JPH0440410B2 - - Google Patents

Info

Publication number
JPH0440410B2
JPH0440410B2 JP60035140A JP3514085A JPH0440410B2 JP H0440410 B2 JPH0440410 B2 JP H0440410B2 JP 60035140 A JP60035140 A JP 60035140A JP 3514085 A JP3514085 A JP 3514085A JP H0440410 B2 JPH0440410 B2 JP H0440410B2
Authority
JP
Japan
Prior art keywords
weight
content
ultra
slag
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60035140A
Other languages
Japanese (ja)
Other versions
JPS61194108A (en
Inventor
Kyoshi Takei
Hideyuki Ooma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP60035140A priority Critical patent/JPS61194108A/en
Publication of JPS61194108A publication Critical patent/JPS61194108A/en
Publication of JPH0440410B2 publication Critical patent/JPH0440410B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5211Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] (産業上の利用分野) この発明は、極低炭素鋼(ただし、この発明に
おいては純鉄と称されるものを含む。)を製造す
るのに利用される極低炭素鋼の製造方法に関する
ものである。 (従来の技術) 極低炭素鋼は、リレー用鉄心、ヨーク、継鉄な
どの軟質磁性材料として使用されるが、このよう
な用途においては保磁力Hcを下げるために含有
炭素量を極低量にする必要がある。従来、このよ
うな極低炭素鋼を製造するに際しては、大気溶解
炉を用いて脱炭を行う方法が採用されていたが、
この場合には耐火物の溶損が著しいため、脱炭に
は限界があつた。また、大気溶解であるために能
率が悪く、コストの上昇をもたらすという問題点
もあつた。そこで、減圧下(ないしは真空下)に
設置した容器内で脱ガス精錬を行ういわゆる真空
脱炭法が採用されることも試みられている。 従来このような真空脱炭法による極低炭素鋼の
製造は、減圧下におけるC−O反応に従つて進行
し、最終的にはかなり低いCO平衡に達するが、
この真空脱炭処理の間において温度低下が生じた
場合には、これを補償するための加熱を行う必要
がある。 (発明が解決しようとする問題点) そこで、加熱を行う必要が生じた場合には例え
ば電極を用いて加熱することとなるが、従来の通
常の取鍋内における電極加熱では、壁部の耐火物
にハイアルミナ系やMg−Cr系のものを使用した
り、C含有量の多いMgO−C系のものを使用し
たりしているため、前者のCを含まないハイアル
ミナ系やMg−Cr系の耐火物を使用したものでは
加熱時において溶損が大きくなり、とくにスラグ
ラインでの侵食が大になるという問題点を有し、
また後者のC含有量の多いMgO−C系の耐火物
を使用したものでは溶鋼中の炭素量が増加し、炭
素量の低減には限界があり、C含有量は0.009〜
0.015重量%が限度であるという問題点を有して
いた。 この発明は上述した従来の問題点に着目してな
されたもので、炭素含有量の極めて少ない極低炭
素鋼を低コストで製造することが可能である極低
炭素鋼の製造方法を提供することを目的としてい
る。 [発明の構成] (問題点を解決するための手段) この発明による極低炭素鋼(ただし、この発明
では純鉄、合金鋼、ステンレス鋼などを含む)の
製造方法は、減圧(ないしは真空を含む。)下で
加熱精錬をすることにより極炭素鋼を製造するに
際し、容器壁部の耐火物として炭素含有量が3〜
7重量%でかつMgO系が50重量%以上であるも
のを使用し、スラグの塩基度(CaO/SiO2)が
1.5〜10でかつスラグ中のMgO量が5〜25重量%
である範囲に調整して精錬するようにしたことを
特徴としている。 この発明による極低炭素鋼の製造に使用される
精錬容器としては、例えば電極加熱方式の電気炉
や取鍋などが使用され、減圧下ないし真空下にお
いて精錬に供される。 そして、前記の電気炉や取鍋などの壁部の耐火
物としては、炭素含有量が3〜7重量%でかつ
MgO系が50重量%以上であるものが使用される。
ここで、耐火物中の炭素含有量を3〜7重量%と
したのは、炭素含有量が3重量%よりも少ない場
合にはスポーリングが発生しやすくなつて加熱に
耐えないものとなり、耐用寿命が低下するためで
あり、7重量%よりも多い場合には溶鋼中への炭
素の移行が多くなり、溶鋼中の炭素量を低減でき
なくなるためである。また、使用される耐火物は
MgO系が50重量%以上であり、その他のSiO2
AI2O3、Cr2O3、CaO系…等々のものを含むもの
が使用される。この場合、MgO系が50重量%よ
りも少ないときには、耐火物中のCが溶鋼中へ移
行して炭素量の低減に限界をもらすので好ましく
ない。 また、この発明においては、スラグの塩基度
(CaO/SiO2)を1.5〜10の範囲に規定するように
しているが、この理由は、上記塩基度が1.5より
も小さいとMgOとSiO2とが反応して耐火物を侵
食し、壁部の耐用寿命を低下するためであり、ま
た、上記塩基度が10よりも大きくなるとスラグの
融点が上昇して操業に支障をきたすためである。 さらに、スラグ中のMgO量が5〜25重量%の
範囲にあるようにしたのは、スラグ中に所要量の
MgOを含有させることによつて耐火物中のMgO
の侵食を防止し、かつまたスラグの塩基度を上記
の値に確保できるようにするためである。 このような耐火物およびスラグ塩基度等の規制
によつて極低炭素鋼の製造が低コストで可能とな
り、軟質磁性材料、快削磁性材料およびその他極
低炭素合金鋼やステンレス鋼などの極低炭素材料
の製造に適用される。 (実施例) 第1表に示す化学成分の純鉄を溶製するに際
し、第2表に示す仕様の電極加熱式取鍋(“IF”
と称することもある)を使用して精錬を行つた。
[Purpose of the invention] (Industrial application field) This invention relates to ultra-low carbon steel used for manufacturing ultra-low carbon steel (including what is referred to as pure iron in this invention). The present invention relates to a manufacturing method. (Prior technology) Ultra-low carbon steel is used as a soft magnetic material for relay cores, yokes, yokes, etc. In such applications, the amount of carbon contained must be extremely low in order to lower the coercive force Hc. It is necessary to Conventionally, when producing such ultra-low carbon steel, a method of decarburizing using an atmospheric melting furnace was adopted.
In this case, there was a limit to decarburization due to significant erosion of the refractories. In addition, there was also the problem that the efficiency was low due to atmospheric dissolution, leading to an increase in cost. Therefore, attempts have been made to employ a so-called vacuum decarburization method in which degassing and refining is performed in a container installed under reduced pressure (or under vacuum). Conventionally, the production of ultra-low carbon steel by such a vacuum decarburization method proceeds according to the C-O reaction under reduced pressure, and eventually reaches a considerably low CO equilibrium.
