JPH0441175Y2 - - Google Patents

Info

Publication number
JPH0441175Y2
JPH0441175Y2 JP1987083154U JP8315487U JPH0441175Y2 JP H0441175 Y2 JPH0441175 Y2 JP H0441175Y2 JP 1987083154 U JP1987083154 U JP 1987083154U JP 8315487 U JP8315487 U JP 8315487U JP H0441175 Y2 JPH0441175 Y2 JP H0441175Y2
Authority
JP
Japan
Prior art keywords
flow channel
holding table
substrate
vapor phase
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1987083154U
Other languages
Japanese (ja)
Other versions
JPS63192460U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987083154U priority Critical patent/JPH0441175Y2/ja
Publication of JPS63192460U publication Critical patent/JPS63192460U/ja
Application granted granted Critical
Publication of JPH0441175Y2 publication Critical patent/JPH0441175Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は有機金属気相成長(MOCVD)法に
好適な気相成長装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a vapor phase growth apparatus suitable for metal organic chemical vapor deposition (MOCVD).

〔従来の技術〕[Conventional technology]

有機金属と金属水酸化物の熱化学反応を利用し
たガリウムヒ素(GaAs)基板への薄膜形成技術
はMOCVD法として知られているが、これはシ
リコン(Si)基板に二酸化ケイ素(SiO2)等の
薄膜を形成する方法(以下、SiCVD法という)
から発展したものである。両者は基板や薄膜を異
にするが共に熱化学反応を利用する点で共通なた
め、従来MOCVD法はSiCVD法を実施する装置
(以下、SiCVD装置という)により実施されてき
た。
The MOCVD method is a technique for forming thin films on gallium arsenide (GaAs) substrates using a thermochemical reaction between organic metals and metal hydroxides, and this method uses silicon dioxide (SiO 2 ) etc. on silicon (Si) substrates. (hereinafter referred to as SiCVD method)
It was developed from. Although the two methods use different substrates and thin films, they both use a thermochemical reaction, so conventionally MOCVD has been carried out using equipment that performs the SiCVD method (hereinafter referred to as SiCVD equipment).

第3図は保持台とフローチヤンネルの外面を示
すSiCVD装置の断面図で、複数枚の基板の同時
処理に用いるバレル型の例である。図中、1は底
部開口部を有するキヤツプ状の反応管で、頂部に
ガス導入管2を、側部下方にガス排出管3,3を
有すると共に、外周にはRFコイル4が巻き付け
られている。
FIG. 3 is a cross-sectional view of the SiCVD apparatus showing the outer surface of the holding table and the flow channel, and is an example of a barrel type apparatus used for simultaneous processing of a plurality of substrates. In the figure, 1 is a cap-shaped reaction tube with an opening at the bottom, a gas inlet tube 2 at the top, gas exhaust tubes 3 at the lower side, and an RF coil 4 wound around the outer periphery. .

