JPH0441597B2 - - Google Patents

Info

Publication number
JPH0441597B2
JPH0441597B2 JP61091332A JP9133286A JPH0441597B2 JP H0441597 B2 JPH0441597 B2 JP H0441597B2 JP 61091332 A JP61091332 A JP 61091332A JP 9133286 A JP9133286 A JP 9133286A JP H0441597 B2 JPH0441597 B2 JP H0441597B2
Authority
JP
Japan
Prior art keywords
apatite
glucanase
protein
immobilized
fluoroapatite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61091332A
Other languages
Japanese (ja)
Other versions
JPS62248487A (en
Inventor
Yoshinori Kuboki
Daizaburo Fujimoto
Hideki Aoki
Keijiro Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dental Chemical Co Ltd
Original Assignee
Dental Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dental Chemical Co Ltd filed Critical Dental Chemical Co Ltd
Priority to JP61091332A priority Critical patent/JPS62248487A/en
Priority to AU74601/87A priority patent/AU602149B2/en
Priority to DE3721441A priority patent/DE3721441C1/en
Priority to GB08715448A priority patent/GB2206585A/en
Priority to FR878709866A priority patent/FR2617867B1/en
Publication of JPS62248487A publication Critical patent/JPS62248487A/en
Publication of JPH0441597B2 publication Critical patent/JPH0441597B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/52Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an inorganic compound, e.g. an inorganic ion that is complexed with the active ingredient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • A61K8/66Enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/56Compounds, absorbed onto or entrapped into a solid carrier, e.g. encapsulated perfumes, inclusion compounds, sustained release forms