If a temperature drop occurs during this vacuum decarburization process, it is necessary to perform heating to compensate for this. (Problem to be solved by the invention) Therefore, when it becomes necessary to perform heating, heating is performed using, for example, an electrode. However, in conventional electrode heating in a normal ladle, High-alumina or Mg-Cr-based materials are used, or MgO-C-based materials with a high C content are used. Type refractories have the problem of increased erosion during heating, especially corrosion at the slag line.
Furthermore, in the case of the latter, which uses MgO-C refractories with a high C content, the amount of carbon in the molten steel increases, and there is a limit to reducing the amount of carbon, with the C content ranging from 0.009 to
The problem was that the limit was 0.015% by weight. This invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a method for manufacturing ultra-low carbon steel that can manufacture ultra-low carbon steel with extremely low carbon content at low cost. It is an object. [Structure of the Invention] (Means for Solving the Problems) The method for producing ultra-low carbon steel (including pure iron, alloy steel, stainless steel, etc. in this invention) according to the present invention involves applying reduced pressure (or vacuum). ) When manufacturing ultra-carbon steel by heating and refining under
7% by weight and 50% by weight or more of MgO, and the basicity (CaO/SiO 2 ) of the slag
1.5 to 10 and the amount of MgO in the slag is 5 to 25% by weight
It is characterized by being refined by adjusting it to a certain range. As the refining vessel used for producing the ultra-low carbon steel according to the present invention, for example, an electric furnace or ladle of an electrode heating type is used, and the refining is performed under reduced pressure or vacuum. The refractories for the walls of electric furnaces, ladles, etc. have a carbon content of 3 to 7% by weight.
A material containing 50% by weight or more of MgO is used.
Here, the reason why the carbon content in the refractory is set to 3 to 7% by weight is that if the carbon content is less than 3% by weight, spalling will easily occur and the refractory will not be able to withstand heating. This is because the service life will be reduced, and if the amount is more than 7% by weight, a large amount of carbon will migrate into the molten steel, making it impossible to reduce the amount of carbon in the molten steel. In addition, the refractories used are
MgO type is 50% by weight or more, other SiO 2 ,
Those containing AI 2 O 3 , Cr 2 O 3 , CaO type, etc. are used. In this case, if the MgO content is less than 50% by weight, carbon in the refractory will migrate into the molten steel, which will limit the reduction in carbon content, which is not preferable. In addition, in this invention, the basicity (CaO/SiO 2 ) of the slag is specified in the range of 1.5 to 10. The reason for this is that if the basicity is less than 1.5, MgO and SiO 2 This is because the slag reacts and corrodes the refractories, reducing the service life of the wall. Also, if the basicity is greater than 10, the melting point of the slag will rise, causing problems in operation. Furthermore, the reason why the amount of MgO in the slag was set in the range of 5 to 25% by weight was that the required amount of MgO in the slag was
MgO in refractories by incorporating MgO
This is to prevent corrosion of the slag and to maintain the basicity of the slag at the above value. These regulations on refractories and slag basicity have made it possible to manufacture ultra-low carbon steel at low cost, making it possible to manufacture ultra-low carbon steels at low cost, making it possible to manufacture ultra-low carbon steels such as soft magnetic materials, free-cutting magnetic materials, and other ultra-low carbon alloy steels and stainless steels. Applicable to the production of carbon materials. (Example) When melting pure iron with the chemical composition shown in Table 1, an electrode-heated ladle ("IF") with the specifications shown in Table 2 was used.
) was used for refining.

