JPH044070B2 - - Google Patents

Info

Publication number
JPH044070B2
JPH044070B2 JP62085929A JP8592987A JPH044070B2 JP H044070 B2 JPH044070 B2 JP H044070B2 JP 62085929 A JP62085929 A JP 62085929A JP 8592987 A JP8592987 A JP 8592987A JP H044070 B2 JPH044070 B2 JP H044070B2
Authority
JP
Japan
Prior art keywords
less
heat treatment
fatigue properties
rolling contact
contact fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62085929A
Other languages
Japanese (ja)
Other versions
JPS63252676A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8592987A priority Critical patent/JPS63252676A/en
Publication of JPS63252676A publication Critical patent/JPS63252676A/en
Publication of JPH044070B2 publication Critical patent/JPH044070B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、ころがり軸受、ローラ等の様なすぐ
れた転動疲労特性を必要とする部品に高マンガン
鋼系の肉盛を施した機械部品の製造方法に関する
ものである。 [従来の技術] 従来、歯車、ローラ、ころがり軸受などの機械
部品の転動疲労特性を向上させる方法は、その
部品の金属組識を改良して転動疲労特性を向上さ
せる方法、具体的には、C、Mn、Ni、Cr、Mo
の合金量の増加または特殊熱処理などの方法、
高周波焼入れ、浸炭、窒化または、溶射などの表
面硬化処理を施す方法、が行なわれてきた。 [発明が解決しようとする問題点] の方法は、コスト的にきわめて高価であり、
また部品の形状寸法によつては、特殊熱処理の不
可念な部品もある。 の方法は、コスト的に高価であることはもち
ろん、大型の部品については、不可能である。さ
らに、浸炭の場合、粒界酸化、溶射については、
母材との剥離などの問題を内包している。 [問題点を解決するための手段及び作用] 本発明は、従来の高転動疲労特性を有する機械
部品と同等もしくはそれ以上の転動疲労特性を有
する転動疲労特性の優れた機械部品の製造方法を
提供するものであり、 化学成分が重量%で [] C:0.7〜1.5%、 Si:0.5%以下、 Mn:10〜15%、 残部Feおよび不可避的不純物 である高マンガン鋼系の肉盛り 又は [] C:0.7〜1.5%、 Si:0.5%以下、 Mn:10〜15%、 Ni:6%以下、Cr:3%以下、Cu:1.5%下、
Mo:3%以下、V:3%以下、およびTi:2%
以下のうち1種または2種以上、 残部Feおよび不可避的不純物 である高マンガン鋼系の肉盛り を、少なくとも転動面に施し、形成された肉盛層
を 500〜700℃まで加熱し、ここで焼戻ししてパ
ーライト化熱処理を行ない、続いて再加熱した
後750〜950℃で熱処理し硬質な球状炭化物を分
散せしめる 好ましくは 1000〜1200℃で溶体化処理を行なつた後、急
冷してオーステナイト単相を得、次に500〜700
℃まで加熱し、ここで焼成ししてパーライト化
熱処理を行ない、続いて再加熱した後、750〜
950℃で熱処理し硬質な球状炭化物を分散せし
める ものである。 なお、本発明において転動面とは転動疲労を受
ける面を指称し、例えばころがり軸受の軸受面
や、ローラの周面等が挙示される。 以下、本発明の構成及び作用について詳細に説
明する。 従来、高マンガン鋼系の肉盛は高マンガン鋳鋼
品の補修などに利用されるのみであつた。これは
転動疲労が生じるような使用状態の場合、すなわ
ち、応力はかかつているが衝撃力の加わらないよ
うな使用状態の場合、高マンガン鋼系の肉盛表面
はHv450〜500程度にしかならず、肉盛層がすぐ
れた転動疲労特性を有するものではないと考えら
れていた。 しかしながら、本発明者らが、各種肉盛層の転
動疲労特性を研究した結果、高マンガン鋼系の肉
盛層がすぐれた転動疲労特性を有することが認め
られた。 本発明で製造する機械部品は、上記研究の結果
を基に転動疲労の問題となる面について、母材上
に高マンガン鋼系肉盛層を1層もしくは多層肉盛
したものである。 本発明において、肉盛に用いられる高マンガン
鋼は、重量%で、C:0.7〜1.5%、Si:0.5%以
下、Mn:10〜15%、残部Feおよび不可避的不純
物からなる高ころがり疲労特性を有する高マンガ
ン鋼とするか、または、重量%で、C:0.7〜1.5
%、Si:0.5%以下、Mn:10〜15%で、これに、
Ni:6%以下、Cr:3%以下、Cu:1.5%以下、
Mo:3%以下、V:3%以下、およびTi:2%
以下のうちの1種または2種以上を含有し、残部
がFeおよび不可避的不純物からなる高ころがり
疲労特性を有する高マンガン鋼とする。 以下に、この組分組成を上記の通りに限定した
理由を説明する。 (a) C、Mn C、Mn成分は、基地組識のオーステナイト
の安定性と、加工硬化特性に影響を与え、0.7
〜1.5%C、10〜15%Mnの組合せが最も安定し
たオーステナイトと高い加工硬化特性を有す
る。したがつて、Cは0.7〜1.5%、Mnは10〜
15%とした。 (b) Si Siは、溶着金属の脱酸及び溶着部の介在不純
物の含有防止に効果的であるが、0.5以上は、
効果が飽和することから上限を0.5%と定めた。 (c) Ni Niは、オーステナイトを安定にするため、
溶接施工が必要となる部品の場合に、炭化物析
出抑制のために添加されるが、6%以上添加さ
せても効果が飽和することから、上限を6%と
定めた。 (d) Cr、Mo Cr、Moは、降伏点、硬さを増大させるた
め、高い降伏点を必要とする部品の場合に添加
されるが、Crは3%以上、Moは3%以上添加
させた場合、熱処理がむずかしくなり、脆性傾
向がみとめられるため、上限をCr、Mo共に3
%と定めた。 (e) Cu Cr添加高マンガン鋼にCuを添加すると靭性
の増大に有効であるため、特に靭性を必要とす
る部品の場合に添加されるが、1.5%以上添加
させても効果が飽和することから、上限を1.5
%と定めた。 (f) V、Ti これらの成分には、強度を向上させる効果が
あるので、高強度が要求される部品の場合に添
加されるが、Vは3%以上、Tiは2%以上添
加すると靭性が低下するため、上限をVは3
%、Tiは2%と定めた。 さらに、研究の結果、高マンガン鋼系肉盛層の
AS肉盛の金属組織には、結晶粒界にフイルム状
の炭化物が析出していることがわかつた。このフ
イルム状の炭化物は転動疲労特性に有害であり、
母材の材質、熱応力、またはコストなどの面で問
題の生じない機械部品については、1000〜1200℃
で溶体化した後、急冷して粒界の炭化物を消滅せ
しめることが望ましい。 さらに、特に厳して使用状況の機械部品につい
ては、母材の材質、熱応力またはコストなどの面
で問題の生じない範囲で、肉盛層に、硬質な球状
炭化物を分散させることを目的とする熱処理を施
して金属組織を改良する。 なお、硬質な球状炭化物を分散させることは、
転動疲労特性の向上に有効である。 球状炭化物を分散させるための熱処理として
は、具体的には次の及びの2例が挙げられ
る。 第1図に示す様に、500〜700℃まで加熱し、
ここで焼戻してパーライト化熱処理を行ない、
続いて再加熱した後、750〜950℃で熱処理す
る。その再加熱中、パーライトのセメンタイト
が球状化し、γ単相に硬質な球状炭化物が分散
する。 のパーライト化熱処理に先立つて1000〜
1200℃で溶体化処理を行なう方法。この理由は
次の通りである。AS肉盛の状態で結晶粒界に
フイルム状の炭化物が著しく多量に析出してい
る場合、または偏析が著しい場合、炭化物、偏
析がパーライトの析出の状態に影響を与え、球
状炭化物の分散状態が悪くなるため、パーライ
ト化熱処理の前1000〜1200℃で溶体化処理を行
ない、フイルム状の炭化物を消滅せしめ、偏析