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Birds (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Cosmetics (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はグルカナーゼを固定化したアパタイト
及びアパタイトにグルカナーゼを固定化する方法
に関するものである。グルカナーゼはグルカンを
分解する酵素の総称であり、各種の酵素が含まれ
るが、本願発明に云うグルカナーゼとはレバンを
分解するレバナーゼ、デキストランを分解するデ
キストラナーゼ、ムタンを分解するムタナーゼを
指し、またアパタイトとはハイドロキシアパタイ
トとフルオロアパタイトを意味している。但し酵
素がデキストラナーゼの場合はアパタイトとして
フルオロアパタイトのみを指している。 虫歯が、口腔に存在する種々の細菌の生成する
多糖類、例えばレバン、デキストラン、ムタン、
などにより、歯垢を形成するため発生することは
周知の事実である。従つて、虫歯の予防にこれら
細菌の生成する多糖類を除去し、歯垢の形成を妨
げることが考えられている。本願発明は、これら
虫歯の発生に関係する多糖類の分解酵素を固定化
したアパタイト及びその製造法に関するものであ
る。 (従来の技術) 従来から虫歯予防として、歯垢を除去する方法
が種々実施されている。例えばゼオライト、炭酸
カルシウム、アルミナ、シリカ、その他の研磨剤
で歯垢を削り取る方法、デキストラナーゼを安定
化剤と共に使用する方法などが存在するが、本願
発明のように、レバナーゼ、ムタナーゼ、デキス
トラナーゼのような虫歯の原因となる多糖類を分
解する酵素を、研磨剤として歯磨に使用されるア
パタイトへ固定化する方法及びそれら酵素を固定
化したアパタイトはいままで存在しなかつた。 (発明が解決しようとする問題点) グルカナーゼは酵素であるから比較的不安定で
あり、歯磨きにそのまゝ混合すると、時間ととも
にその活性を低下し、遂には活性を示さなくな
る。現在デキストラナーゼは歯磨きに使用されて
いるが、その失活を妨げるため各種の安定化剤が
提案されている。例えば、特開昭56−63915号公
報はデキストタナーゼと酸化アルミニウムとの配
合を、特開昭56−110609号公報はデキストラナー
ゼとカルボン、l−メントールとの混合を、特公
昭52−49055号明細書はデキストラナーゼとゼラ
チンまたはペフトンとの配合を提案している。然
るに、歯磨きは口腔内で使用するため、人体に対
する影響を考慮する必要があり、また使用後の清
涼感を要求されるなど、種々の制約をうけてい
る。安定化剤も当然かかる制約下におかれるた
め、安定化剤の選択は困難な問題を含んでいる。
デキストラナーゼ以外の酵素を使用する場合にも
デキストラナーゼ使用の場合と全く同じ問題を生
じる。そこでグルカナーゼの安定化法について
種々検討した結果、研磨剤として使用されるアパ
タイトにグルカナーゼを固定化することにより、
安定剤を必要とせず、長期間安定に活性を示すグ
ルカナーゼをえる方法を開発することができた。
本願発明はグルカナーゼを固定化したアパタイト
及びその製造法を提供するものである。 (問題を解決するための手段) ハイドロキシアパタイト、活性炭、カオリナイ
ト、白土などに酵素を物理的に吸着させて固定化
させる酵素固定化法が存在することは周知の事実
であり、又固定化された酵素は安定化し、酵素単
体より経時活性の変化が少く、取扱いが便利であ
ることも一般に知られている。このようにアパタ
イトがある種の蛋白質を強固に吸着結合すること
が古くから知られているので、グルカナーゼを固
定化してその経時活性の変化を少くするとの考え
にもとずき、歯磨きで研磨剤として使用されてい
るアパタイトに物理的吸着法によりグルカナーズ
を固定化することができれば、簡単な操作で固定
化酵素がえられ、それを歯磨きに使用すれば研磨
性と多糖質分解性の両作用を有することに加え、
酵素の安定化剤の選択を必要とせず、好ましい研
磨素材になるのであろうと考え、グルカナーゼの
アパタイトによる固定化を検討した。その結果グ
ルカナーゼのアパタイトへの吸着力が極めて弱い
ため、直接グルカナーゼをアパタイトに吸着固定
化することは無理があると認めた。そこで、我々
はアパタイトに強固に吸着結合する蛋白質を介し
てグルカナーゼを固定化したアパタイトをえるこ
とができた。本願発明はグルカナーゼを固定化し
たアパタイト、及びアパタイトに強く吸着するあ
る種の蛋白質とともにグルカナーゼをアパタイト
に固定化させる方法を提供するものである。本願
発明にいうグルカナーゼとは前記のように、デキ
ストラナーゼ、レバナーゼ、ムタナーゼを含み、
アパタイトとはハドロキシアパタイト、フルオロ
アパタイトとを意味しているが酵素がデキストラ
ナーゼの場合はアパタイトとしてフルオロアパタ
イトを意味している。 アパタイトに強く吸着し、かつ人体に悪影響を
及ぼさない蛋白質、及びグルカナーゼを溶解した
水溶液、又は0.01から0.05モル濃度のリン酸塩緩
衝溶液にアパタイトを懸濁させ、激しく撹拌しな
がら2官能性アルデヒドを滴下する。使用する蛋
白質としては、アルブミン、カゼイン、リゾチー
ム、チトクロムC、プロタミンなどより選択され
る。蛋白質の種類により生成する固定化酵素の力
価、アパタイトへの結合力に生じるが、それらの
なかでリゾチーム、チトクロムCなどが好適であ
る。グルカナーゼは前記したように、レバナー
ゼ、デキストラナーゼ、ムタナーゼより任意にえ
らぶことができ、場合によつてはこれら酵素の混
合物を用いることができる。アパタイトとしては
ハイドロキシアパタイト、フルオロアパタイトよ
り選択する。反応はアパタイトを分解しないPH、
即ちPH5.6以上のPHで行われるがPHが高くなると
吸着に悪影響を及ぼすのでPH9.0以上は好ましく
なく、PH7.0付近が好ましい。使用するアパタイ
トの粒度は出来るだけ均一であることが望まれる
が、一般に歯磨きに研磨剤として使用されている
粒子で充分使用可能であり、粒径2μから200μの
ものが使用し易く、蛋白質に対し10から100倍量
を使用する。撹拌が効率よく行なわれるように、
使用アパタイト量に対し、多量の水又は緩衝溶液
を使用することが望まれ、反応相固形分が4から
20パーセントになるよう水量をを調整する。使用
する蛋白質とグルカナーゼは等量程度が好まし
く、両者の極端な相違、特にグルカナーゼが蛋白
質に対し少量であることは生成する固定化酵素の
力価を下げるので避けるべきである。使用する2
官能性アルデヒドとしては一般に使用されている
グルタルアルデヒドが好ましい。この使用量は固
定化酵素の力価に最も影響を及ぼす因子である。
一般にグルタルアルデヒドの添加量が少なすぎる
とえられた固定化酵素のアパタイトへの結合力が
弱く、経時失活が著しい。又添加量が多いと、え
られる固定化酵素の力価を低下させ、更に添加量
を増加させと遂には活性を示さなくなる。使用す
るグルタルアルデヒド量は酵素、蛋白質の種類に
より幾分異なるが、使用蛋白質g当り3から60mg
の範囲にあり、好ましくは6から20mgの範囲にあ
る。反応は室温以下、好ましくは5℃付近で行わ
れる。 蛋白質、グルカナーゼ、アパタイトの共存する
懸濁駅を室温以下、好ましくは5℃付近に冷却
し、激しく撹拌しながらこの液にグルタルアルデ
ヒド水溶液を徐々に滴下し、滴下終了後同温で撹
拌を数時間行つて反応を終了する。反応終了後
過してえられたアパタイトは水又は使用した緩衝
溶液で充分洗浄して随伴している蛋白質、酵素を
除いたのち、そのまゝ低温に保持するか、凍結乾
燥して固体となし室温に保持する。 本願発明の固定化酵素は又以下のようにしても
生成されることができる。まず蛋白質を溶かした
水溶液又は緩衝溶液にアパタイトを添加して充分
撹拌してアパタイトに蛋白質を吸着飽和させ、し
かる後吸着アパタイトを採取し、グルカナーゼを
溶かした水又は緩衝溶液に吸着アパタイトを添加
し、激しく撹拌しながらグルタルアルデヒド水溶
液を徐々に滴下し、滴板終了後撹拌をつづける。
この場合反応温度、その他の条件は前記の条件に
準ずればよい。 このようにしてえられた固定化酵素は安定で、
経時変化が少く、取扱いが容易である。 (作用) アパタイト類がある種の蛋白質をよく吸着する
ことはすでに明らかにされており、酵素の固定化
に架橋剤としてグルタルアルデヒドが使用されて
いることも公知である。本願方法によるグルカナ
ーゼのアパタイトへの固定化が、如何なる機構に
より生成しているか明らかでないが、アパタイト
に吸着し易い蛋白質のアパタイトへの吸着、蛋白
質、グルカナーゼの架橋が同時に生じ、固定化酵
素をこえているものと推定される。 以下に実施例をあげて具体的に本願発明を説明
する。 例 1 レバナーゼのハイドロキシアパタイトへの固定
化 リゾチーム100mg、レバナーゼ100mg、を純水50
mlにとかし、この溶液に研磨剤ハイドロキシアパ
タイト2gを添加し4℃に冷却する。4℃を保ち
激しく撹拌しながらグルタルアルデヒド水溶液
(グルタルアルデヒド28mg/100ml)2mlを徐々に
滴下した。滴下終了後その温度を保持したまま2
時間撹拌した。その後遠心分離により固体を採取
し、50mlの純水で3回撹拌洗浄して固体を採取
し、未乾燥固定化ハイドロキシアパタイトをえた
(場合によつてはこのまゝ使用してもよい)。これ
を凍結乾燥して粉対約2.05gをえた。この粉体1
gを秤量し、PH6.8、1モル濃度のリン酸カリ緩
衝溶液10mlを添加し、室温で1時間撹拌後遠心分
離して液を採取し、残査に同じ操作を2回繰返
し、液を合せてローリー法により蛋白質量を測
定し、残査は水洗後乾燥して重量を測定した。そ
の結果ハイドロキシアパタイトg当たり、蛋白質
11.7mgを結合していることを確認した。未乾燥固
