JPH0440160Y2 - - Google Patents

Info

Publication number
JPH0440160Y2
JPH0440160Y2 JP3814486U JP3814486U JPH0440160Y2 JP H0440160 Y2 JPH0440160 Y2 JP H0440160Y2 JP 3814486 U JP3814486 U JP 3814486U JP 3814486 U JP3814486 U JP 3814486U JP H0440160 Y2 JPH0440160 Y2 JP H0440160Y2
Authority
JP
Japan
Prior art keywords
core tube
pressure
furnace
heating chamber
furnace core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3814486U
Other languages
Japanese (ja)
Other versions
JPS62149798U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3814486U priority Critical patent/JPH0440160Y2/ja
Publication of JPS62149798U publication Critical patent/JPS62149798U/ja
Application granted granted Critical
Publication of JPH0440160Y2 publication Critical patent/JPH0440160Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、外熱型炉芯管式炉、特に、炉芯管
が、操業時に、その内部圧力と加熱室の内部圧力
との圧力差により変形するのを防止した外熱型炉
芯管式炉に関するものである。
[Detailed description of the invention] (Industrial application field) The present invention is an externally heated furnace tube furnace, in particular, when the furnace core tube is operated, there is a pressure difference between its internal pressure and the internal pressure of the heating chamber. This invention relates to an externally heated core tube type furnace that is prevented from being deformed by heat.

(従来の技術とその問題点) 各種セラミツクス粉末の焼成、高純度金属の溶
融、ウエハの拡散処理などの各種処理を外熱型炉
芯管式炉で行う場合、その炉芯管は熱処理中に材
料が炉芯管と反応することを防止する目的、ある
いは、炉芯管自体から発生する不純物によつて材
料が汚染されることを防止する目的から、石英管
あるいは高純度のアルミナ管が使用されるととも
に、操業時には炉芯管内に所定の反応ガスを、ま
た、ヒータを配設する加熱室内に、ヒータの酸化
防止対策として、N2ガスなどの保護ガスを供給
する。
(Conventional technology and its problems) When various processes such as firing various ceramic powders, melting high-purity metals, and diffusion processing of wafers are performed in an externally heated furnace tube furnace, the furnace core tube is used during the heat treatment. Quartz tubes or high-purity alumina tubes are used to prevent the material from reacting with the furnace core tube or to prevent the material from being contaminated by impurities generated from the furnace core tube itself. At the same time, during operation, a specified reaction gas is supplied into the furnace core tube, and a protective gas such as N 2 gas is supplied into the heating chamber where the heater is installed to prevent oxidation of the heater.

ところで、この炉芯管式炉は、昇温時あるい
は、操業時、加熱室内と炉芯管内との温度差およ
び供給ガスの相違、その他の要因が炉芯管内の圧
力と加熱室内の圧力との間で圧力差が生じると、
特に、炉芯管の軟化点近傍で使用される場合、直
ちに、炉芯管壁が圧力の低い方へ膨出して、炉芯
管の“つぶれ”あるいは“ふくれ”が生じる。
By the way, this core tube type furnace has problems due to the temperature difference between the heating chamber and the furnace core tube, the difference in the supply gas, and other factors such as the pressure in the furnace core tube and the pressure in the heating chamber at the time of temperature rise or during operation. When a pressure difference occurs between
In particular, when the furnace core tube is used near its softening point, the furnace core tube wall immediately bulges toward the lower pressure side, causing the furnace core tube to "collapse" or "bulge."

したがつて、従来、内径100mm以上の大口径炉
芯管においては、石英管の場合、使用最高温度は
1300℃程度、高純度アルミナ管の場合、1800℃程
度とされており、炉芯管の大形化および高温下で
の材料処理に種々の支障を与えるという問題点を
有する。
Therefore, conventionally, for large-diameter furnace core tubes with an inner diameter of 100 mm or more, the maximum operating temperature for quartz tubes is
The temperature is approximately 1,300°C, and in the case of high-purity alumina tubes, it is approximately 1,800°C, which has the problem of increasing the size of the furnace core tube and causing various problems in material processing at high temperatures.