を軽減することが望ましい。 この場合の熱処理工程を、第2図に示す。 [実施例] 比較例 1 本発明の方法に従つて機械部品を製造し、その
転動疲労試験を行なつた。 まず、直径20mmの丸棒(SC46)の周面にAS肉
盛りを行ない、次いで第3図に示す形状、寸法及
び仕上げ精度となるように機械加工して車輪状部
材(試験片)1を製造した。この肉盛りは2層盛
りであり、下層(第1層)は厚さ2.5mmで、上層
(第2層)は厚さ2.5mmであり、それらの溶接に使
用した溶接棒の材質は第1表のNo.1の通りであ
る。なお、本例においては低温割れのおそれがあ
つたのでSUS 309と0.49%C−0.16%Si−13.9%
Mnの溶接棒を使用した。表1において示される
各成分割合は、いずれも残部Feと不可避的不純
物である。 このようにして製造した車輪状部材1を試験機
にセツトして転動疲労特性を測定した。試験機は
西原式金属摩耗試験機を用い、第3図に示した試
験片1を、Slip9%、ローラの回転数800rpmで疲
労耐久限度を調べた。試験片としては上記のもの
を2個1組用いた。 その結果を第2表に示す。第2表中、As肉盛
とは、肉盛後、熱処理などの処理を施していない
ことを示す。 比較例 2 比較例1において、製造された機械部品を次の
通り溶体化処理し、その後、同様にして転動疲労
特性を測定した。 1100℃×2Hr 昇温速度100℃/min以下 冷却・水冷(WQ) その結果を第2表に示す。 比較例 3、4 上層の組成を第1表No.2のものに代えた他は比
較例1、2と同様にして機械部品を製造し、その
転動疲労特性を測定した。 結果を第2表に示す。 比較例 5、6 上層の組成を第1表No.3のものに代えた他は比
較例1、2と同様にして機械部品を製造し、その
転動疲労特性を測定した。 結果を第2表に示す。 比較例 7、8 上層及び下層の組成を第1表No.4のものに代え
た他は比較例1、2と同様にして機械部品を製造
し、その転動疲労特性を測定した。 結果を第2表に示す。 比較例 9、10 上層及び下層の組成を第1表No.5のものに代え
た他は比較例1、2と同様にして機械部品を製造
し、その転動疲労特性を測定した。 結果を第2表に示す。 比較例 11、12 上層及び下層の組成を第1表No.6のものに代え
た他は比較例1、2と同様にして機械部品を製造
し、その転動疲労特性を測定した。 結果を第2表に示す。 比較例 13、14 上層の組成を第1表No.7のものに代えた他は比
較例1、2と同様にして機械部品を製造し、その
転動疲労特性を測定した。 結果を第2表に示す。 比較例 15、16 上層の組成を第1表No.8のものに代えた他は比
較例1、2と同様にして機械部品を製造し、その
転動疲労特性を測定した。 結果を第2表に示す。 比較例 17、18 上層の組成を第1表No.9のものに代えた他は比
較例1、2と同様にして機械部品を製造し、その
転動疲労特性を測定した。 結果を第2表に示す。 比較例 19、20 上層の組成を第1表No.10のものに代えた他は比
較例1、2と同様にして機械部品を製造し、その
転動疲労特性を測定した。 結果を第2表に示す。 比較例 21、22 上層の組成を第1表No.11のものに代えた他は比
較例1、2と同様にして機械部品を製造し、その
転動疲労特性を測定した。 結果を第2表に示す。 比較例 23、24 上層の組成を第1表No.12のものに代えた他は比
較例1、2と同様にして機械部品を製造し、その
転動疲労特性を測定した。 結果を第2表に示す。 実施例 1 比較例5(材質は前述の通り第1表のNo.3)に
おいて製造した機械部品について、第1図の如く
熱処理し、その転動疲労特性を測定した。結果を
第3表に示す。 なお、具体的な熱処理条件は次の通りである。 パーライト化熱処理 600℃×25Hr 昇温速度 5℃/min 冷却:空冷 分散化熱処理 850℃×2Hr 昇温速度 5℃/min 冷却:空冷 実施例 2 実施例1において、パーライト化処理に先立つ
て第2図の如く溶体化処理を行ない、その転動疲
労特性を測定した。 1100℃×2Hr 昇温速度 5℃/min以下 冷却:水冷 その結果を第3表に示す。 実施例 3 比較例11(材質は前述の通り第1表のNo.6)に
おいて製造した機械部品について、第1図の如く
熱処理し、その転動疲労特性を測定した。結果を
第3表に示す。 なお、具体的な熱処理条件は次の通りである。 パーライト化熱処理 600℃×25Hr 昇温速度 5℃/min以下 冷却:水冷 分散化熱処理 850×2Hr 昇温速度 5℃/min以下 冷却:水冷 実施例 4 実施例1において、パーライト化処理に先立つ
て第2図の如く溶体化処理を行ない、その転動疲
労特性を測定した。 1100℃×2Hr 昇温速度 5℃/min 冷却:水冷 その結果を第3表に示す。 比較例 25〜27 第3図に示す形状、寸法及び表面精度となるよ
うに鋳造及び仕上げ加工を行なつて製造した機械
部品についてその転動疲労特性を測定した。 結果を第3表に示す。なお、比較例25〜27の材
質は次の通りである。 比較例25:SCMnCrM2 〃 26:SCSiMn2 〃 27:SF55A また、この比較例とJIS規格の対応関係を第4
表に示す。
[Field of Industrial Application] The present invention relates to a method for manufacturing mechanical parts in which high manganese steel is applied to parts that require excellent rolling fatigue properties, such as rolling bearings and rollers. . [Prior Art] Conventionally, methods for improving the rolling contact fatigue properties of mechanical parts such as gears, rollers, and rolling bearings have focused on improving the rolling contact fatigue properties of mechanical parts such as gears, rollers, and rolling bearings. is C, Mn, Ni, Cr, Mo
methods such as increasing the amount of alloy or special heat treatment,
Surface hardening treatments such as induction hardening, carburizing, nitriding, and thermal spraying have been used. The method of [problem to be solved by the invention] is extremely expensive;
Also, depending on the shape and size of the parts, some parts may require special heat treatment. This method is not only expensive, but also impossible for large parts. Furthermore, in the case of carburizing, grain boundary oxidation, and thermal spraying,
This includes problems such as peeling from the base material. [Means and effects for solving the problems] The present invention is directed to the production of mechanical parts with excellent rolling contact fatigue properties that are equivalent to or better than conventional mechanical parts with high rolling contact fatigue properties. This method provides a high manganese steel-based meat whose chemical composition is in weight percent [] C: 0.7 to 1.5%, Si: 0.5% or less, Mn: 10 to 15%, the balance being Fe and unavoidable impurities. Mound or [] C: 0.7 to 1.5%, Si: 0.5% or less, Mn: 10 to 15%, Ni: 6% or less, Cr: 3% or less, Cu: 1.5% or less,
