JPS62248487A - Apatite containing immobilized glucanase or such and production thereof - Google Patents

Apatite containing immobilized glucanase or such and production thereof

Info

Publication number
JPS62248487A
JPS62248487A JP61091332A JP9133286A JPS62248487A JP S62248487 A JPS62248487 A JP S62248487A JP 61091332 A JP61091332 A JP 61091332A JP 9133286 A JP9133286 A JP 9133286A JP S62248487 A JPS62248487 A JP S62248487A
Authority
JP
Japan
Prior art keywords
apatite
glucanase
protein
immobilized
dextranase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61091332A
Other languages
Japanese (ja)
Other versions
JPH0441597B2 (en
Inventor
Yoshinori Kuboki
芳徳 久保木
Daizaburo Fujimoto
藤本 大三郎
Hideki Aoki
秀希 青木
Keijiro Fujita
恵二郎 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENTARU KAGAKU KK
Dental Chemical Co Ltd
Original Assignee
DENTARU KAGAKU KK
Dental Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENTARU KAGAKU KK, Dental Chemical Co Ltd filed Critical DENTARU KAGAKU KK
Priority to JP61091332A priority Critical patent/JPS62248487A/en
Priority to AU74601/87A priority patent/AU602149B2/en
Priority to DE3721441A priority patent/DE3721441C1/en
Priority to GB08715448A priority patent/GB2206585A/en
Priority to FR878709866A priority patent/FR2617867B1/en
Publication of JPS62248487A publication Critical patent/JPS62248487A/en
Publication of JPH0441597B2 publication Critical patent/JPH0441597B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/52Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an inorganic compound, e.g. an inorganic ion that is complexed with the active ingredient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • A61K8/66Enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/56Compounds, absorbed onto or entrapped into a solid carrier, e.g. encapsulated perfumes, inclusion compounds, sustained release forms

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Birds (AREA)
  • Cosmetics (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To obtain a glucanase exhibiting stable activity over a long period without necessitating a stabilizer, by immobilizing a glucanase to apatite useful as an abrasive by the aid of a protein which can be firmly adsorbed and bonded to apatite. CONSTITUTION:(A) A glucanase such as dextranase, levanase, mutanase, etc., (B) an apatite such as hydroxyapatite, fluoroapatite, etc., and (C) a protein such as albumin, casein, protamine (preferably lysozyme or cytochrome C), etc., are used as raw materials. An immobilized enzyme is produced either by dripping glutaraldehyde to a solution containing the above materials to effect the immobilization or by adsorbing the protein to the apatite and reacting with the glucanase. The immobilized enzyme produced by this process is easily handleable, has high stability, polysaccharide-decomposing capability and abrasive power of the apatite and is useful for the hygienics of oral cavity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はグルカナーゼ等を固定化したアパタイト及びア
パタイトにグルカナーゼ等を固定化する方法に関するも
のである。グルカナーゼはグルカンな分解する酵素の総
称であり、各棟の酵素が含まれるが、本願発明に云うグ
ルカナーゼとはレバンを分解するレバナーゼ、デキスト
ランを分解するデキストラナーゼ、ムタンを分解するム
タナーゼを指し、またアパタイトとはハイドロキシアパ
タイトとフルオロアパタイトを意味している。但し酵素
がデキストラナーゼの場合はアパタイトとしてフルオロ
アパタイトのみを指している。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to apatite on which glucanases and the like are immobilized, and a method for immobilizing glucanases and the like on apatite. Glucanase is a general term for enzymes that decompose glucan, and includes enzymes of various types, but glucanase as used in the present invention refers to levanase that decomposes levan, dextranase that decomposes dextran, and mutanase that decomposes mutan. Moreover, apatite means hydroxyapatite and fluoroapatite. However, when the enzyme is dextranase, only fluoroapatite is referred to as apatite.

虫歯が、口腔に存在する種々の細菌の生成する多糖類、
例えばレバン、デキストラン、ムタン、などにより、歯
垢を形成するため発生することは周知の事実である。従
って、虫歯の予防にこれら細菌の生成する多糖類を除去
し、歯垢の形成を妨げることが考えられている。本願発
明は、これら虫歯の発生に関係する多糖類の分解酵素乞
固定化したアパタイト及びその#遺失に関するものであ
る。
Tooth decay is caused by polysaccharides produced by various bacteria that exist in the oral cavity.
For example, it is a well-known fact that levan, dextran, mutan, etc. cause plaque formation. Therefore, it is considered to prevent dental caries by removing polysaccharides produced by these bacteria and preventing the formation of dental plaque. The present invention relates to apatite immobilized with polysaccharide degrading enzymes related to the development of dental caries and its loss.