定化ハイドロキシアパタイトを以下に述べる方法
により、そのレバナーゼ活性を測定したところ、
ハイドロキシアパタイト結合蛋白質g当り0.47g
をレバンを分解することを認めた。 例 2 レバナーゼのフルオロアパタイトへの固定化 実施例1のハイドロキシアパタイトの代りにフ
ルオロアパタイトを用いた以外は実施例1と全く
同じ条件で操作し、凍結乾燥品2.05gをえた。例
1と同様に結合蛋白を測定し、フルオロアパタイ
トg当り13.4mgの蛋白質を結合していることを確
認した。例1と同様にレバナーゼ活性測定結果は
結合蛋白g当り、0.54gのレバンを分解すること
を知つた。 例 3 ムタナーゼのハイドロキシアパタイトヘの固
定化 例1のレバナーゼの代りにムタナーゼを用いた
以外は例1と同じ条件で実験し、固定化ハイドロ
キシアパタイトをえた。例1と同様に試験した結
果、ハイドロキシアパタイトg当り蛋白質15.0mg
を結合していることを認めた。又ムタナーゼ活性
を測定した結果、ハイドロキシアパタイト結合蛋
白質g当り0.48gのムタンを分解することを確め
た。 例 4 ムタナーゼのフルオロアパタイトへの固定化 例3におけるハイドロキシアパタイトの代りに
フルオロアパタイトを用いた以外は、例3と全く
同じ条件で操作し、固定化フロオロアパタイトを
えた。例3と同様に分析、その力価を測定した結
果、フルオロアパタイトg当り蛋白質17mgを結合
し、結合蛋白質g当り0.45gのムタンを分解する
ことを認めた。 例 5 デキストラナーゼのフルオロアパタイトへの固
定化 リゾチーム50mg、デキストラナーゼ50mgを混合
し、これにフルオロアパタイト5g、0.05モル濃
度、PH6.8のリン酸カリ緩衝溶液50mlを添加し、
4℃に冷却し激しく撹拌する。この温度を保ちな
がら、さらにグルタルアルデヒド0.2%水溶液
125μを撹拌下に滴下し、滴下後5時間撹拌を
続行した。反応物を取し、上記緩衝溶液100ml
で3回洗浄後水洗し未乾燥固定化フルオロアパタ
イトをえた。凍結乾燥によりデキストラナーゼ固
定化フルオロアパタイト5.08gをえた。未乾燥固
定化フルオロアパタイト1mlを遠心分離してえた
沈殿物に1モル濃度PH6.8のリン酸カリ緩衝溶液
2mlを加えて3時間撹拌して結合蛋白質を脱着
し、遠心分離し、沈殿は同じ操作を繰返し、液
は合せてローリー法により蛋白質を測定し、沈殿
は水洗後乾燥して重量を秤量した。その結果フル
オロアパタイトg当り15.24mgの蛋白を結合して
いた。デキストラナーゼ活性測定結果は結合蛋白
g当り0.43gのデキストランを分解した。 各種実験結果を表−1に示した処理条件は実施
例と同一である。 各酵素力価の測定 各1%基質溶液10mlに実験でえられた未乾燥固
定化酵素1mlを加え、37℃、2時間撹拌後溶液に
生成した単量体を夫々定量し、一方未乾燥固定化
酵素1mlに結合している蛋白質を前記した方法に
より測定し、アパタイトに結合した蛋白質g当り
が分解した単量体の量を、各固定化酵素の力価と
した。 基質としてデキストラナーゼはデキストラン、
ムタナーゼはムタン、レバナーゼはレバンを使用
し、デキストラナーゼとムタナーゼは分解して主
成したグルコースをグルコースオキシダーゼ法に
より、レバナーゼは分解生成したフルクトースを
常法により高感度液体クロマトグラフイ(カラ
ム:シユガーパツク1、溶離液:水)により定量
した。 固定化酵素の経時活性 本方法によりえられた固定化酵素の数種につい
て、その活性の経時変化を検した。使用した試料
は何れも未乾燥固定化酵素で、夫々の活性は前記
の方法で測定した。 得られた固定化酵素は時間とともに活性を増加
し、ある期間後最高の活性を示すとともに以後
徐々に活性を低下することを知つた。 (発明の効果) 本願方法によれば、極めて簡単な操作でグルカ
ナーゼをアパタイトに固定化できるとともに得ら
れた固定化酵素は取扱いが容易な上、安定で経時
変化もすくなく、多糖類を分解する能力と、アパ
タイトの研磨性を有するため、その歯磨への使用
は虫歯予防に好ましく、口腔衛生上極めて有用で
ある。
(Industrial Application Field) The present invention relates to apatite on which glucanase is immobilized and a method for immobilizing glucanase on apatite. Glucanase is a general term for enzymes that decompose glucan, and includes various enzymes, but glucanase as used in the present invention refers to levanase that decomposes levan, dextranase that decomposes dextran, and mutanase that decomposes mutan. Apatite means hydroxyapatite and fluoroapatite. However, when the enzyme is dextranase, only fluoroapatite is referred to as apatite. Dental caries is caused by polysaccharides produced by various bacteria present in the oral cavity, such as levan, dextran, mutan,
It is a well-known fact that this occurs due to the formation of dental plaque. Therefore, in order to prevent dental caries, it is considered that polysaccharides produced by these bacteria can be removed to prevent the formation of dental plaque. The present invention relates to apatite in which polysaccharide degrading enzymes related to the development of dental caries are immobilized, and a method for producing the same. (Prior Art) Various methods of removing dental plaque have been used to prevent dental caries. For example, there are methods to scrape off dental plaque with zeolite, calcium carbonate, alumina, silica, and other abrasives, and methods to use dextranase together with a stabilizing agent. Until now, there has been no method for immobilizing enzymes such as enzymes that decompose polysaccharides that cause dental caries into apatite, which is used as an abrasive for tooth brushing, and no apatite in which these enzymes are immobilized has existed. (Problems to be Solved by the Invention) Since glucanase is an enzyme, it is relatively unstable, and if it is mixed directly into toothpaste, its activity will decrease over time and it will eventually cease to exhibit any activity. Dextranase is currently used in tooth brushing, but various stabilizers have been proposed to prevent its deactivation. For example, JP-A No. 56-63915 discloses a combination of dextotanase and aluminum oxide, JP-A No. 56-110609 discloses a mixture of dextranase, carvone, and l-menthol, and JP-A No. 52-49055 The specification proposes the combination of dextranase and gelatin or pefton. However, since toothpaste is used in the oral cavity, it is necessary to consider its effect on the human body, and it is subject to various restrictions, such as the need to feel refreshed after use. Since the stabilizer is naturally subject to such restrictions, the selection of the stabilizer involves difficult problems.