該反応管1の下方には前記底部開口部を介して
基板の搬入、搬出用の前室(図示せず)が設けら
れていると共に、該反応室1の内部には軸部材5
に支持された保持台6が、更にその上にはフロー
チヤンネル7が載置されて設けられている。保持
台6は発熱源であると共に側面で基板を保持する
もので、カーボン製の角錐台状体の側面に基板取
付溝6aが設けられている。フローチヤンネル7
はガス導入管2から流入する気相成長ガスを整流
して円滑に下方に流す弾頭形のカバーであり、石
英ガラス製である。このフローチヤンネル7が石
英ガラス製なのは、まずRFコイル4による誘導
加熱を受けないので全体が高温になることがない
からである。即ち、仮にフローチヤンネル7全体
が高温になると該フローチヤンネル7の全面に無
駄な堆積物が生ずると共に基板への供給量が低減
して良好な気相成長が実施できない。そこで、基
板より若干上流部分、即ちフローチヤンネル7の
保持台6側近傍で熱分解が始まるように調節する
ことが好ましいが、この点で石英ガラスは熱伝導
率が小さいのでフローチヤンネル7の保持台6近
傍のみが高温になり都合が良い。次に前記の如
く、フローチヤンネル7の保持台6側近傍は高温
になるのでここに堆積物が生じ、これは所定回数
処理後、王水等を用いて除去する必要があるが、
石英ガラスは機械的強度が大で、かつ王水にも溶
けないので洗浄しても破損せず反復して使用でき
る等の長所を有するからである。
A front chamber (not shown) for loading and unloading substrates through the bottom opening is provided below the reaction tube 1, and a shaft member 5 is provided inside the reaction chamber 1.
A holding table 6 is supported by a holding table 6, and a flow channel 7 is placed on the holding table 6. The holding stand 6 serves as a heat source and also holds the substrate on its side surface, and has a substrate mounting groove 6a provided in the side surface of a truncated pyramid-shaped body made of carbon. flow channel 7
is a warhead-shaped cover that rectifies the vapor growth gas flowing in from the gas introduction pipe 2 and smoothly flows it downward, and is made of quartz glass. The reason why this flow channel 7 is made of quartz glass is that it is not subjected to induction heating by the RF coil 4, so that the whole does not reach a high temperature. That is, if the temperature of the entire flow channel 7 becomes high, wasteful deposits will be generated on the entire surface of the flow channel 7, and the amount of supply to the substrate will be reduced, making it impossible to perform good vapor phase growth. Therefore, it is preferable to adjust the thermal decomposition so that it starts slightly upstream of the substrate, that is, near the holding table 6 side of the flow channel 7. However, since silica glass has a low thermal conductivity in this point, the holding table of the flow channel 7 Only the area around 6 becomes high temperature, which is convenient. Next, as mentioned above, since the temperature near the holding table 6 of the flow channel 7 is high, deposits are formed there, and this must be removed using aqua regia etc. after a predetermined number of treatments.
This is because quartz glass has great mechanical strength and is insoluble in aqua regia, so it does not break even after cleaning and can be used repeatedly.

次に前記SiCVD装置を用いたMOCVD法の一
例をGaAs基板にGaAsを堆積する場合で説明す
る。
Next, an example of the MOCVD method using the SiCVD apparatus will be described with reference to the case where GaAs is deposited on a GaAs substrate.

(1) RFコイル4により保持台6を誘導加熱し、
該保持台6を介して基板を所定温度に保持する
と共に、ガス導入管2からアルシン(AsH3
とトリメチルガリウム(TMG)と水素(H2
からなる気相成長ガスを導入する。これにより
気相成長ガスはフローチヤンネル7で整流され
つつ基板面と平行に流れ、基板より若干上方の
高温部でAsH3とTMGが熱化学反応しGaAsが
基板面に堆積する。処理後、気相成長ガスの導
入及び保持台6の加熱を停止する。(処理工程) (2) ガス導入管2から不活性ガスを導入し反応管
1内をパージする。(パージ工程) (3) 保持台6を前室(図示せず)内に下動し該前
室内で処理済基板と未処理基板を交換した後、
軸部材5を上動して保持台8を反応管1内の所
定位置にセツトすると共に前室と反応管とをシ
ールする。(基板取替工程) その後(1)の処理工程に戻る。
(1) The holding table 6 is heated by induction using the RF coil 4,
The substrate is held at a predetermined temperature via the holding table 6, and arsine (AsH 3 ) is supplied from the gas introduction pipe 2.
and trimethyl gallium (TMG) and hydrogen (H 2 )
A vapor growth gas consisting of is introduced. As a result, the vapor growth gas flows parallel to the substrate surface while being rectified by the flow channel 7, and AsH 3 and TMG react thermochemically at a high temperature part slightly above the substrate, and GaAs is deposited on the substrate surface. After the treatment, the introduction of the vapor phase growth gas and the heating of the holding table 6 are stopped. (Processing process) (2) Inert gas is introduced from the gas introduction tube 2 to purge the inside of the reaction tube 1. (Purge step) (3) After lowering the holding table 6 into the front chamber (not shown) and exchanging the processed and unprocessed substrates in the front chamber,
The shaft member 5 is moved upward to set the holding table 8 at a predetermined position within the reaction tube 1 and seal the front chamber and the reaction tube. (Substrate replacement process) After that, return to the processing process (1).