Mo: 3% or less, V: 3% or less, and Ti: 2%
A build-up of high manganese steel containing one or more of the following, the balance being Fe and unavoidable impurities, is applied to at least the raceway, the formed build-up layer is heated to 500-700℃, and then After tempering and pearlitizing heat treatment, it is then reheated and heat treated at 750 to 950°C to disperse hard spherical carbides, preferably solution treated at 1000 to 1200°C, and then rapidly cooled to form austenite. Get single phase, then 500-700
℃, fired here to perform pearlitization heat treatment, and then reheated to 750 ~
It is heat treated at 950℃ to disperse hard spherical carbides. In the present invention, the term "rolling surface" refers to a surface that is subject to rolling fatigue, and includes, for example, the bearing surface of a rolling bearing, the circumferential surface of a roller, and the like. Hereinafter, the structure and operation of the present invention will be explained in detail. Conventionally, high manganese steel overlay has been used only for repairing high manganese cast steel products. This is because in the case of use conditions where rolling fatigue occurs, that is, in use conditions where stress is applied but no impact force is applied, the overlay surface of high manganese steel will only have a Hv of about 450 to 500. It was thought that the built-up layer did not have excellent rolling contact fatigue properties. However, as a result of the inventors' research on rolling contact fatigue properties of various overlays, it was found that high manganese steel-based overlays have excellent rolling contact fatigue properties. Based on the results of the above-mentioned research, the mechanical parts manufactured by the present invention have one or multiple high manganese steel build-up layers built up on a base material in order to deal with the problem of rolling contact fatigue. In the present invention, the high manganese steel used for overlaying has high rolling fatigue properties consisting of C: 0.7 to 1.5%, Si: 0.5% or less, Mn: 10 to 15%, the balance being Fe and unavoidable impurities. or C: 0.7 to 1.5 in weight%
%, Si: 0.5% or less, Mn: 10 to 15%, and to this,
Ni: 6% or less, Cr: 3% or less, Cu: 1.5% or less,
Mo: 3% or less, V: 3% or less, and Ti: 2%
A high manganese steel having high rolling fatigue properties containing one or more of the following, with the balance being Fe and unavoidable impurities. The reason why this group composition is limited as described above will be explained below. (a) C, Mn The C and Mn components influence the stability of the austenite matrix structure and the work hardening properties, and are 0.7
The combination of ~1.5% C and 10~15% Mn has the most stable austenite and high work hardening properties. Therefore, C is 0.7~1.5%, Mn is 10~
It was set at 15%. (b) Si Si is effective in deoxidizing the weld metal and preventing inclusion of intervening impurities in the welded part, but if it is 0.5 or more,
The upper limit was set at 0.5% because the effect would reach saturation. (c) Ni Ni stabilizes austenite, so
In the case of parts that require welding, it is added to suppress carbide precipitation, but the effect is saturated even if it is added in an amount of 6% or more, so the upper limit was set at 6%. (d) Cr, Mo Cr and Mo are added to parts that require a high yield point in order to increase yield point and hardness, but Cr and Mo should not be added in an amount of 3% or more. If the