When using enzymes other than dextranase, exactly the same problems arise as when using dextranase. Therefore, as a result of various studies on methods for stabilizing glucanase, we found that by immobilizing glucanase on apatite, which is used as an abrasive,
We were able to develop a method to obtain glucanase that does not require stabilizers and exhibits stable activity over a long period of time.
The present invention provides apatite with immobilized glucanase and a method for producing the same. (Means for solving the problem) It is a well-known fact that there is an enzyme immobilization method in which enzymes are physically adsorbed and immobilized on hydroxyapatite, activated carbon, kaolinite, clay, etc. It is also generally known that the enzyme is stable, exhibits less change in activity over time than the enzyme alone, and is convenient to handle. It has been known for a long time that apatite strongly adsorbs and binds certain proteins. Based on the idea that apatite can immobilize glucanase and reduce changes in its activity over time, it has been used as an abrasive agent in toothpaste. If it is possible to immobilize glucanase on apatite, which is used as an apatite, by a physical adsorption method, the immobilized enzyme can be obtained with a simple operation, and when used for tooth brushing, it has both abrasive and polysaccharide decomposing effects. In addition to having
We considered immobilizing glucanase with apatite, thinking that it would be a preferable polishing material without the need to select an enzyme stabilizer. As a result, it was found that it was impossible to directly adsorb and immobilize glucanase on apatite because the adsorption power of glucanase to apatite was extremely weak. Therefore, we were able to obtain apatite with glucanase immobilized through a protein that firmly binds to apatite. The present invention provides apatite on which glucanase is immobilized, and a method for immobilizing glucanase on apatite together with a certain type of protein that strongly adsorbs to apatite. As mentioned above, the glucanases referred to in the present invention include dextranase, levanase, mutanase,
Apatite means hadroxyapatite and fluoroapatite, but when the enzyme is dextranase, fluoroapatite is used as apatite. Apatite is suspended in an aqueous solution containing glucanases and proteins that strongly adsorb to apatite and have no adverse effects on the human body, or in a phosphate buffer solution with a 0.01 to 0.05 molar concentration, and a bifunctional aldehyde is added while stirring vigorously. Drip. The protein used is selected from albumin, casein, lysozyme, cytochrome C, protamine, etc. The titer of the immobilized enzyme produced and its binding strength to apatite depend on the type of protein, but among them, lysozyme, cytochrome C, etc. are preferred. As mentioned above, the glucanase can be arbitrarily selected from levanase, dextranase, and mutanase, and in some cases, a mixture of these enzymes can be used. The apatite is selected from hydroxyapatite and fluoroapatite. The reaction is at a pH that does not decompose apatite,
That is, it is carried out at a pH of 5.6 or higher, but a higher pH has a negative effect on adsorption, so a pH of 9.0 or higher is not preferable, and a pH of around 7.0 is preferable. It is desirable that the particle size of the apatite used is as uniform as possible, but particles commonly used as an abrasive for toothpaste are sufficient, and particles with a particle size of 2μ to 200μ are easy to use and are effective against proteins. Use 10 to 100 times the amount. To ensure efficient stirring,
It is desirable to use a large amount of water or buffer solution relative to the amount of apatite used, and the solid content of the reaction phase is from 4 to 4.
Adjust the water amount to 20%. It is preferable to use approximately equal amounts of protein and glucanase, and extreme differences between the two, especially a small amount of glucanase relative to the protein, should be avoided as this will lower the titer of the immobilized enzyme produced. Use 2
As the functional aldehyde, commonly used glutaraldehyde is preferred. The amount used is the factor that most influences the titer of immobilized enzyme.