〔従来技術の問題点〕[Problems with conventional technology]

前記の如く、MOCVD法は従来SiCVD装置に
より実施されてきたが、この際、上記(1)の処理工
程時にフローチヤンネル7の保持台6側に堆積す
る堆積物8がその後の工程時に剥離して処理済基
板の薄膜面に、または未処理基板上に落下して欠
陥をもたらす不都合があつた。そして、これは
SiCVD法実施時には生ずることのないMOCVD
法実施時特有の不都合である。
As mentioned above, the MOCVD method has conventionally been carried out using a SiCVD apparatus, but in this case, the deposit 8 deposited on the holding table 6 side of the flow channel 7 during the processing step (1) above is peeled off during the subsequent step. There is an inconvenience in that the film falls onto the thin film surface of a processed substrate or onto an unprocessed substrate, causing defects. And this is
MOCVD that does not occur when implementing the SiCVD method
This is a particular inconvenience when implementing the law.

そこで、適宜処理を中断して前記堆積物8を王
水等を用いて除去しているが、手間がかかると共
に生産性が低下するのをさけられないのが実情で
ある。
Therefore, the process is interrupted as appropriate and the deposits 8 are removed using aqua regia, but the reality is that this is time consuming and inevitably reduces productivity.

〔問題点を解決するための手段〕[Means for solving problems]

本考案者は前記に鑑み種々考究した結果、前記
不都合はフローチヤンネルが石英ガラス製である
ことに原因して発生することを知見した。本考案
は前記知見に基づき、フローチヤンネルに付着す
る堆積物の剥離、落下がなくMOCVD法に適し
た気相成長装置を提供するもので、その特徴とす
るところは、フローチヤンネルの少なくとも保持
台側近傍をカーボン(C)、ボロンナイトライド
(BN)、シリコンカーバイド(SiC)のいづれか
で被覆したことを特徴とする。なお、前記カーボ
ンにはグラフアイト、黒鉛と称されるものを含
む。
As a result of various studies in view of the above, the inventor of the present invention has found that the above-mentioned disadvantage is caused by the flow channel being made of quartz glass. Based on the above findings, the present invention provides a vapor phase growth apparatus suitable for the MOCVD method without peeling or falling of deposits attached to the flow channel. It is characterized in that the vicinity thereof is coated with carbon (C), boron nitride (BN), or silicon carbide (SiC). Note that the carbon includes what is called graphite and graphite.

〔実施例〕〔Example〕

第1図、第2図は前記第3図のSiCVD装置の
フローチヤンネルに本考案を施こした一例を示す
もので、第1図は本考案に係るフローチヤンネル
の正面図、第2図は断面図である。
Figures 1 and 2 show an example in which the present invention is applied to the flow channel of the SiCVD apparatus shown in Figure 3. Figure 1 is a front view of the flow channel according to the present invention, and Figure 2 is a cross-sectional view. It is a diagram.

図のフローチヤンネル10は、石英ガラス製の
フローチヤンネル本体11の保持台6側近傍を周
方向に切削し、該切削部12の表面に適宜幅のカ
ーボン片13を取り付けてカーボンの被覆部分1
4を設けたものである。カーボン片13は誘導加
熱されないよう、電波の侵入深さ以下でなるべく
薄くする。
The flow channel 10 shown in the figure is made by cutting the quartz glass flow channel main body 11 in the vicinity of the holding table 6 in the circumferential direction, and attaching a carbon piece 13 of an appropriate width to the surface of the cut part 12 to form a carbon-coated part 1.
4. The carbon piece 13 is made as thin as possible and below the penetration depth of radio waves so as not to be heated by induction.

次に前記の如き本考案装置を用いて前記同様の
MOCVD処理を行ないSiCVD装置を用いた場合
と比較した。この結果、SiCVD装置では20〜30
回の気相成長処理で基板上の薄膜に所定以上の品
質低下が生じたが、本考案装置を用いた場合には
このようなことがなく、また、薄膜はより均一な
膜厚で形成され、かつ同一の処理時間ではより厚
い薄膜が得られた。
Next, using the device of the present invention as described above,
MOCVD treatment was performed and compared with the case using SiCVD equipment. As a result, 20 to 30
During the previous vapor phase growth process, the quality of the thin film on the substrate deteriorated beyond a certain level, but this did not occur when using the device of the present invention, and the thin film was formed with a more uniform thickness. , and a thicker thin film was obtained with the same processing time.