%. (e) Cu Adding Cu to Cr-added high manganese steel is effective in increasing toughness, so it is added especially for parts that require toughness, but the effect is saturated even when added at 1.5% or more. , set the upper limit to 1.5
%. (f) V, Ti These ingredients have the effect of improving strength, so they are added to parts that require high strength, but adding 3% or more of V and 2% or more of Ti improves toughness. decreases, so the upper limit of V is 3
% and Ti were set at 2%. Furthermore, as a result of research, high manganese steel build-up layer
It was found that film-like carbides were precipitated at grain boundaries in the metal structure of AS overlay. This film-like carbide is harmful to rolling fatigue properties,
For mechanical parts that do not cause problems in terms of base material, thermal stress, or cost, 1000 to 1200℃
After solution treatment, it is desirable to rapidly cool the grain boundary carbide to eliminate it. Furthermore, for mechanical parts that are used under particularly severe conditions, the aim is to disperse hard spherical carbide in the overlay layer to the extent that no problems arise in terms of base material material, thermal stress, or cost. Heat treatment is applied to improve the metal structure. In addition, dispersing hard spherical carbide is
Effective in improving rolling fatigue properties. Specific examples of the heat treatment for dispersing the spherical carbide include the following two examples. As shown in Figure 1, heat to 500-700℃,
Here, it is tempered and pearlitized heat treated.
Subsequently, after reheating, heat treatment is performed at 750-950°C. During the reheating, the cementite in the pearlite becomes spheroidal, and hard spherical carbides are dispersed in the γ single phase. 1000 ~ prior to pearlitization heat treatment
A method of solution treatment at 1200℃. The reason for this is as follows. If a large amount of film-like carbides are precipitated at grain boundaries in AS overlay, or if segregation is significant, carbides and segregation will affect the state of pearlite precipitation, and the dispersion state of spheroidal carbides will change. Therefore, it is desirable to perform solution treatment at 1000 to 1200°C before pearlitization heat treatment to eliminate film-like carbides and reduce segregation. The heat treatment process in this case is shown in FIG. [Examples] Comparative Example 1 Machine parts were manufactured according to the method of the present invention and subjected to a rolling fatigue test. First, AS overlay is applied to the circumferential surface of a round bar (SC46) with a diameter of 20 mm, and then machined to the shape, dimensions, and finishing accuracy shown in Figure 3 to manufacture the wheel-shaped member (test piece) 1. did. This build-up is a two-layer build-up, the lower layer (first layer) is 2.5 mm thick, and the upper layer (second layer) is 2.5 mm thick, and the material of the welding rod used for welding them is the first layer. As shown in No. 1 in the table. In this example, there was a risk of cold cracking, so SUS 309 and 0.49%C-0.16%Si-13.9% were used.
A Mn welding rod was used. In each of the component ratios shown in Table 1, the balance is Fe and unavoidable impurities. The wheel-like member 1 manufactured in this way was set in a testing machine and its rolling fatigue characteristics were measured. A Nishihara metal wear tester was used as the tester, and the fatigue durability limit of the test piece 1 shown in FIG. 3 was examined at a slip of 9% and a roller rotation speed of 800 rpm. A set of two of the above specimens were used as the test specimens. The results are shown in Table 2. In Table 2, As overlay indicates that no treatment such as heat treatment was performed after overlay. Comparative Example 2 In Comparative Example 1, the manufactured mechanical parts were subjected to solution treatment as follows, and then rolling contact fatigue properties were measured in the same manner. 