(従来の技術) 従来から虫歯予防として、歯垢を除去する方法が種々実
施されている。例えばゼオライト、炭酸カルシウム、ア
ルミナ、シリカ、その他の研磨剤で#垢を削り取る方法
、デキストラナーゼを安定化剤と共に使用する方法など
が存在するが、本願発明のように、レバナーゼ、ムタナ
ーゼ、デキストラナーゼのような虫歯の原因とびそれら
酵素を固定化したアパタイトはいまま”パで存在しなか
った。
(Prior Art) Various methods of removing dental plaque have been used to prevent dental caries. For example, there are methods to scrape off #scale with zeolite, calcium carbonate, alumina, silica, and other abrasives, and methods to use dextranase together with a stabilizing agent. Apatite, which immobilizes the enzymes that cause dental caries, such as enzymes, did not exist until now.

(発明が解決しようとする問題点) グルカナーゼは酵素であるから比較的不安定であり、m
膀きにそのま\混合すると、時間とともにその活性を低
下し、遂には活性を示さな(なる。現在デキストラナー
ゼは歯若きに使用されているが、その失活を妨けるため
各徳の安定化剤が提案されている。例えば、特開昭56
−63915号公報はデキストラナーゼと酸化アルミニ
ウムとの配合を、特開昭56−110609号公報はデ
キストラナーゼとカルボン、t−メントールとの混合を
、特公昭52−49055号明a書はデキストラナーゼ
とゼラチンまたはベフトンとの配合を提案している。
(Problem to be solved by the invention) Since glucanase is an enzyme, it is relatively unstable, and m
If you mix it directly in your bladder, its activity will decrease over time, and it will eventually show no activity.Currently, dextranase is used for young teeth, but in order to prevent its deactivation, various virtues are added. Stabilizers have been proposed. For example, JP-A-56
JP-A-63915 discloses the combination of dextranase and aluminum oxide, JP-A-56-110609 discloses the mixture of dextranase, carvone, and t-menthol, and JP-B No. 52-49055 specifies the combination of dextranase and aluminum oxide. A combination of stranase and gelatin or beftone is proposed.

然るに、meきは口腔内で使用するため、人体に対する
影響を考慮する必要があり、また使用後の清涼感を要求
されるなど、禎々の制約をうけている。安定化剤も当然
かかる制約下におかれるため、安定化剤の選択は困難な
問題を含んでいる。デキストラナーゼ以外の酵素を使用
する場合にもデキストラナーゼ使用の場合と全(同じ問
題を生じる。そこでグルカナーゼの安定化法について禎
々検討した結果、研磨剤として使用されるアパタイトに
グルカナーゼを固定化することにより、安定剤を心安と
せず、長期間安定に活性を示すグルカナーインえる方法
を開発することができた。本願発明はグルカナーゼを固
定化したアパタイト及びその製造法を提供するものであ
る。
However, since it is used in the oral cavity, it is necessary to consider the effect on the human body, and it is also required to feel cool after use, so it is subject to various restrictions. Since the stabilizer is naturally subject to such restrictions, the selection of the stabilizer involves difficult problems. When using enzymes other than dextranase, the same problems arise as when using dextranase.As a result of careful consideration of methods for stabilizing glucanase, we found that glucanase was fixed to apatite, which is used as an abrasive. By doing so, we were able to develop a method for producing glucanain that exhibits stable activity over a long period of time without having to rely on stabilizers.The present invention provides apatite with immobilized glucanase and a method for producing the same.

(問題を解決するための手段) ハイドロキシアパタイト、活性炭、カオリナイト、白土
などに酵素を物理的に吸着させて固定化させる酵素固定
化法が存在することは周知の事実であり、又固定化され
た酵素は安定化し、酵素単体より経時活性の変、化が少
く、取扱いが便利であることも一般に知られている。こ
のようにアパタイトがある櫨の蛋白質を強固に吸着結合
することが古(から知られているので、グルカナーゼを
固定化してその経時活性の変化を少(するとの考えにも
とすき、歯磨きで研磨剤として使用されているアパタイ
トに物理的吸着法によりグルカナーゼを固定化すること
ができれば、簡単な操作で固定化酵素かえられ、それを
#i腫きに使用すれば研磨性と多糖質分解性の両件用を
有することに加え、酵素の安定化剤の選択を必要とせず
、好ましい歯磨素材になるであろうと考え、グルカナー
ゼのアパタイトによる固定化を検討した゛。その結果グ
ルカナーゼの7パタイトへの吸着力が極めて弱いため、
直接グルカナーゼを7パタイトに吸着固定化することは
無理があると認めた。そこで、我々はアパタイトに強固
に吸着結合する蛋白質を介してグルカナーゼを固定化し
たアパタイトをえることができた。本願発明はグルカナ
ーゼを固定化したアパタイト、及びアパタイトに強く吸
着するある樵の蛋白質とともにグルカナーゼを7パタイ
トに固定化させる方法を提供するものである。
(Means for solving the problem) It is a well-known fact that there is an enzyme immobilization method in which enzymes are physically adsorbed and immobilized on hydroxyapatite, activated carbon, kaolinite, clay, etc. It is also generally known that the enzyme is stable, exhibits less change in activity over time than the enzyme alone, and is convenient to handle. It has been known since ancient times that apatite strongly adsorbs and binds the proteins of oak, so the idea of immobilizing glucanase and reducing changes in its activity over time is also thought to be the reason for polishing with toothpaste. If glucanase can be immobilized on apatite, which is used as an agent, by physical adsorption, the immobilized enzyme can be changed with a simple operation. In addition to having both functions, we thought that it would be a preferable toothpaste material without the need to select an enzyme stabilizer, so we investigated the immobilization of glucanase with apatite. Because the suction power is extremely weak,
It was recognized that it is impossible to directly adsorb and immobilize glucanase on hepatite. Therefore, we were able to obtain apatite with glucanase immobilized through a protein that firmly binds to apatite. The present invention provides apatite on which glucanase is immobilized, and a method for immobilizing glucanase on hepatite together with a certain woodcutter protein that strongly adsorbs to apatite.