Generally, when the amount of glutaraldehyde added is too small, the binding strength of the immobilized enzyme to apatite is weak, and the enzyme is significantly deactivated over time. Furthermore, if the amount added is too large, the titer of the immobilized enzyme obtained will decrease, and if the amount added is further increased, it will eventually cease to show any activity. The amount of glutaraldehyde used varies somewhat depending on the type of enzyme and protein, but is 3 to 60 mg per gram of protein used.
preferably in the range of 6 to 20 mg. The reaction is carried out below room temperature, preferably around 5°C. Cool the suspended station in which protein, glucanase, and apatite coexist to below room temperature, preferably around 5°C, and gradually drop an aqueous glutaraldehyde solution into this solution while stirring vigorously. After the dropwise addition is complete, stir at the same temperature for several hours. and complete the reaction. After the reaction is complete, the apatite obtained is thoroughly washed with water or the buffer solution used to remove accompanying proteins and enzymes, and then kept at a low temperature or freeze-dried to form a solid. Keep at room temperature. The immobilized enzyme of the present invention can also be produced as follows. First, apatite is added to an aqueous solution or a buffer solution in which a protein is dissolved, and the apatite is thoroughly stirred to saturate the apatite with protein adsorption, and then the adsorbed apatite is collected, and the adsorbed apatite is added to water or a buffer solution in which glucanase is dissolved, Gradually add the glutaraldehyde aqueous solution dropwise while stirring vigorously, and continue stirring after the drop plate is finished.
In this case, the reaction temperature and other conditions may be the same as those described above. The immobilized enzyme obtained in this way is stable and
It has little change over time and is easy to handle. (Function) It has already been revealed that apatites adsorb certain proteins well, and it is also known that glutaraldehyde is used as a crosslinking agent to immobilize enzymes. It is not clear by what mechanism glucanase is immobilized on apatite by the present method, but adsorption of proteins that are easily adsorbed to apatite and cross-linking of proteins and glucanase occur simultaneously, and the immobilization of glucanase occurs beyond the immobilized enzyme. It is estimated that there are. The present invention will be specifically described below with reference to Examples. Example 1 Immobilization of levanase on hydroxyapatite 100 mg of lysozyme, 100 mg of levanase, and 50 mg of pure water
ml, add 2 g of abrasive hydroxyapatite to this solution, and cool to 4°C. While maintaining the temperature at 4°C and stirring vigorously, 2 ml of an aqueous glutaraldehyde solution (glutaraldehyde 28 mg/100 ml) was gradually added dropwise. After dropping, maintain the temperature 2.
Stir for hours. Thereafter, the solid was collected by centrifugation and washed with 50 ml of pure water with stirring three times to collect the solid to obtain undried immobilized hydroxyapatite (which may be used as is in some cases). This was freeze-dried to obtain about 2.05 g of powder. This powder 1
Weigh out 10 ml of potassium phosphate buffer solution with pH 6.8 and 1 molar concentration. After stirring at room temperature for 1 hour, centrifuge to collect the liquid. Repeat the same operation twice with the residue to collect the liquid. In addition, the amount of protein was measured by the Lowry method, and the residue was washed with water, dried, and weighed. As a result, per gram of hydroxyapatite, protein
It was confirmed that 11.7mg was bound. The levanase activity of undried immobilized hydroxyapatite was measured by the method described below.
0.47g/g of hydroxyapatite binding protein