本考案は、簡単な構成で、前記問題点を解決す
る外熱型炉芯管式炉を提供するものである。
The present invention provides an externally heated core tube furnace that has a simple configuration and solves the above problems.

(問題点を解決するための手段) 本考案は、前記目的を達成するために、外熱型
炉芯管式炉の反応ガス排気管および加熱室の保護
ガス排気管に、それぞれ排気量調節弁を設けると
ともに、前記反応ガス排気管の排気量調節弁上流
に、加熱室内の圧力検出管を接続し、かつ、この
圧力検出管に加熱室内圧力と炉芯管内圧力との圧
力差を検出する差圧検出器を設けたものである。
(Means for solving the problem) In order to achieve the above-mentioned object, the present invention provides a displacement control valve for each of the reaction gas exhaust pipe and the protective gas exhaust pipe of the heating chamber of an externally heated furnace core tube furnace. At the same time, a pressure detection tube in the heating chamber is connected upstream of the displacement control valve of the reaction gas exhaust pipe, and a pressure detection tube is connected to the pressure detection tube to detect the pressure difference between the pressure in the heating chamber and the pressure in the furnace core tube. It is equipped with a pressure detector.

(実施例) つぎに、本考案を一実施例である図面にしたが
つて説明する。
(Example) Next, the present invention will be explained with reference to the drawings which are one example.

1は炉本体で、この炉本体1の両側壁には貫通
口2が設けられ、この貫通口2に、たとえば、石
英管からなる炉芯管6が、セラミツクフアイバー
等の耐熱弾性材3を介してその両端を炉外に突出
させて配置してある。
Reference numeral 1 denotes a furnace body, and a through hole 2 is provided in both side walls of the furnace body 1. A furnace core tube 6 made of, for example, a quartz tube is inserted into the through hole 2 through a heat-resistant elastic material 3 such as a ceramic fiber. It is placed with both ends protruding outside the furnace.

そして、前記炉芯管6の一端部開口には蓋部材
7が設けられ、この蓋部材7に反応ガス供給管8
が設けられている。
A lid member 7 is provided at one end opening of the furnace core tube 6, and a reaction gas supply pipe 8 is attached to the lid member 7.
is provided.

一方、炉芯管6の他端部には反応ガス排気量調
節弁10を有する反応ガス排気管9が接続してあ
る。
On the other hand, a reaction gas exhaust pipe 9 having a reaction gas exhaust amount control valve 10 is connected to the other end of the furnace core tube 6 .

前記炉本体1の加熱室4内には、前記炉芯管6
を取り囲むように、カーボンヒータ、タングステ
ンヒータ等のヒータ5が配設されるとともに、前
記加熱室4にヒータ5の酸化防止用の保護ガス供
給管11、保護ガス排気量調節弁13を備えた排
気管12および圧力検出管14が設けてある。
In the heating chamber 4 of the furnace main body 1, the furnace core tube 6 is disposed.
A heater 5 such as a carbon heater or a tungsten heater is disposed to surround the heating chamber 4, and an exhaust gas exhaust system is provided in the heating chamber 4 with a protective gas supply pipe 11 for preventing oxidation of the heater 5 and a protective gas exhaust amount control valve 13. A tube 12 and a pressure sensing tube 14 are provided.

そして、前記圧力検出管14の一端は、前記反
応ガス排気管9の排気量調節弁10より上流側に
接続するとともに、その途中に、差圧ダイヤフラ
ムゲージ、マノメータ等からなる差圧検出器15
が設けられ、炉芯管6内の圧力と加熱室4内の圧
力との圧力差を検出するようになつている。
One end of the pressure detection pipe 14 is connected to the upstream side of the reaction gas exhaust pipe 9 from the displacement control valve 10, and a differential pressure detector 15 consisting of a differential pressure diaphragm gauge, a manometer, etc. is connected in the middle thereof.
is provided to detect the pressure difference between the pressure inside the furnace core tube 6 and the pressure inside the heating chamber 4.

