1, Ti5゜Ni4o-ycLJ+oc)'t:
y-i~5) and T i 5O-YN i 4O-F
The relationship between the Ms point and the amount of C added for each alloy of CLl 1o (V -1 to 2) is shown.

図中、aはNiをCに置換したものであり、bはTiに
Cを置換したものの結果である。
In the figure, a shows the result of replacing Ni with C, and b shows the result of replacing C with Ti.

aシリーズは、C添加による変態温度低下効果は薄い。In the a series, the effect of lowering the transformation temperature due to the addition of C is weak.

一方、bシリーズはTiとの置換であるため、変態温度
の低下効果は強<、2at%添加すると、Ms点は約1
0℃程度まで低下し、37℃での超弾性が十分に得られ
ることが分かる。
On the other hand, since the b series is replaced with Ti, the effect of lowering the transformation temperature is strong. When 2 at% is added, the Ms point is approximately 1
It can be seen that the temperature decreases to about 0°C, and sufficient superelasticity can be obtained at 37°C.

添加したCはマトリックス中のTiと主に反応して、T
icの析出物を形成することは1本発明者らの研究によ
って明らかにされている。
The added C mainly reacts with Ti in the matrix, resulting in T
The formation of IC precipitates has been clarified by research conducted by the present inventors.

このことは、TiN1C合金についても同様のことが云
えると考えられる。aシリーズのようにNiに置換して
も変態温度に作用するNi量は(N i +C)量と見
ることができるため、顕著には効かない。しかし、Ti
に置換すると(N i +C)jiはTiに対して多く
なるために変態温度への影響は大きくなる。また、溶解
中に生成したTiCがT1Cuの析出を抑える効果を持
つために表−1に示すような加工性の改善が図られるも
のと思われる。
It is thought that the same can be said of the TiN1C alloy. Even if it is replaced with Ni as in the a series, the amount of Ni that acts on the transformation temperature can be seen as the amount of (N i +C), so it does not have a significant effect. However, Ti
When it is replaced with (N i +C) ji becomes larger than Ti, the influence on the transformation temperature becomes greater. In addition, since the TiC produced during melting has the effect of suppressing the precipitation of T1Cu, it is thought that the workability is improved as shown in Table 1.

しかし、C添加量は0.25at%以下の場合、加工性
の改善効果は認め難い、また5at%を越えても。
However, if the amount of C added is less than 0.25 at%, it is difficult to see any improvement in workability, and even if it exceeds 5 at%.

加工性の著しい改善は認められない。No significant improvement in workability was observed.

即ち2本発明の最適C添加量は0,5〜1.5 at%
である。また、Cu量が、15at%程度の場合には、
C添加を大きくしても加工性は改善するものの、工業的
に供し得難<、Cu添加の限度は15at%未満と思わ
れる。
That is, the optimum amount of C added in the present invention is 0.5 to 1.5 at%.
It is. Moreover, when the Cu amount is about 15 at%,
Although processability is improved even if the addition of C is increased, it is difficult to use it industrially, and the limit of addition of Cu is thought to be less than 15 at%.

次に、熱間加工によって得た本発明に係わるNo。Next, No. according to the present invention obtained by hot working.

5合金を冷間加工によって約φ1 mの線材とし。5 alloy was cold-worked into a wire rod with a diameter of approximately 1 m.

37℃での超弾性測定用試料とした。時効温度を400
℃、500および600℃とし、それぞれ30分の処理
時間とした。その結果、400℃および500℃では、
従来のT1Ni2元合金同様の超弾性が得られたが、6
00℃では、超弾性は示すものの若干繰り返しに劣るこ
とが分かった。
This was used as a sample for superelasticity measurement at 37°C. Aging temperature 400
℃, 500 and 600℃, and the treatment time was 30 minutes each. As a result, at 400℃ and 500℃,
Superelasticity similar to the conventional T1Ni binary alloy was obtained, but 6
At 00°C, it was found that although superelasticity was exhibited, the repeatability was slightly inferior.

[発明の効果コ 以上1本発明によれば、TiN1Cu合金の加工性を改
善し、且つ37℃以下での超弾性を示すTiN1Cu合
金を得ることが出来るため、感温バネおよび歯列矯正線
、ガイドワイヤー等医療用バネ材として適用が可能とな
る。
[Effects of the Invention] 1. According to the present invention, it is possible to improve the workability of the TiN1Cu alloy and to obtain a TiN1Cu alloy that exhibits superelasticity at temperatures below 37°C. It can be applied as a medical spring material such as guide wires.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はTi5oNf4o−ycu+ocY (y−0
〜5)1合金、およびT i 5o−yN i 40C
u +oCY(y−0−2)合金のMs点とC添加量の
関係を示す図である。 図中(a)はT i 5oN i 40−、Cu 16
Cy合金を示しくb)はT i 5o−yN i 4o
Cu +o金合金示している。
Figure 1 shows Ti5oNf4o-ycu+ocY (y-0
~5) 1 alloy, and T i 5o-yN i 40C
It is a figure which shows the relationship between the Ms point of u+oCY(y-0-2) alloy and the amount of C added. In the figure (a) is Ti 5oN i 40-, Cu 16
Indicates Cy alloy; b) is T i 5o-yN i 4o
Cu + o gold alloy is shown.