なお、以上の実施例では複数のカーボン片13
を用いたが、これらを一体化したリング状として
も良い。また、カーボンの被覆部分14はフロー
チヤンネル本体11全面としても良い。更に被覆
部分14の厚さは保持台6の加熱手段が誘導加熱
以外であれば任意でよいが、なるべく薄くするの
が好ましい。また、カーボン片13に替えてボロ
ンナイトライド、シリコンカーバイドを用いても
同様の効果を奏することができる。
In addition, in the above embodiment, a plurality of carbon pieces 13
Although these were used, they may be integrated into a ring shape. Further, the carbon covered portion 14 may be the entire surface of the flow channel main body 11. Furthermore, the thickness of the covering portion 14 may be arbitrary as long as the heating means for the holding table 6 is other than induction heating, but it is preferable to make it as thin as possible. Furthermore, the same effect can be achieved by using boron nitride or silicon carbide instead of the carbon pieces 13.

〔考案の効果〕[Effect of idea]

以上の如く、本考案に係る気相成長装置では、
フローチヤンネルの少なくとも保持台側近傍をカ
ーボン等を用いて被覆したのでMOCVD法実施
時に該被覆部分に堆積物が付着しても該堆積物が
剥離、落下することがないので歩留りが向上す
る。
As described above, in the vapor phase growth apparatus according to the present invention,
Since at least the vicinity of the holding table side of the flow channel is coated with carbon or the like, even if deposits adhere to the coated portion during the MOCVD process, the deposits will not peel off or fall, resulting in an improved yield.

また、カーボン等は石英ガラスより熱伝導率が
大きいのでフローチヤンネル全体を石英ガラスと
するSiCVD装置に比べ、本考案装置の方が前記
カーボン等被覆部分をより高温に保持することが
できる。これにより、気相成長ガスを保持台の近
傍でより高温に予備加熱でき、これに伴つて保持
台自体も気相成長ガスの通過に伴なう冷却が減少
して保持台の温度を均一化できるので、基板上に
形成される薄膜の膜厚を均一化する効果や薄膜の
成長速度を向上する効果を奏することができる。
Further, since carbon and the like have a higher thermal conductivity than quartz glass, the device of the present invention can maintain the portion coated with carbon or the like at a higher temperature than a SiCVD device in which the entire flow channel is made of quartz glass. This allows the vapor growth gas to be preheated to a higher temperature near the holding table, which reduces the cooling of the holding table itself due to the passage of the vapor growth gas, making the temperature of the holding table uniform. Therefore, the effect of making the thickness of the thin film formed on the substrate uniform and the effect of improving the growth rate of the thin film can be achieved.

更に、MOCVD法では保持台を種々の温度に
して気相成長を行なうが、この場合カーボン等は
熱伝導率が大きいので特別な温度制御手段を用い
ることなく常に前記カーボン等の被覆部分を保持
台の温度に応じた適当な温度にすることができ効
果的な気相成長を実施することができる。
Furthermore, in the MOCVD method, vapor phase growth is performed by setting the holding table at various temperatures, but in this case, carbon etc. have high thermal conductivity, so the portion coated with carbon etc. is always kept on the holding table without using any special temperature control means. The temperature can be set appropriately depending on the temperature of the substrate, and effective vapor phase growth can be carried out.

なお、以上の効果において、前記被覆部分をフ
ローチヤンネルの保持台近傍のみに限定した場
合、該被覆部分は薄いので該被覆部分より上方へ
熱伝導は少なく該被覆部分のみを高温にでき効果
的である。
In addition, in the above effect, when the covered part is limited only to the vicinity of the holding base of the flow channel, since the covered part is thin, there is little heat conduction upward from the covered part, and only the covered part can be heated to a high temperature, which is effective. be.