1100℃×2Hr Cooling/Water cooling (WQ) at heating rate of 100℃/min or less The results are shown in Table 2. Comparative Examples 3 and 4 Machine parts were manufactured in the same manner as in Comparative Examples 1 and 2, except that the composition of the upper layer was changed to that shown in Table 1 No. 2, and their rolling contact fatigue properties were measured. The results are shown in Table 2. Comparative Examples 5 and 6 Machine parts were manufactured in the same manner as in Comparative Examples 1 and 2, except that the composition of the upper layer was changed to that shown in Table 1 No. 3, and their rolling contact fatigue properties were measured. The results are shown in Table 2. Comparative Examples 7 and 8 Machine parts were manufactured in the same manner as in Comparative Examples 1 and 2, except that the compositions of the upper and lower layers were changed to those shown in Table 1 No. 4, and their rolling contact fatigue properties were measured. The results are shown in Table 2. Comparative Examples 9 and 10 Machine parts were manufactured in the same manner as in Comparative Examples 1 and 2, except that the compositions of the upper and lower layers were changed to those shown in Table 1 No. 5, and their rolling contact fatigue properties were measured. The results are shown in Table 2. Comparative Examples 11 and 12 Machine parts were manufactured in the same manner as in Comparative Examples 1 and 2, except that the compositions of the upper and lower layers were changed to those shown in Table 1 No. 6, and their rolling contact fatigue properties were measured. The results are shown in Table 2. Comparative Examples 13 and 14 Machine parts were manufactured in the same manner as in Comparative Examples 1 and 2, except that the composition of the upper layer was changed to that shown in Table 1 No. 7, and their rolling contact fatigue properties were measured. The results are shown in Table 2. Comparative Examples 15 and 16 Machine parts were manufactured in the same manner as in Comparative Examples 1 and 2, except that the composition of the upper layer was changed to that shown in Table 1 No. 8, and their rolling contact fatigue properties were measured. The results are shown in Table 2. Comparative Examples 17 and 18 Machine parts were manufactured in the same manner as in Comparative Examples 1 and 2, except that the composition of the upper layer was changed to that shown in Table 1 No. 9, and their rolling contact fatigue properties were measured. The results are shown in Table 2. Comparative Examples 19 and 20 Machine parts were manufactured in the same manner as in Comparative Examples 1 and 2, except that the composition of the upper layer was changed to that shown in Table 1, No. 10, and their rolling contact fatigue properties were measured. The results are shown in Table 2. Comparative Examples 21 and 22 Machine parts were manufactured in the same manner as in Comparative Examples 1 and 2, except that the composition of the upper layer was changed to that shown in Table 1, No. 11, and their rolling contact fatigue properties were measured. The results are shown in Table 2. Comparative Examples 23 and 24 Machine parts were produced in the same manner as in Comparative Examples 1 and 2, except that the composition of the upper layer was changed to that shown in Table 1, No. 12, and their rolling contact fatigue properties were measured. The results are shown in Table 2. Example 1 The