Claims (2)

【特許請求の範囲】[Claims] (1)Ti_5_0Ni_5_0_−_xCu_x(但
し、x=5〜15)なる式で表されるTiNiCu合金
を含み、当該Ni及びTiの少なくともどちらか一方を
、0.25〜5.0at%の範囲内で、Cと置換されて
成ることを特徴とする形状記憶合金。
(1) Contains a TiNiCu alloy represented by the formula Ti_5_0Ni_5_0_-_xCu_x (where x = 5 to 15), and contains at least one of Ni and Ti within the range of 0.25 to 5.0 at%, A shape memory alloy characterized by being substituted with C.
(2)第1請求項記載の形状記憶合金を、加工硬化した
後、実質的に400〜550℃の範囲内で、時効処理を
施し、少なくとも生体温度で超弾性を示すことを特徴と
する形状記憶合金の処理方法。
(2) The shape memory alloy according to claim 1 is work-hardened and then subjected to an aging treatment at a temperature of substantially 400 to 550°C, so that the shape exhibits superelasticity at least at biological temperature. How to process memory alloys.
JP14456290A 1990-06-04 1990-06-04 Shape memory alloy Pending JPH0441638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14456290A JPH0441638A (en) 1990-06-04 1990-06-04 Shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14456290A JPH0441638A (en) 1990-06-04 1990-06-04 Shape memory alloy

Publications (1)

Publication Number Publication Date
JPH0441638A true JPH0441638A (en) 1992-02-12

Family

ID=15365137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14456290A Pending JPH0441638A (en) 1990-06-04 1990-06-04 Shape memory alloy

Country Status (1)

Country Link
JP (1) JPH0441638A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073754A1 (en) * 2017-10-10 2019-04-18 株式会社古河テクノマテリアル Ti-Ni ALLOY, WIRE, ELECTRIFICATION ACTUATOR AND TEMPERATURE SENSOR USING SAME, AND METHOD FOR MANUFACTURING Ti-Ni ALLOY MATERIAL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073754A1 (en) * 2017-10-10 2019-04-18 株式会社古河テクノマテリアル Ti-Ni ALLOY, WIRE, ELECTRIFICATION ACTUATOR AND TEMPERATURE SENSOR USING SAME, AND METHOD FOR MANUFACTURING Ti-Ni ALLOY MATERIAL
US11313732B2 (en) 2017-10-10 2022-04-26 Furukawa Techno Material Co., Ltd. Ti—Ni-based alloy; wire, electrically conductive actuator, and temperature sensor, each using this alloy; and method of producing a Ti—Ni-based alloy

Similar Documents

Publication Publication Date Title
US4594221A (en) Multipurpose copper alloys with moderate conductivity and high strength
JPH0625388B2 (en) High strength, high conductivity copper base alloy
JPH08503022A (en) Copper alloy having high strength and electrical conductivity and method for producing the same
JP5226056B2 (en) Copper alloys, copper products, electronic components and connectors
JPH0321623B2 (en)
JPS6132386B2 (en)
US4059437A (en) Oxygen-free copper product and process
JP3614869B2 (en) High strength non-magnetic low thermal expansion alloy
KR910008004B1 (en) Memorial alloy with high strength & the making method
JP2909089B2 (en) Maraging steel and manufacturing method thereof
JPH0441638A (en) Shape memory alloy
JP2715033B2 (en) Non-magnetic PC steel wire and method of manufacturing the same
JP4144188B2 (en) Manufacturing method of heat-resistant aluminum alloy wire for electric conduction
JPS6326192B2 (en)
JP2022526677A (en) Copper alloys with high strength and high conductivity, and methods for making such copper alloys.
JPS63235444A (en) Ti-ni-al based shape memory alloy and its production
JPH02163330A (en) Annealed copper wire for hammering piano string
JP3871894B2 (en) Method for producing high-strength, low-thermal-expansion alloy with excellent ductility
JPH04176849A (en) High-strength and high-conductivity copper alloy thin wire
KR102609594B1 (en) Copper-Nickel-Silicon-Manganese alloy comprising G-Phase and manufacturing method thereof
JP3619403B2 (en) Hot working method of S-added Fe-Ni alloy
JP3535290B2 (en) Metals with excellent plastic deformability in the temperature range below the recrystallization temperature
JP3451771B2 (en) High strength low thermal expansion alloy wire rod and method of manufacturing the same
JP3519863B2 (en) Phosphor bronze with low surface cracking susceptibility and method for producing the same
JPH0285330A (en) Copper alloy having good press bendability and its manufacture