本願発明にいうグルカナーゼとは前記のように、デキス
トラナーゼ、レバナーゼ、ムタナーゼを含み、アパタイ
トとはハイドロキシアパタイト、フルオロアパタイトと
を意味しているが酵素がデキストラナーゼの場合はアパ
タイトとしてフルオロアパタイトを意味している。
As mentioned above, glucanase in the present invention includes dextranase, levanase, and mutanase, and apatite means hydroxyapatite and fluoroapatite, but when the enzyme is dextranase, fluoroapatite is used as apatite. It means.

アパタイトに強く吸着し、かつ人体に悪影響を及ぼさな
い蛋白質、及びグルカナーゼを溶解した水溶液、又は0
゜01から0.05モル磯度のリン酸塩緩衝溶液にアパ
タイトを懸濁させ、激しく攪拌しなから2官能性アルデ
ヒドを滴下する。使用する蛋白質としては、アルブミン
、カゼイン、リゾチーム、チトクロムC1プロタミンな
どより選択される。蛋白質の種類により生成する固定化
酵素の力価、ア六タイトへの結合力に差を生じるが、そ
れらのなかでリゾチーム、チトクロムCなどが好適であ
る。グルカナーゼは前記したように、レバナーゼ、デキ
ストラナーゼ、ムタナーゼより任意にえらぶことができ
、場合によってはこれら酵素の混合物を用いることがで
きる。アパタイトとしてはハイドロキシアパタイト、フ
ルオロアパタイトより選択する。
An aqueous solution containing glucanase and a protein that strongly adsorbs to apatite and has no adverse effect on the human body, or 0
Apatite is suspended in a phosphate buffer solution with a molar strength of 0.01 to 0.05 molar, and the difunctional aldehyde is added dropwise with vigorous stirring. The protein used is selected from albumin, casein, lysozyme, cytochrome C1 protamine, and the like. The titer of the immobilized enzyme produced and the binding strength to a6tite vary depending on the type of protein, but among them, lysozyme, cytochrome C, etc. are preferred. As described above, the glucanase can be arbitrarily selected from levanase, dextranase, and mutanase, and in some cases, a mixture of these enzymes can be used. The apatite is selected from hydroxyapatite and fluoroapatite.

反応はアパタイトを分解しないpH1即ちpMs、 6
以上のpHで行なわれるがpitが高(なると吸着に急
影響を及ばずのでpjl 9.0以上は好ましくな(,
9117、0付近が好ましい。使用するアパタイトの粒
度は出来るだけ均一であることが望まれるが、一般に1
11きに研磨剤として使用されている粒子で充分使用可
能であり、粒径2μから200μのものが使用し易く、
蛋白/XK対しlOから100倍量を使用する。攪拌が
効率よ(行なわれるように、使用アパタイト菫に対し、
多量の水又は緩衝溶液を使用することが望まれ、反応相
固形分が4から20パーセン)Kなルヨウ水量を調整す
る。使用する蛋白質とグルカナーゼは等量程度が好まし
く、両者の極端な相違、特にグルカナーゼが蛋白質に対
し少量であることは生成する固定化酵素の力価を下げる
ので避けるべきである。使用する2官能性アルデヒドと
しては一般に使用されているグルタルアルデヒドが好ま
しい。この使用量は固定化酵素の力価に最も影響を及ぼ
す因子である。一般にグルタルアルデヒドの添加量が少
なすぎるとえられた固定化酵素のアパタイトへの結合力
が弱(、経時失活が著しい。又添加量が多いと、えられ
る固定化酵素の力価を低下させ、史に添加量を増加さす
と遂には活性を示さなくなる。使用するグルタルアルデ
ヒド量は酵素、蛋白質の禎沖により幾分異なるが、使用
蛋白質を当り3から60岬の範囲にあり、好ましくは6
から2011Qの範囲にある。反応は室温以下、好まし
くは5℃付近で行われる。
The reaction takes place at pH 1 or pMs, which does not decompose apatite, 6
It is carried out at a pH of 9.0 or above, but a pjl of 9.0 or above is not preferable because it does not have a sudden effect on adsorption if the pit is high (,
9117, preferably around 0. It is desirable that the particle size of the apatite used is as uniform as possible, but generally 1
Particles that are used as abrasives can be used sufficiently, and particles with a particle size of 2μ to 200μ are easy to use.
Use 10 to 100 times the amount of protein/XK. For the apatite violet, use so that stirring is efficient (done).
It is desirable to use a large amount of water or buffer solution to adjust the amount of water so that the solids content of the reaction phase is between 4 and 20 percent. It is preferable to use approximately equal amounts of protein and glucanase, and extreme differences between the two, especially a small amount of glucanase relative to the protein, should be avoided as this will lower the titer of the immobilized enzyme produced. The commonly used difunctional aldehyde is preferably glutaraldehyde. The amount used is the factor that most influences the titer of immobilized enzyme. In general, if the amount of glutaraldehyde added is too small, the binding strength of the immobilized enzyme to apatite is weak (and the deactivation is significant over time. Also, if the amount added is too large, the titer of the immobilized enzyme obtained will decrease). However, as the amount of glutaraldehyde added is increased, it finally stops showing activity.The amount of glutaraldehyde used varies somewhat depending on the quality of the enzyme and protein, but is in the range of 3 to 60 glutaraldehyde per protein used, preferably 60 glutaraldehyde.
The range is from 2011Q to 2011Q. The reaction is carried out below room temperature, preferably around 5°C.