admitted to disassemble Levan. Example 2 Immobilization of levanase on fluoroapatite The procedure was carried out under the same conditions as in Example 1, except that fluoroapatite was used instead of hydroxyapatite in Example 1, and 2.05 g of a freeze-dried product was obtained. The bound protein was measured in the same manner as in Example 1, and it was confirmed that 13.4 mg of protein was bound per gram of fluoroapatite. As in Example 1, the levanase activity measurement results showed that 0.54 g of levan was degraded per g of bound protein. Example 3 Immobilization of mutanase on hydroxyapatite An experiment was carried out under the same conditions as in Example 1, except that mutanase was used instead of levanase in Example 1, and immobilized hydroxyapatite was obtained. As a result of the same test as in Example 1, 15.0 mg of protein per g of hydroxyapatite
It was admitted that they were combined. Furthermore, as a result of measuring mutanase activity, it was confirmed that 0.48 g of mutan was degraded per g of hydroxyapatite-binding protein. Example 4 Immobilization of mutanase on fluoroapatite Immobilized fluoroapatite was obtained by operating under the same conditions as in Example 3, except that fluoroapatite was used instead of hydroxyapatite in Example 3. As a result of analysis and titer measurement in the same manner as in Example 3, it was found that 17 mg of protein was bound per g of fluoroapatite and 0.45 g of mutan was decomposed per g of bound protein. Example 5 Immobilization of dextranase on fluoroapatite 50 mg of lysozyme and 50 mg of dextranase were mixed, and to this was added 5 g of fluoroapatite and 50 ml of a potassium phosphate buffer solution with a 0.05 molar concentration and a pH of 6.8.
Cool to 4°C and stir vigorously. While maintaining this temperature, add glutaraldehyde 0.2% aqueous solution.
125μ was added dropwise while stirring, and stirring was continued for 5 hours after the addition. Take the reaction product and add 100ml of the above buffer solution.
After washing three times with water, undried immobilized fluoroapatite was obtained. 5.08 g of dextranase-immobilized fluoroapatite was obtained by freeze-drying. To the precipitate obtained by centrifuging 1 ml of undried immobilized fluoroapatite, add 2 ml of potassium phosphate buffer solution with a 1 molar concentration of PH6.8, stir for 3 hours to desorb bound proteins, centrifuge, and the precipitate is the same. The operation was repeated, the liquids were combined, and the protein was measured by the Lowry method, and the precipitate was washed with water, dried, and weighed. As a result, 15.24 mg of protein was bound per gram of fluoroapatite. Dextranase activity measurement results showed that 0.43 g of dextran was degraded per g of bound protein. Various experimental results are shown in Table 1. The processing conditions are the same as in Examples. Measurement of each enzyme titer 1 ml of the undried immobilized enzyme obtained in the experiment was added to 10 ml of each 1% substrate solution, and after stirring at 37°C for 2 hours, the monomers produced in the solution were quantified. The amount of protein bound to 1 ml of immobilized enzyme was measured by the method described above, and the amount of monomer decomposed per gram of protein bound to apatite was determined as the titer of each immobilized enzyme. Dextranase uses dextran as a substrate,
Mutanase uses mutan, levanase uses levane, dextranase and mutanase decompose the mainly produced glucose using the glucose oxidase method, and levanase decomposes the resulting fructose using a conventional method using high-sensitivity liquid chromatography (column: Sugar Pack). 1, eluent: water). Time-dependent activity of immobilized enzymes The time-dependent changes in the activity of several types of immobilized enzymes obtained by this method were examined. All the samples used were undried immobilized enzymes, and their respective activities were measured by the method described above. It was found that the activity of the obtained immobilized enzyme increases with time, and after a certain period of time, it shows the highest activity and then gradually decreases in activity. (Effects of the Invention) According to the method of the present invention, glucanase can be immobilized on apatite with extremely simple operations, and the immobilized enzyme obtained is easy to handle, is stable, has little change over time, and has the ability to decompose polysaccharides. Since it has the abrasive properties of apatite, its use in tooth brushing is preferable for preventing cavities and is extremely useful for oral hygiene.