mechanical parts manufactured in Comparative Example 5 (the material was No. 3 in Table 1 as described above) were heat treated as shown in FIG. 1, and their rolling contact fatigue properties were measured. The results are shown in Table 3. Note that the specific heat treatment conditions are as follows. Pearlitization heat treatment 600℃×25Hr Temperature increase rate 5℃/min Cooling: Air cooling Dispersion heat treatment 850℃×2Hr Temperature increase rate 5℃/min Cooling: Air cooling Example 2 In Example 1, the second step was performed prior to pearlitization treatment. Solution treatment was performed as shown in the figure, and the rolling contact fatigue properties were measured. 1100℃×2Hr Temperature rising rate 5℃/min or less Cooling: Water cooling The results are shown in Table 3. Example 3 The machine parts manufactured in Comparative Example 11 (the material was No. 6 in Table 1 as described above) were heat treated as shown in FIG. 1, and their rolling contact fatigue properties were measured. The results are shown in Table 3. Note that the specific heat treatment conditions are as follows. Pearlitization heat treatment 600℃×25Hr Temperature increase rate 5℃/min or less Cooling: Water-cooled Dispersion heat treatment 850×2Hr Temperature increase rate 5℃/min or less Cooling: Water cooling Example 4 In Example 1, the first step before pearlitization treatment Solution treatment was performed as shown in Figure 2, and its rolling contact fatigue properties were measured. 1100℃×2Hr Heating rate: 5℃/min Cooling: Water cooling The results are shown in Table 3. Comparative Examples 25 to 27 Machine parts manufactured by casting and finishing to have the shapes, dimensions, and surface accuracy shown in FIG. 3 were measured for their rolling contact fatigue characteristics. The results are shown in Table 3. The materials of Comparative Examples 25 to 27 are as follows. Comparative example 25: SCMnCrM2 〃 26: SCSiMn2 〃 27: SF55A In addition, the correspondence between this comparative example and the JIS standard is
Shown in the table.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 (B) 焼入 焼もどし
第2、3表によれば、本発明に従つて高マンガ
ン鋼の肉盛りを形成し、分散化熱処理を施した機
械部品は、肉盛りを形成しなかつた比較例25〜27
に比べ、更には肉盛りを形成したが分散化熱処理
を施さない実施例1〜25に比べ、著しく優れた転
動疲労特性を有することがわかる。 [効果] 以上の実施例からも明らかな通り、本発明によ
れば極めて転動疲労特性に優れた機械部品が提供
される。本発明は、部品表面に単に肉盛りを形成
して、所定の簡易な熱処理を施すだけで上記の転
動疲労特性に優れた機械部品が得られるものであ
り、低コストにて実施でき、広汎な分野にて実用
できる。
[Table] (B) Quenching Tempering According to Tables 2 and 3, machine parts in which a build-up of high manganese steel is formed and subjected to decentralized heat treatment according to the present invention have no build-up and Comparative Examples 25-27
It can be seen that the rolling contact fatigue properties are significantly superior compared to those of Examples 1 to 25 in which a build-up was formed but no dispersion heat treatment was performed. [Effects] As is clear from the above examples, the present invention provides a mechanical component with extremely excellent rolling fatigue characteristics. The present invention enables mechanical parts with excellent rolling contact fatigue properties as described above to be obtained by simply forming a build-up on the surface of the part and subjecting it to a predetermined simple heat treatment, and can be implemented at low cost and widely used. It can be put to practical use in various fields.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、それぞれ本発明の鋼に施
した熱処理の異なる実施例を示した図、第3図は
疲労試験に供した試験片の形状及び寸法説明図で
ある。 1…試験片。
FIGS. 1 and 2 are diagrams showing different examples of heat treatment applied to the steel of the present invention, respectively, and FIG. 3 is a diagram illustrating the shape and dimensions of a test piece subjected to a fatigue test. 1...Test piece.