蛋白質、グルカナーゼ、アパタイトの共存スる懸濁液を
室温以下、好ましくは5℃付近に冷却し、激しく攪拌し
ながらこの液にグルタルアルデヒド水溶液な徐々に滴下
し、滴下終了後同温で攪拌を数時間行って反応を終了す
る。反応終了後濾過してえられたアパタイトは水又は使
用した緩衝溶液で充分洗浄して随伴している蛋白質、酵
素を除いたのち、そのま\低温に保持するか、凍結乾燥
して固体となし室温に保持する。
A suspension in which protein, glucanase, and apatite coexist is cooled to below room temperature, preferably around 5°C, and an aqueous glutaraldehyde solution is gradually added dropwise to this solution while stirring vigorously, and after the addition is complete, the mixture is stirred several times at the same temperature. Terminate the reaction after a certain amount of time. After the reaction is complete, the apatite obtained by filtration is thoroughly washed with water or the buffer solution used to remove accompanying proteins and enzymes, and then either kept at a low temperature or freeze-dried to form a solid. Keep at room temperature.

本願発明の固定化酵素は又以下のようにしても生成させ
ることができる。まず蛋白質を浴かした水浴液又は緩衝
溶液にアパタイトを添加して充分攪拌してアパタイトに
蛋白質を吸着飽和させ、しかる後吸着アパタイトを採取
し、グルカナーゼを溶かした水又は緩衝溶液に吸着アパ
タイトを添加し、激しく攪拌しながらグルタルアルデヒ
ド水浴液を徐々に滴下し、滴下終了後攪拌をつづける。
The immobilized enzyme of the present invention can also be produced as follows. First, apatite is added to a water bath solution or buffer solution in which protein has been soaked, and stirred sufficiently to saturate the apatite with adsorption of protein.After that, the adsorbed apatite is collected, and the adsorbed apatite is added to water or buffer solution in which glucanase has been dissolved. Then, while stirring vigorously, the glutaraldehyde water bath solution was gradually added dropwise, and after the addition was completed, stirring was continued.

この場合反応温度、その他の条件は前記の条件に準ずれ
ばよい。
In this case, the reaction temperature and other conditions may be the same as those described above.

(作用) アパタイト類がある種の蛋白質をよ(吸着することはす
でに明らかにされており、酵素の固定化に架橋剤として
グルタルアルデヒドが使用されていることも公知である
。本願方法によるグルカナーゼのアパタイトへの固定化
が、如何なる機構により生成しているか明らかでないが
、アパタイトに吸着し易い蛋白質のアパタイトへの吸着
、蛋白質、グルカナーゼの架橋が同時に生じ、固定化酵
素をえているものと推定される。
(Function) It has already been revealed that apatite adsorbs certain proteins, and it is also known that glutaraldehyde is used as a crosslinking agent to immobilize enzymes. Although it is not clear what mechanism causes immobilization to apatite, it is presumed that the adsorption of proteins that are easily adsorbed to apatite to apatite and the cross-linking of proteins and glucanases occur simultaneously, resulting in immobilized enzymes. .

以下に実施例をあげて具体的に本願発明を説明する。The present invention will be specifically described below with reference to Examples.