【表】【table】

【表】【table】

【表】 トラナーゼいずれも水溶液
[Table] Both toranase are aqueous solutions

Claims (1)

【特許請求の範囲】 1 グルカナーゼ及び蛋白質をグルタルアルデヒ
ドによりアパタイトに固定化したことを特徴とす
るグルカナーゼ固定化アパタイト。 ここでグルカナーゼは、レバナーゼ、ムタナー
ゼ及びデキストラナーゼより選ばれた酵素; 蛋白質はアルブミン、カゼイン、リゾチーム、
チトクロムC及びプロタミンより選ばれた蛋白
質; アパタイトはハイドロキシアパタイト及びフル
オロアパタイトより選ばれたアパタイトを意味し
ている。但し、グルカナーゼがデキストラナーゼ
であるとき、アパタイトはフルオロアパタイトで
ある。 2 グルカナーゼ、蛋白質及びアパタイトを混在
させた水溶液にグルタルアルデヒドを滴下し得ら
れた沈降物を採取することを特徴とするグルカナ
ーゼ固定化アパタイトの製造法。 ここでグルカナーゼはレバナーゼ、ムタナーゼ
及びデキストラナーゼより選ばれた酵素; 蛋白質はアルブミン、カゼイン、リゾチーム、
チトクロムC及びプロタミンより選ばれた蛋白
質; アパタイトはハイドロキシアパタイト及びフル
オロアパタイトより選ばれたアパタイトを意味し
ている。但し、グルカナーゼがデキストラナーゼ
であるとき、アパタイトはフルオロアパタイトで
ある。 3 蛋白質がリゾチームである特許請求の範囲第
2項記載の製造法。
[Scope of Claims] 1. Glucanase-immobilized apatite, characterized in that glucanase and protein are immobilized on apatite with glutaraldehyde. Here, glucanase is an enzyme selected from levanase, mutanase, and dextranase; protein is albumin, casein, lysozyme,
Protein selected from cytochrome C and protamine; Apatite means apatite selected from hydroxyapatite and fluoroapatite. However, when the glucanase is dextranase, the apatite is fluoroapatite. 2. A method for producing glucanase-immobilized apatite, which comprises dropping glutaraldehyde into an aqueous solution containing a mixture of glucanase, protein, and apatite, and collecting the resulting precipitate. Here, glucanase is an enzyme selected from levanase, mutanase, and dextranase; protein is albumin, casein, lysozyme,
Protein selected from cytochrome C and protamine; Apatite means apatite selected from hydroxyapatite and fluoroapatite. However, when the glucanase is dextranase, the apatite is fluoroapatite. 3. The production method according to claim 2, wherein the protein is lysozyme.
JP61091332A 1986-04-22 1986-04-22 Apatite containing immobilized glucanase or such and production thereof Granted JPS62248487A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61091332A JPS62248487A (en) 1986-04-22 1986-04-22 Apatite containing immobilized glucanase or such and production thereof
AU74601/87A AU602149B2 (en) 1986-04-22 1987-06-23 Apatite immobilized glucanase and the like, and method of preparing the same
DE3721441A DE3721441C1 (en) 1986-04-22 1987-06-29 Process for the preparation of an apatite with glucanase immobilized thereon and apatites produced by the process
GB08715448A GB2206585A (en) 1986-04-22 1987-07-01 Enzymes immobilised on apatite
FR878709866A FR2617867B1 (en) 1986-04-22 1987-07-10 GLUCANASE, IMMOBILIZED ON APATITIS AND PROCESS FOR ITS PREPARATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61091332A JPS62248487A (en) 1986-04-22 1986-04-22 Apatite containing immobilized glucanase or such and production thereof

Publications (2)

Publication Number Publication Date
JPS62248487A JPS62248487A (en) 1987-10-29
JPH0441597B2 true JPH0441597B2 (en) 1992-07-08