【表】【table】

【表】 すなわち、電気炉で溶製した鋼中のC含有量が
0.2重量%である状態で出鋼したのち第2表に示
す使用の取鍋内に移し、真空脱ガス処理を行つて
溶鋼中の炭素量を0.0023〜0.0030重量%にした。
そして、この処理の間における温度の低下を電極
加熱により補つた。この結果、得られた純鉄中の
C含有量は0.003〜0.004重量%であつた。またH
含有量は0.0002重量%以下、O含有量は0.005〜
0.006重量%の範囲にあり、著しく品質の安定し
たものであつた。 (比較例) 第1表に示す化学成分の純鉄を溶鋼するに際
し、第3表に示す仕様の電極加熱式取鍋を用いて
精錬を行つた。
[Table] In other words, the C content in steel melted in an electric furnace is
After the steel was tapped at a carbon content of 0.2% by weight, it was transferred into a ladle used as shown in Table 2, and subjected to vacuum degassing treatment to bring the carbon content in the molten steel to 0.0023 to 0.0030% by weight.
The temperature drop during this process was then compensated for by electrode heating. As a result, the C content in the pure iron obtained was 0.003 to 0.004% by weight. Also H
Content is 0.0002% by weight or less, O content is 0.005~
The content was in the range of 0.006% by weight, and the quality was extremely stable. (Comparative Example) When pure iron having the chemical composition shown in Table 1 was molten steel, an electrode heating ladle having specifications shown in Table 3 was used for refining.

【表】 そこで、前記実施例と同様にして真空脱ガス処
理を行つて溶鋼中の炭素量を0.0023〜0.0030重量
%にしたのちこの処理の間における温度の低下を
電極加熱により補つた。この結果、得られた純鉄
中のC含有量は0.02〜0.03重量%であつた。また
H含有量は0.0002重量%〜0.0003重量%、O含有
量は0.0008〜0.022重量%であつて若干のばらつ
きがあると共に上記実施例の場合よりも高い値を
示した。 [発明の効果] 以上説明してきたように、この発明による極低
炭素鋼の製造方法によれば、減圧下で加熱精錬を
することにより極低炭素鋼を製造するに際し、容
器壁部の耐火物として炭素含有量が3〜7重量%
でかつMgO系が50重量%以上であるものを使用
し、スラグの塩基度(CaO/SiO2)が1.5〜10で
かつスラグ中のMgO量が5〜25重量%である範
囲に調整して精錬するようにしたから、耐火物の
溶損を著しく低下させて前記耐火物中からの炭素
の移行をおさえることが可能であるため、炭素量
が著しく少ない極低炭素鋼を得ることが可能であ
り、また極低炭素鋼の品質を安定したものとする
ことができると共に、出鋼間隔の短縮化も可能で
あり、製造コストをかなり低減することができる
という非常に優れた効果がもたらされる。
[Table] Therefore, the carbon content in the molten steel was reduced to 0.0023 to 0.0030% by weight by performing vacuum degassing treatment in the same manner as in the above example, and then the temperature drop during this treatment was compensated for by electrode heating. As a result, the C content in the pure iron obtained was 0.02 to 0.03% by weight. Further, the H content was 0.0002% by weight to 0.0003% by weight, and the O content was 0.0008% by weight to 0.022% by weight, with some variation and higher values than in the above examples. [Effects of the Invention] As explained above, according to the method for producing ultra-low carbon steel according to the present invention, when producing ultra-low carbon steel by heating and refining under reduced pressure, As the carbon content is 3-7% by weight
The basicity of the slag (CaO/SiO 2 ) is adjusted to 1.5 to 10 and the MgO content in the slag is 5 to 25% by weight. By refining, it is possible to significantly reduce the erosion of the refractory and suppress the migration of carbon from the refractory, making it possible to obtain ultra-low carbon steel with a significantly lower carbon content. In addition, it is possible to stabilize the quality of ultra-low carbon steel, and it is also possible to shorten the tapping interval, resulting in very excellent effects such as considerably reducing manufacturing costs.