例1. レバナーゼのハイドロキシアパタイトへの固定
化 リゾチーム100′q、レバナーゼ1o0111i。
Example 1. Immobilization of levanase on hydroxyapatite Lysozyme 100'q, levanase 1o0111i.

を純水50mにとかし、この浴猷に研磨剤ハイドロキシ
アパタイト2tを硝加し4℃に冷却する。4℃を検電ち
激しく攪拌しながらグルメルアルデヒド水浴液(グルタ
ルアルデヒド28で3回攪拌洗浄して固体を採取し、未
乾燥固定化ハイドロキシアパタイトをえた(場合によっ
てはこのま\使用してもよい)。これを凍結乾燥して粉
体約2.059をえた。この粉体1fを秤量し、pH6
,8,1モル濃度のリン酸カリ緩衝溶液10−を添加し
、室温で1時間攪拌後遠心分離して戸液を採取し、残量
に同じ操作を2回繰返し、p液を合せてローリ−法によ
り蛋白質量を測定し、残量は水洗後乾燥して重量を測定
した。その結果ハイドロキシアパタイトを尚たり、蛋白
質11.7aFを結合していることを確認した。未乾燥
固定化ハイドロキシアパタイトを以下に述べる方法によ
り、そのレバナーゼ活性を測定したところ、ハイドロキ
シアパタイト結合蛋白fx?当り0.47tのレバンな
分解することを認めた。
was dissolved in 50 m of pure water, 2 tons of abrasive hydroxyapatite was added to the solution, and the mixture was cooled to 4°C. The solid was collected by stirring and washing with glumeraldehyde water bath solution (glutaraldehyde 28) 3 times while stirring vigorously at 4°C to obtain undried immobilized hydroxyapatite (in some cases, it may be used as is). This was freeze-dried to obtain a powder of approximately 2.059. This powder 1f was weighed and the pH was adjusted to 6.
, 8. Add 1 molar potassium phosphate buffer solution 10-, stir at room temperature for 1 hour, centrifuge to collect the solution, repeat the same operation twice for the remaining amount, combine the P solution and transfer to a lorry. - The amount of protein was measured by the method, and the remaining amount was washed with water, dried, and weighed. As a result, it was confirmed that hydroxyapatite was intact and protein 11.7aF was bound. When the levanase activity of undried immobilized hydroxyapatite was measured by the method described below, it was found that hydroxyapatite-binding protein fx? It was confirmed that 0.47 tons of leban was decomposed per unit.

例2.  レバナーゼのフルオロアパタイトへの固定化 実施例1のハイドロキシアパタイトの代りにフルオロア
パタイトを用いた以外は実施例1と全く同じ条件で操作
し、凍結乾燥品2.05Fをえた。例1と同様に結合蛋
白を測定し、フルオロアパタイト2当り13.4WIの
蛋白質を結合していることを確認した。例1と同様にレ
バナーゼ活性測定結果は結合蛋白1当り、0.54 f
のレバンな分解することを知った。
Example 2. Immobilization of levanase on fluoroapatite A freeze-dried product 2.05F was obtained by operating under the same conditions as in Example 1, except that fluoroapatite was used instead of hydroxyapatite in Example 1. The bound protein was measured in the same manner as in Example 1, and it was confirmed that 13.4 WI of protein was bound per 2 fluoroapatites. As in Example 1, the levanase activity measurement result was 0.54 f per bound protein.
I learned that the Leban is disassembled.

例3.  ムタナーゼのハイドロキシアパタイトへの固
定化 例1のレバナーゼの代りにムタナーゼを用いた以外は例
1と同じ条件で実験し、固定化ハイドロキシアパタイト
をえた。例1と同僚に試験した結果、ハイドロキシアパ
タイトf当り蛋白J15.0■を結合していることを絡
めた。又ムタナーゼ活性を測定した結果、ノ・イドロキ
シアバタイト結合蛋白5Ittsす0,489のムタン
を分解することを確めた。
Example 3. Immobilization of Mutanase on Hydroxyapatite An experiment was carried out under the same conditions as in Example 1, except that mutanase was used in place of levanase in Example 1, and immobilized hydroxyapatite was obtained. As a result of testing with Example 1 and colleagues, it was found that protein J15.0 was bound per hydroxyapatite f. Furthermore, as a result of measuring the mutanase activity, it was confirmed that the hydroxyabatite binding protein 5Itts degraded 0,489 mutan.

例4.  ムタナーゼのフルオロアパタイトヘノ固定化 例3におけるハイドロキシアパタイトの代りにフルオロ
アパタイトを用いた以外は、例3と全く同じ条件で操作
し、固定化70オロアバタイトをえた。例3と同様に分
析、その力価を測定した結果、フルオロアパタイトを当
り蛋白質1711qを結合し、結合蛋白質f轟り0.4
5fのムタンを分解することを認めた。
Example 4. Fluoroapatite Henoimmobilization of Mutanase Immobilized 70 oloabatite was obtained by operating under exactly the same conditions as in Example 3, except that fluoroapatite was used instead of hydroxyapatite in Example 3. As a result of analysis and titer measurement in the same manner as in Example 3, it was found that the protein 1711q was bound to the fluoroapatite, and the binding protein f was 0.4
Approved to disassemble 5F Mutan.