Claims (1)

【特許請求の範囲】 1 化学成分が重量%で C:0.7〜1.5%、 Si:0.5%以下、 Mn:10〜15%、 残部Feおよび不可避的不純物 である高マンガン鋼系の肉盛りを、少なくとも転
動面に施し、形成された肉盛層を500〜700℃まで
加熱し、ここで焼戻ししてパーライト化熱処理を
行ない、続いて再加熱した後750〜950℃で熱処理
し硬質な球状炭化物を分散せしめることを特徴と
する転動疲労特性の優れた機械部品の製造方法。 2 化学成分が重量%で C:0.7〜1.5%、 Si:0.5%以下、 Mn:10〜15%、 残部Feおよび不可避的不純物 である高マンガン鋼系の肉盛りを、少なくとも転
動面に施し、形成された肉盛層を1000〜1200℃で
溶体化処理を行なつた後、急冷してオーステナイ
ト単相を得、次に500〜700℃まで加熱し、ここで
焼戻ししてパーライト化熱処理を行ない、続いて
再加熱した後、750〜950℃で熱処理し硬質な球状
炭化物を分散せしめることを特徴とする特許請求
の範囲第1項に記載の転動疲労特性の優れた機械
部品の製造方法。 3 化学成分が重量%で C:0.7〜1.5%、 Si:0.5%以下、 Mn:10〜15%、 Ni:6%以下、Cr:3%以下、Cu:1.5%以
下、Mo:3%以下、V:3%以下、およびTi:
2%以下のうち1種または2種以上、 残部Feおよび不可避的不純物 である高マンガン鋼系の肉盛りを、少なくとも転
動面に施し、形成された肉盛層を500〜700℃まで
加熱し、ここで焼戻ししてパーライト化熱処理を
行ない、続いて再加熱した後750〜950℃で熱処理
し硬質な球状炭化物を分散せしめることを特徴と
する転動疲労特性の優れた機械部品の製造方法。 4 化学成分が重量%で C:0.7〜1.5%、 Si:0.5%以下、 Mn:10〜15%、 Ni:6%以下、Cr:3%以下、Cu:1.5%以
下、Mo:3%以下、V:3%以下、およびTi:
2%以下のうち1種または2種以上、 残部Feおよび不可避的不純物 である高マンガン鋼系の肉盛りを、少なくとも転
動面に施し、形成された肉盛層を1000〜1200℃で
溶体化処理を行なつた後、急冷してオーステナイ
ト単相を得、次に500〜700℃まで加熱し、ここで
焼戻ししてパーライト化熱処理を行ない、続いて
再加熱した後、750〜950℃で熱処理し硬質な球状
炭化物を分散せしめることを特徴とする特許請求
の範囲第3項に記載の転動疲労特性の優れた機械
部品の製造方法。
[Claims] 1. A high-manganese steel overlay whose chemical components are C: 0.7 to 1.5%, Si: 0.5% or less, Mn: 10 to 15%, and the balance is Fe and unavoidable impurities. It is applied to at least the rolling surface, and the formed build-up layer is heated to 500 to 700℃, tempered here to perform pearlite heat treatment, and then reheated and heat treated at 750 to 950℃ to form a hard spherical carbide. A method for manufacturing mechanical parts with excellent rolling contact fatigue properties, characterized by dispersing 2. The chemical composition is C: 0.7 to 1.5%, Si: 0.5% or less, Mn: 10 to 15%, the balance being Fe and unavoidable impurities. The formed overlay layer is solution-treated at 1000-1200°C, then rapidly cooled to obtain a single austenite phase, then heated to 500-700°C, tempered here, and subjected to pearlitization heat treatment. The method for producing mechanical parts with excellent rolling contact fatigue properties as set forth in claim 1, characterized in that the method comprises performing a heat treatment at 750 to 950°C to disperse hard spherical carbides. . 3 Chemical components are C: 0.7 to 1.5%, Si: 0.5% or less, Mn: 10 to 15%, Ni: 6% or less, Cr: 3% or less, Cu: 1.5% or less, Mo: 3% or less , V: 3% or less, and Ti:
A build-up of high manganese steel containing one or more of 2% or less, the balance being Fe and unavoidable impurities is applied to at least the raceway surface, and the formed build-up layer is heated to 500 to 700℃. A method for producing mechanical parts with excellent rolling contact fatigue properties, characterized by tempering and pearlitization heat treatment, followed by reheating and heat treatment at 750 to 950°C to disperse hard spherical carbides. 4 Chemical components are C: 0.7 to 1.5%, Si: 0.5% or less, Mn: 10 to 15%, Ni: 6% or less, Cr: 3% or less, Cu: 1.5% or less, Mo: 3% or less , V: 3% or less, and Ti:
A build-up of high manganese steel containing one or more of 2% or less, the balance Fe and unavoidable impurities is applied to at least the raceway, and the formed build-up layer is solution-treated at 1000 to 1200℃. After the treatment, it is rapidly cooled to obtain austenite single phase, then heated to 500-700℃, tempered here to perform pearlitization heat treatment, and then reheated and then heat-treated at 750-950℃. 4. The method of manufacturing a mechanical component having excellent rolling contact fatigue properties according to claim 3, wherein hard spherical carbide is dispersed.
JP8592987A 1987-04-08 1987-04-08 Mechanical parts having excellent rolling fatigue characteristic and its production Granted JPS63252676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8592987A JPS63252676A (en) 1987-04-08 1987-04-08 Mechanical parts having excellent rolling fatigue characteristic and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8592987A JPS63252676A (en) 1987-04-08 1987-04-08 Mechanical parts having excellent rolling fatigue characteristic and its production