Claims (1)

【特許請求の範囲】[Claims] 1 減圧下で加熱精錬をすることにより極低炭素
鋼を製造するに際し、容器壁部の耐火物として炭
素含有量が3〜7重量%でかつMgO系が50重量
%以上であるものを使用し、スラグの塩基度
(CaO/SiO2)が1.5〜10でかつスラグ中のMgO
量が5〜25重量%である範囲に調整して精錬する
ことを特徴とする極低炭素鋼の製造方法。
1. When producing ultra-low carbon steel by heating and refining under reduced pressure, a refractory material with a carbon content of 3 to 7% by weight and an MgO content of 50% by weight or more is used for the container wall. , the basicity of the slag (CaO/SiO 2 ) is 1.5 to 10, and the MgO in the slag is
A method for producing ultra-low carbon steel, which comprises refining the steel by adjusting the amount to a range of 5 to 25% by weight.
JP60035140A 1985-02-22 1985-02-22 Manufacture of dead soft steel Granted JPS61194108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60035140A JPS61194108A (en) 1985-02-22 1985-02-22 Manufacture of dead soft steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60035140A JPS61194108A (en) 1985-02-22 1985-02-22 Manufacture of dead soft steel

Publications (2)

Publication Number Publication Date
JPS61194108A JPS61194108A (en) 1986-08-28
JPH0440410B2 true JPH0440410B2 (en) 1992-07-02

Family

ID=12433604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60035140A Granted JPS61194108A (en) 1985-02-22 1985-02-22 Manufacture of dead soft steel

Country Status (1)

Country Link
JP (1) JPS61194108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4644911B2 (en) * 2000-06-07 2011-03-09 Jfeスチール株式会社 Refractory lining structure for vacuum degassing vessel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10325955A1 (en) * 2003-06-07 2004-12-23 Sms Demag Ag Process and plant for producing steel products with the best surface quality
CN102061351B (en) * 2010-12-21 2012-08-08 南阳汉冶特钢有限公司 Method for producing low-carbon steel and ultra-low-carbon steel by VD, LF and VD processes
CN102719615B (en) * 2012-06-26 2013-11-20 山西太钢不锈钢股份有限公司 Smelting method of steel for raw material pure iron
CN102864279B (en) * 2012-09-29 2014-08-27 莱芜钢铁集团有限公司 Nitrogen adding method in process of LF (ladle furnace) refining
CN108193018B (en) * 2017-12-25 2019-06-28 南京钢铁股份有限公司 A kind of LF refining furnace production anti-carburetion method of low-carbon and low-sulphur steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4644911B2 (en) * 2000-06-07 2011-03-09 Jfeスチール株式会社 Refractory lining structure for vacuum degassing vessel

Also Published As

Publication number Publication date
JPS61194108A (en) 1986-08-28

Similar Documents

Publication Publication Date Title
CN109777918A (en) A kind of external refining production method refining high-carbon-chromium bearing steel inclusion particle
CN101962714A (en) Production method of low-silicon low-titanium and high-carbon ferrochrome smelted by submerged arc furnace
US4417924A (en) Steelmaking additive composition
CN113943145A (en) Unburned magnesia carbon brick and preparation method and application thereof
JPH0440410B2 (en)
CA1214941A (en) Method for the fabrication of special steels in metallurgical vessels
US3615348A (en) Stainless steel melting practice
US3791819A (en) Production of stainless steels
JPH06128618A (en) Production of electric steel sheet containing a little inclusion
CN1011981B (en) Process for continuously melting of steel
JP3499349B2 (en) Fe-Ni alloy cold rolled sheet excellent in surface properties and method for producing the same
JP4653629B2 (en) Method for producing Ti-containing chromium-containing molten steel
US4426223A (en) Refining of ferrochromium metal
US2715064A (en) Method of producing silicon steel
CN115961119B (en) Smelting process for reducing water immersion flaw detection defects in non-calcium treated aluminum deoxidized steel
JP3580096B2 (en) Melting method of low Mn steel
CN115820981B (en) Smelting process for reducing silicon-containing large-size inclusions in aluminum deoxidized steel
JP2002146429A (en) METHOD FOR PRODUCING AUSTENITIC HIGH Mn STAINLESS STEEL
CN115404309B (en) Molten steel deoxidizing method
JPH10245620A (en) Method for refining titanium and sulfur containing stainless steel
JPH04318118A (en) Production of steel with extremely low carbon and extremely low sulfur
JPH04246119A (en) Method for melting stainless steel
RU2364632C2 (en) Steel production method
KR20030047537A (en) Tundish flux fof titanium nitride inclusion
SU1006495A1 (en) Method for smelting steel in acid open-hearth furnace