例5. デキストラナーゼのフルオロアパタイトへの固
定化 リゾチーム50wy、デキストラナーゼ504を混合し
、これにフルオロアパタイト5 f。
Example 5. Immobilization of dextranase on fluoroapatite Lysozyme 50wy and dextranase 504 were mixed, and fluoroapatite 5f was added to the mixture.

0.05モル濃度、pi 6.8のリン酸カリ緩衝溶液
50−を添加し、4℃に冷却し敏しく攪拌する。
Add 50° of a 0.05 molar, pi 6.8 potassium phosphate buffer solution, cool to 4°C and stir vigorously.

この温度を保ちながら、さらにグルタルアルデヒド0.
2%水′#I液125μLを攪拌下に滴下し、滴下後5
時間攪拌を続行した。反応物を−堆し、上記緩衝浴液1
00−で3回洗浄後水洗し未乾燥固定化フルオロアパタ
イトをえた。凍結乾燥によりデキストラナーゼ固定化フ
ルオロアパタイトs、ostをえた。未乾燥固定化フル
オロアパタイト1−を遠心分離してえた沈殿物に1モル
濃度9116.8のリン酸カリ緩衝浴液2−を加えて3
時間攪拌して結合蛋白質を脱着し、遠心分離し、沈殿は
同じ操作を繰返し、F液は合せてローリ−法により蛋白
質を測定し、沈殿は水洗後乾燥して重量を秤量した。そ
の結果フルオロアパタイトを当り15.24Wの蛋白を
結合していた。デキストラナーゼ活性測定結果は結合蛋
白を当り0.43?のデキストランを分解した。
While maintaining this temperature, add 0.0% glutaraldehyde.
Add 125 μL of 2% water '#I solution dropwise while stirring, and after dropping
Stirring was continued for an hour. The reaction product was deposited and added to the above buffer bath solution 1.
After washing three times with 00- and water, undried fixed fluoroapatite was obtained. Dextranase-immobilized fluoroapatite s, ost was obtained by freeze-drying. Potassium phosphate buffer bath solution 2- with a 1 molar concentration of 9116.8 was added to the precipitate obtained by centrifuging the undried immobilized fluoroapatite 1-3.
The bound protein was desorbed by stirring for a period of time, and the mixture was centrifuged. The same procedure was repeated for precipitation. The F solution was combined and the protein was measured by the Lowry method. The precipitate was washed with water, dried, and weighed. As a result, 15.24 W of protein was bound to the fluoroapatite. Dextranase activity measurement result is 0.43 for binding protein? Decomposed dextran.

各8[実験結果を表−1に示した処理条件は実施例と同
一である。
Each 8 [Experimental results are shown in Table 1. The processing conditions are the same as in Examples.

各酵素力価の測定 各1チ基質溶液10 rd K実験でえられた未乾燥固
定化酵素1 tdを加え、37C,2時間攪拌後溶液に
生成した単量体を夫々定瀘し、一方未乾燥固定化酵素1
dK結合している蛋白質を前記した方法により測定し、
アパタイトに結合した蛋白質を当りが分解した単重体の
菫を、各固泥化酵素の力価とした。
Measurement of each enzyme titer 1 td of the undried immobilized enzyme obtained in the 10 rd K experiment was added to each substrate solution, and after stirring at 37C for 2 hours, the monomers produced in the solution were fixed and filtered, while the undried Dry immobilized enzyme 1
Measuring the dK-bound protein by the method described above,
The titer of each solid-sludge-forming enzyme was determined from monomeric violet in which proteins bound to apatite were decomposed.

基質としてデキストラナーゼはデキストラン、ムタナー
ゼはムタン、レバナーゼはレバンヲ使用し、デキストラ
ナーゼとムタナーゼは分解シて生成したグルコースをグ
ルコースオキシターゼ法により、レバナーゼは分解生成
したフルクトースを常法により高感度液体クロマトグラ
フィ(カラム:シュガーパツク1.114HIF:水)
により定量した。
Dextranase uses dextran, mutanase uses mutan, and lebanase uses levano as substrates. Dextranase and mutanase decompose the glucose produced by the glucose oxidase method, and levanase decomposed the produced fructose using high-sensitivity liquid chromatography using a conventional method. (Column: Sugar Pack 1.114HIF: Water)
It was quantified by

固定化酵素の経時活性 本方法によりえられた固定化酵菓の数aKついて、その
活性の経時変化を検した。使用した試料は何れも未乾燥
固定化酵素で、夫々の活性は前記の方法で測定した。
Activity of immobilized enzyme over time Changes in the activity over time of the number of immobilized fermented confections obtained by this method were examined. All the samples used were undried immobilized enzymes, and their respective activities were measured by the method described above.