Family

ID=14023487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61091332A Granted JPS62248487A (en) 1986-04-22 1986-04-22 Apatite containing immobilized glucanase or such and production thereof

Country Status (5)

Country Link
JP (1) JPS62248487A (en)
AU (1) AU602149B2 (en)
DE (1) DE3721441C1 (en)
FR (1) FR2617867B1 (en)
GB (1) GB2206585A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268174A (en) * 1988-09-29 1993-12-07 Kabushiki Kaisha Sangi Antimicrobial hydroxyapatite powders containing hinokitiol, protamine or sorbic acid
US5009898A (en) * 1988-09-29 1991-04-23 Kabushiki Kaisha Sangi Antimicrobial hydroxyapatite powders and methods for preparing them
US5238843A (en) * 1989-10-27 1993-08-24 Genencor International, Inc. Method for cleaning a surface on which is bound a glycoside-containing substance
US5258304A (en) * 1989-10-27 1993-11-02 Genencor International, Inc. Method of removing microorganisms from surfaces with Type II endoglycosidase
US5041236A (en) * 1989-10-27 1991-08-20 The Procter & Gamble Company Antimicrobial methods and compositions employing certain lysozymes and endoglycosidases
DE69024323T2 (en) * 1989-10-27 1996-10-17 Genencor Int Antimicrobial method and formulation using Type II endoglycosidase and antimicrobial agent
EP0498889A4 (en) * 1989-11-01 1993-05-05 Nippon Shinyaku Co., Ltd. Stabilized immobilized enzyme
US5443832A (en) * 1990-04-16 1995-08-22 Institut Swisse De Recherches Experimentales Sur Le Cancer Hydroxyapatite-antigen conjugates and methods for generating a poly-Ig immune response
JP2000508323A (en) 1996-04-16 2000-07-04 ノボ ノルディスク アクティーゼルスカブ Composition for the removal of plaque
US6413501B2 (en) 1997-10-17 2002-07-02 Novozymes A/S Plaque-inhibiting oral compositions
FR2773170B1 (en) * 1997-12-31 2000-10-13 Ase & Bio Soc Civ ENZYMES IMMOBILIZED ON AN ALUMINUM SUPPORT, THEIR PREPARATION METHODS AND THEIR APPLICATIONS
CN112111479A (en) * 2020-09-30 2020-12-22 江苏海洋大学 Dextranase and hydroxyapatite composite material and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140791A (en) * 1984-08-02 1986-02-27 スタブラ・アクチエンゲゼルシャフト Immobilization of enzyme by column

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140791A (en) * 1984-08-02 1986-02-27 スタブラ・アクチエンゲゼルシャフト Immobilization of enzyme by column

Also Published As

Publication number Publication date
AU7460187A (en) 1989-01-05
FR2617867B1 (en) 1990-03-09
AU602149B2 (en) 1990-10-04
GB8715448D0 (en) 1987-08-05
GB2206585A (en) 1989-01-11
FR2617867A1 (en) 1989-01-13
JPS62248487A (en) 1987-10-29
DE3721441C1 (en) 1988-12-29

Similar Documents

Publication Publication Date Title
JP3665345B2 (en) Adsorbents for phosphates from aqueous media, their manufacture and use
JPH0441597B2 (en)
JPS60232090A (en) Immobilized engyme and its production and use
US4812404A (en) Apatite immobilized glucanase
KR940005581B1 (en) Method for immobilization of enzyme and immobilized enzymes
HU179727B (en) Process for producing water-insoluble enzyme composition
IE53983B1 (en) A process for the production of enzymatically active biocatalysts and the products obtained
US5419902A (en) Method for inactivating pathogens
JPS5819276B2 (en) Method for producing oligosaccharides with fructose attached to their ends
JPS61236802A (en) Novel branched gamma-cyclodextrin and its preparation
Fantl Thiol groups of blood platelets in relation to clot retraction
JPH0228563B2 (en) HAMIGAKISOSEIBUTSU
AU1194697A (en) Particle compositions
CA1281658C (en) Dentifrice compositions
KR950014967B1 (en) Preparation method of moranoline derivatives
WO1986004213A1 (en) Disinfectant formulation and method of disinfection in vivo
JPS61185196A (en) Production of cyclodextrine
EP0745327A1 (en) Method for inactivating pathogens
JP2757946B2 (en) Dextranase adsorbent and method for producing the same
JPS60137433A (en) Adsorbent for urea decomposition
SU1723124A1 (en) Method of galactose oxidase immobilization
JPS61152634A (en) Production of immobilized physiologically active substance
NORDBÖ et al. Affinity of hydroxyapatite for furfural and a brown pigment formed by furfural and glycine
JPS63126485A (en) Production of immobilized enzyme
JPH0479360B2 (en)