以上の如く本考案はバレル型気相成長装置に応
用して種々の孔を奏するが、気相成長ガスを水平
に流す装置にも応用でき、予備加熱効果を奏する
ものである。
As described above, the present invention can be applied to a barrel-type vapor phase growth apparatus with various holes, but it can also be applied to an apparatus in which vapor phase growth gas flows horizontally, and it can produce a preheating effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案装置のフローチヤンネルの正面
図、第2図は同じく断面図、第3図はSiCVD装
置の断面図である。 6……保持台、10……フローチヤンネル、1
1……チヤンネル本体、12……切削部、13…
…カーボン片、14……被覆部分。
FIG. 1 is a front view of the flow channel of the device of the present invention, FIG. 2 is a sectional view of the same, and FIG. 3 is a sectional view of the SiCVD device. 6... Holding stand, 10... Flow channel, 1
1...Channel body, 12...Cutting part, 13...
...Carbon piece, 14...Covered part.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ガス導入管とガス排出管とを有する反応管内に
基板保持用の保持台を設けると共に、該保持台の
ガス導入管側にフローチヤンネルを設けてなる気
相成長装置において、前記フローチヤンネルの少
なくとも保持台側近傍の外面をカーボン・ボロン
ナイトライド、シリコンカーバイドのいずれかで
被覆したことを特徴とする気相成長装置。
In a vapor phase growth apparatus, a holder for holding a substrate is provided in a reaction tube having a gas inlet pipe and a gas exhaust pipe, and a flow channel is provided on the gas inlet pipe side of the holder, at least for holding the flow channel. A vapor phase growth apparatus characterized in that the outer surface near the stand side is coated with either carbon boron nitride or silicon carbide.
JP1987083154U 1987-05-29 1987-05-29 Expired JPH0441175Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987083154U JPH0441175Y2 (en) 1987-05-29 1987-05-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987083154U JPH0441175Y2 (en) 1987-05-29 1987-05-29

Publications (2)

Publication Number Publication Date
JPS63192460U JPS63192460U (en) 1988-12-12
JPH0441175Y2 true JPH0441175Y2 (en) 1992-09-28

Family

ID=30936483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987083154U Expired JPH0441175Y2 (en) 1987-05-29 1987-05-29

Country Status (1)

Country Link
JP (1) JPH0441175Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113923A (en) * 1983-11-25 1985-06-20 Furukawa Electric Co Ltd:The Semiconductor thin film vapor growth device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113923A (en) * 1983-11-25 1985-06-20 Furukawa Electric Co Ltd:The Semiconductor thin film vapor growth device

Also Published As

Publication number Publication date
JPS63192460U (en) 1988-12-12

Similar Documents

Publication Publication Date Title
US3603284A (en) Vapor deposition apparatus
EP1720200B1 (en) Epitaxially growing equipment
JP2005526394A (en) MOCVD reactor susceptor
JPH05238881A (en) Gas source molecular beam epitaxy device
US4651674A (en) Apparatus for vapor deposition
JPH0234166B2 (en)
JPH0441175Y2 (en)
JPH0586476A (en) Chemical vapor growth device
JP4364378B2 (en) Horizontal vapor deposition equipment
JP3955392B2 (en) Crystal growth apparatus and crystal growth method
JPS6058613A (en) Epitaxial apparatus
JPS607378B2 (en) CVD equipment
JPH0512279Y2 (en)
JP3495501B2 (en) Vapor phase growth equipment
JPH0345957Y2 (en)
JPH0235814Y2 (en)
JPH07243044A (en) Diamond vapor phase synthesis method
JP3778992B2 (en) Heater for vapor phase growth equipment for manufacturing gallium nitride based semiconductor thin films
JPH0551294A (en) Vapor growth device
JPS61242994A (en) Vertical unit for vapor growth
JP2543754Y2 (en) Artificial diamond deposition equipment
JPH01123413A (en) Vapor growth apparatus
JPH0322429A (en) Chemical vapor deposition device
JPH04173977A (en) Susceptor for vapor growth device
JP2872904B2 (en) Gas source molecular beam epitaxy equipment