得られた固定化酵素は時間とともに活性を増加し、ある
期間後最高の活性を示すとともに以後徐々に活性を低下
することを知った。
It was found that the activity of the obtained immobilized enzyme increases with time, and after a certain period of time, it shows the highest activity and then gradually decreases in activity.

(発明の効果) 本願方法によれば、極めて簡単な操作でグルカナーゼを
アパタイトに固定化できるとともに得られた固定化酵素
は取扱いが容易な上、安定で経時変化もすくなく、多糖
類を分解する能力と、アパタイトの研磨性を有するため
、その歯磨への使用は虫爾予防に好ましく、口腔衛生上
極めて有用である。
(Effects of the Invention) According to the method of the present invention, glucanase can be immobilized on apatite with extremely simple operations, and the immobilized enzyme obtained is easy to handle, is stable, has little change over time, and has the ability to decompose polysaccharides. Since it has the abrasive properties of apatite, its use in tooth brushing is preferable for preventing cavities and is extremely useful for oral hygiene.

Claims (1)

【特許請求の範囲】 1、グルカナーゼ等を固定化したアパタイト。 こゝでグルカナーゼとはレバナーゼ、ムタ ナーゼ及びデキストラナーゼを、アパタイトとはハイド
ロキシアパタイト及びフルオロアパタイトを意味する。 但し、デキストラナーーゼはフルオロアパタイトのみに
固定化する。 2、グルカナーゼ、蛋白質、アパタイトを混在させた溶
液にグルタルアルデヒドを滴下することよりなる特許請
求の範囲第1項記載の固定化されたアパタイトの製造法
。 3、蛋白質としてリゾチームを使用する特許請求の範囲
第2項記載の製造法。
[Claims] 1. Apatite with immobilized glucanase, etc. Here, glucanase means levanase, mutanase, and dextranase, and apatite means hydroxyapatite and fluoroapatite. However, dextranase is immobilized only on fluoroapatite. 2. The method for producing immobilized apatite according to claim 1, which comprises dropping glutaraldehyde into a solution containing a mixture of glucanase, protein, and apatite. 3. The production method according to claim 2, which uses lysozyme as the protein.
JP61091332A 1986-04-22 1986-04-22 Apatite containing immobilized glucanase or such and production thereof Granted JPS62248487A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61091332A JPS62248487A (en) 1986-04-22 1986-04-22 Apatite containing immobilized glucanase or such and production thereof
AU74601/87A AU602149B2 (en) 1986-04-22 1987-06-23 Apatite immobilized glucanase and the like, and method of preparing the same
DE3721441A DE3721441C1 (en) 1986-04-22 1987-06-29 Process for the preparation of an apatite with glucanase immobilized thereon and apatites produced by the process
GB08715448A GB2206585A (en) 1986-04-22 1987-07-01 Enzymes immobilised on apatite
FR878709866A FR2617867B1 (en) 1986-04-22 1987-07-10 GLUCANASE, IMMOBILIZED ON APATITIS AND PROCESS FOR ITS PREPARATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61091332A JPS62248487A (en) 1986-04-22 1986-04-22 Apatite containing immobilized glucanase or such and production thereof

Publications (2)

Publication Number Publication Date
JPS62248487A true JPS62248487A (en) 1987-10-29
JPH0441597B2 JPH0441597B2 (en) 1992-07-08

Family

ID=14023487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61091332A Granted JPS62248487A (en) 1986-04-22 1986-04-22 Apatite containing immobilized glucanase or such and production thereof

Country Status (5)

Country Link
JP (1) JPS62248487A (en)
AU (1) AU602149B2 (en)
DE (1) DE3721441C1 (en)
FR (1) FR2617867B1 (en)
GB (1) GB2206585A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2236676A (en) * 1988-09-29 1991-04-17 Sangi Kk Antimicrobial hydroxyapatite powders
US5041236A (en) * 1989-10-27 1991-08-20 The Procter & Gamble Company Antimicrobial methods and compositions employing certain lysozymes and endoglycosidases
US5238843A (en) * 1989-10-27 1993-08-24 Genencor International, Inc. Method for cleaning a surface on which is bound a glycoside-containing substance
US5258304A (en) * 1989-10-27 1993-11-02 Genencor International, Inc. Method of removing microorganisms from surfaces with Type II endoglycosidase
US5356803A (en) * 1989-10-27 1994-10-18 Genencor International, Inc. Antimicrobial composition containing Type II endoglycosidase and antimicrobial agent
FR2773170A1 (en) * 1997-12-31 1999-07-02 Ase & Bio Soc Civ ENZYMES IMMOBILIZED ON AN ALUMINUM SUPPORT, METHODS OF PREPARATION THEREOF AND APPLICATIONS THEREOF