前記構成からなる外熱型炉芯管式炉を操業する
には、まず、反応ガス、保護ガス排気量調節弁1
0,13を開とし、炉芯管6内に反応ガス用流量
計8aによつて、所定流量の反応ガスを反応ガス
供給管8から供給し、一方、加熱室4内に保護ガ
ス用流量計11aによつて所定流量の保護ガスを
保護ガス供給管11から供給する。
In order to operate the external heat type tube furnace having the above configuration, first, the reaction gas and protective gas displacement control valve 1 is
0 and 13 are opened, and a predetermined flow rate of the reaction gas is supplied from the reaction gas supply pipe 8 into the furnace core tube 6 through the reaction gas flowmeter 8a, while a protective gas flowmeter is installed inside the heating chamber 4. 11a supplies a predetermined flow rate of protective gas from the protective gas supply pipe 11.

ついで、炉芯管6内の圧力と加熱室4の圧力と
の圧力差を差圧検出器15により検出し、この差
圧が10mmAq以内(高純度アルミナ管の場合には、
その差圧が50mmAq以内)となるように、保護ガ
ス排気量調節弁13を調節したのち、ヒータ5に
より加熱室4を昇温し、材料を熱処理する。
Next, the pressure difference between the pressure inside the furnace core tube 6 and the pressure in the heating chamber 4 is detected by the differential pressure detector 15, and this pressure difference is within 10 mmAq (in the case of a high-purity alumina tube,
After adjusting the protective gas exhaust amount control valve 13 so that the differential pressure is within 50 mmAq, the temperature of the heating chamber 4 is raised by the heater 5, and the material is heat-treated.

そして、昇温時あるいは操業時、加熱室4内と
炉芯管6内の温度差、供給ガス量あるいは排気量
の変動などにより加熱室4内と炉芯管6内の圧力
差が変動することになるが、この変動に基づく両
者間の圧力差は前記差圧検出器15により検出
し、加熱室4内と炉芯管6内との検出圧力差が初
期設定値である10mmAq以上となると、前記差圧
検出器15の出力信号により保護ガス排気量調節
弁13を開あるいは閉方向に開口して保護ガス排
出量を制御し、差圧を10mmAq以内に維持する。
During temperature rise or operation, the pressure difference between the heating chamber 4 and the furnace core tube 6 may fluctuate due to the temperature difference between the heating chamber 4 and the furnace core tube 6, or changes in the amount of gas supplied or the exhaust amount. However, the pressure difference between the two based on this fluctuation is detected by the differential pressure detector 15, and when the detected pressure difference between the inside of the heating chamber 4 and the inside of the furnace core tube 6 exceeds the initial setting value of 10 mmAq, The protective gas exhaust amount control valve 13 is opened or closed in response to the output signal of the differential pressure detector 15 to control the protective gas exhaust amount and maintain the differential pressure within 10 mmAq.

なお、前記実施例では、保護ガス排気量を自動
制御するようにしたが、反応ガス排気量を、ま
た、双方を調整してもよく、さらに、手動であつ
てもよい。
In the above embodiments, the protective gas exhaust amount is automatically controlled, but the reactive gas exhaust amount or both may be adjusted, or may be controlled manually.

(効果) 以上の説明で明らかなように、本考案において
は、加熱室内圧力と炉芯管内圧力との圧力差を、
差圧検出器により検出して、両者間の圧力差を炉
芯管の変形が生じない範囲とするように排気量を
調節するため、圧力制御を迅速に、かつ正確に行
なうことができ、炉芯管が変形しにくい。
(Effect) As is clear from the above explanation, in the present invention, the pressure difference between the heating chamber pressure and the furnace core tube pressure is
The pressure difference is detected by a differential pressure detector and the exhaust volume is adjusted to keep the pressure difference between the two within a range that does not cause deformation of the furnace core tube, making it possible to control pressure quickly and accurately. The core tube is not easily deformed.