Publications (2)

Publication Number Publication Date
JPS63252676A JPS63252676A (en) 1988-10-19
JPH044070B2 true JPH044070B2 (en) 1992-01-27

Family

ID=13872446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8592987A Granted JPS63252676A (en) 1987-04-08 1987-04-08 Mechanical parts having excellent rolling fatigue characteristic and its production

Country Status (1)

Country Link
JP (1) JPS63252676A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669632B2 (en) * 1990-03-14 1994-09-07 株式会社神戸製鋼所 Manufacturing method of hardfacing roll
JP2006056656A (en) * 2004-08-19 2006-03-02 Shinko Electric Co Ltd Lifting electromagnet
CN111940997B (en) * 2019-05-15 2022-07-19 宝山钢铁股份有限公司 Modification method for hole pattern of forged semi-steel roller

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919989A (en) * 1972-06-14 1974-02-21
JPS56122669A (en) * 1980-03-05 1981-09-26 Hitachi Ltd Member having high errosion-corrosion resistance
JPS57199593A (en) * 1981-06-04 1982-12-07 Toshiba Corp Welding rod for build up welding
JPS6089549A (en) * 1983-09-23 1985-05-20 ベルント コス Process-hardenable austenite manganese steel and manufacture
JPS61190047A (en) * 1985-02-19 1986-08-23 コンバツシヨン・エンヂニアリング・インコーポレーテツド Highly abrasion resistant material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919989A (en) * 1972-06-14 1974-02-21
JPS56122669A (en) * 1980-03-05 1981-09-26 Hitachi Ltd Member having high errosion-corrosion resistance
JPS57199593A (en) * 1981-06-04 1982-12-07 Toshiba Corp Welding rod for build up welding
JPS6089549A (en) * 1983-09-23 1985-05-20 ベルント コス Process-hardenable austenite manganese steel and manufacture
JPS61190047A (en) * 1985-02-19 1986-08-23 コンバツシヨン・エンヂニアリング・インコーポレーテツド Highly abrasion resistant material

Also Published As

Publication number Publication date
JPS63252676A (en) 1988-10-19

Similar Documents

Publication Publication Date Title
US3860457A (en) A ductile iron and method of making it
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
WO2001042524A2 (en) Low carbon, low chromium carburizing high speed steels
US9758849B2 (en) Bearing steel composition
JP2000096185A (en) Steel for bearing
EP1786940A2 (en) Optimization of steel metallurgy to improve broach tool life
JPH044070B2 (en)
JPH01283430A (en) Bearing excellent in rolling fatigue life characteristic
JPH02270937A (en) High manganese steel having high rolling contact fatigue properties and its manufacture
JP2973006B2 (en) Sliding member and manufacturing method thereof
JPS61147815A (en) Production of roll having high hardened depth
JPH04221044A (en) High speed steel type sintered alloy
JPH04337024A (en) Production of bearing steel
JPH04221041A (en) High speed steel type sintered alloy
JPH0251972B2 (en)
EP2814994B1 (en) A bearing steel composition
JPS63255345A (en) Bearing steel
JPS60152632A (en) Production of high-chromium cast iron roll material
JP2023163968A (en) Bar steel and carburized component
JPH04221042A (en) High speed steel type sintered alloy
JPH04221046A (en) High speed steel type sintered alloy
JPH04221045A (en) High speed steel type sintered alloy
JP2023163969A (en) Bar steel and carburized component
JPH062082A (en) High speed steel series sintered alloy
JPH062080A (en) High speed steel series sintered alloy