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268174A (en) * 1988-09-29 1993-12-07 Kabushiki Kaisha Sangi Antimicrobial hydroxyapatite powders containing hinokitiol, protamine or sorbic acid
KR920702415A (en) * 1989-11-01 1992-09-04 아만 히데아키 Stabilization immobilized enzyme
US5443832A (en) * 1990-04-16 1995-08-22 Institut Swisse De Recherches Experimentales Sur Le Cancer Hydroxyapatite-antigen conjugates and methods for generating a poly-Ig immune response
WO1997038669A1 (en) 1996-04-16 1997-10-23 Novo Nordisk A/S Compositions for the removal of dental plaque
US6413501B2 (en) 1997-10-17 2002-07-02 Novozymes A/S Plaque-inhibiting oral compositions
CN112111479A (en) * 2020-09-30 2020-12-22 江苏海洋大学 Dextranase and hydroxyapatite composite material and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140791A (en) * 1984-08-02 1986-02-27 スタブラ・アクチエンゲゼルシャフト Immobilization of enzyme by column

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140791A (en) * 1984-08-02 1986-02-27 スタブラ・アクチエンゲゼルシャフト Immobilization of enzyme by column

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2236676A (en) * 1988-09-29 1991-04-17 Sangi Kk Antimicrobial hydroxyapatite powders
GB2236676B (en) * 1988-09-29 1992-01-22 Sangi Kk Antimicrobial hydroxyapatite powders
GB2224727B (en) * 1988-09-29 1992-01-22 Sangi Kk Antimicrobial hydroxyapatite powders
US5041236A (en) * 1989-10-27 1991-08-20 The Procter & Gamble Company Antimicrobial methods and compositions employing certain lysozymes and endoglycosidases
US5238843A (en) * 1989-10-27 1993-08-24 Genencor International, Inc. Method for cleaning a surface on which is bound a glycoside-containing substance
US5258304A (en) * 1989-10-27 1993-11-02 Genencor International, Inc. Method of removing microorganisms from surfaces with Type II endoglycosidase
US5356803A (en) * 1989-10-27 1994-10-18 Genencor International, Inc. Antimicrobial composition containing Type II endoglycosidase and antimicrobial agent
FR2773170A1 (en) * 1997-12-31 1999-07-02 Ase & Bio Soc Civ ENZYMES IMMOBILIZED ON AN ALUMINUM SUPPORT, METHODS OF PREPARATION THEREOF AND APPLICATIONS THEREOF
WO1999035250A1 (en) * 1997-12-31 1999-07-15 Societe Civile Ase & Bio Active enzymes immobilised on an alumina support, preparation methods and applications

Also Published As

Publication number Publication date
GB8715448D0 (en) 1987-08-05
FR2617867A1 (en) 1989-01-13
AU602149B2 (en) 1990-10-04
JPH0441597B2 (en) 1992-07-08
AU7460187A (en) 1989-01-05
DE3721441C1 (en) 1988-12-29
FR2617867B1 (en) 1990-03-09
GB2206585A (en) 1989-01-11

Similar Documents

Publication Publication Date Title
JPS62248487A (en) Apatite containing immobilized glucanase or such and production thereof
JP2599789B2 (en) Water-insoluble glucose isomerase crystal and method for producing the same
WO1996006593A1 (en) Cost effective dental compositions containing novel sodium aluminosilicates
CA1100066A (en) Water-insoluble enzyme compositions
FR2749320A1 (en) ENZYME IMMOBILIZATION SUPPORT AND IMMOBILIZED LIPASE
US4812404A (en) Apatite immobilized glucanase
GB2036032A (en) Enzyme immobilised in starch gel
JPS5819276B2 (en) Method for producing oligosaccharides with fructose attached to their ends
Niwa et al. The adsorptive properties of hydroxyapatite to albumin, dextran and lipids
JPH0228563B2 (en) HAMIGAKISOSEIBUTSU
KR950014967B1 (en) Preparation method of moranoline derivatives
JP2757946B2 (en) Dextranase adsorbent and method for producing the same
JPS6267013A (en) Dentifrice composition
SU681837A1 (en) Method of immobilizing protein molecules
Hitoshi et al. Effect of albumin on amylase assay using blue starch polymer
JPS61152634A (en) Production of immobilized physiologically active substance
JPH02176461A (en) Carrier for afinity chromatography and manufacture thereof
AU688131C (en) Cost effective dental compositions containing novel sodium aluminosilicates
WO1998052039A1 (en) Method for separating cells
JPH01171567A (en) Calcium phosphate adsorbing immune material
JPS58170481A (en) Immobilization of microorganism cell having glucose isomeraze activity
JPH1042868A (en) Activation of immobilized papain
JPH01179697A (en) Production of branched cyclodextrin
JPS5846316B2 (en) Method for removing bitterness from fruit juice containing naringin
Krysteva et al. Optical sensors for glucose based on glucose oxidase and congo red immobilized onto transparent membranes