そのため、たとえば、炉芯管として石英管を使
用する場合、従来においては、最高使用温度が約
1300℃であつたものが、約1600℃まで使用可能と
なつた。なお、炉芯管として高純度アルミナ管を
使用する場合、最高使用温度が約1800℃であつた
ものが、約1950℃まで使用可能となつた。
Therefore, for example, when using a quartz tube as a furnace core tube, conventionally the maximum operating temperature was approximately
What used to be 1300℃ can now be used up to about 1600℃. Furthermore, when using a high-purity alumina tube as the furnace core tube, the maximum operating temperature was approximately 1800°C, but it can now be used up to approximately 1950°C.

すなわち、炉芯管の適用温度範囲を従来のもの
より大幅に拡大することができる。
That is, the applicable temperature range of the furnace core tube can be significantly expanded compared to the conventional one.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案にかかる外熱型炉芯管式炉の説
明用断面図である。 1……炉本体、4……加熱室、5……ヒータ、
6……炉芯管、9……反応ガス排気管、10……
排気量調節弁、12……保護ガス排気管、13…
…排気量調節弁、14……圧力検出管、15……
差圧検出器。
FIG. 1 is an explanatory cross-sectional view of an externally heated core tube furnace according to the present invention. 1... Furnace body, 4... Heating chamber, 5... Heater,
6...Furnace core tube, 9...Reaction gas exhaust pipe, 10...
Exhaust volume control valve, 12... Protective gas exhaust pipe, 13...
...Displacement control valve, 14...Pressure detection tube, 15...
Differential pressure detector.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 外熱型炉芯管式炉の反応ガス排気管および加熱
室の保護ガス排気管に、それぞれ排気量調節弁を
設けるとともに、前記反応ガス排気管の排気量調
節弁上流に加熱室内の圧力検出管を接続し、か
つ、この圧力検出管に加熱室内圧力と炉芯管内圧
力との圧力差を検出する差圧検出器を設けたこと
を特徴とする外熱型炉芯管式炉。
A displacement control valve is provided in each of the reaction gas exhaust pipe and the protective gas exhaust pipe of the heating chamber of the externally heated core tube furnace, and a pressure detection pipe in the heating chamber is provided upstream of the displacement adjustment valve of the reaction gas exhaust pipe. An external heat type furnace core tube type furnace, characterized in that the pressure detection tube is provided with a differential pressure detector for detecting the pressure difference between the pressure inside the heating chamber and the pressure inside the furnace core tube.
JP3814486U 1986-03-14 1986-03-14 Expired JPH0440160Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3814486U JPH0440160Y2 (en) 1986-03-14 1986-03-14

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3814486U JPH0440160Y2 (en) 1986-03-14 1986-03-14

Publications (2)

Publication Number Publication Date
JPS62149798U JPS62149798U (en) 1987-09-22
JPH0440160Y2 true JPH0440160Y2 (en) 1992-09-21

Family

ID=30850111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3814486U Expired JPH0440160Y2 (en) 1986-03-14 1986-03-14

Country Status (1)

Country Link
JP (1) JPH0440160Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031389A1 (en) * 1996-02-23 1997-08-28 Tokyo Electron Limited Heat treatment device
JP5202810B2 (en) * 2006-02-06 2013-06-05 古河電気工業株式会社 Graphite heating furnace and optical fiber manufacturing method

Also Published As

Publication number Publication date
JPS62149798U (en) 1987-09-22

Similar Documents

Publication Publication Date Title
AU648163B2 (en) Thermoelectric sensor
JPH0440160Y2 (en)
JPH0252421B2 (en)
EP2981764B1 (en) In situ probe with improved diagnostics and compensation
WO2003012849A1 (en) Heat treatment apparatus
JPS61270231A (en) Heat-treating apparatus
US4102627A (en) Draft tell-tale for fired furnaces
EP1357582A1 (en) Heat-treating device
JP3075173B2 (en) Vertical heat treatment equipment
JPS6082668A (en) Gas flow rate controller
JPS626342B2 (en)
JPH0421535A (en) Preparation of optical fiber preform
JPH0210826A (en) Diffusion furnace device
CA1060734A (en) Furnace over-pressure prevention
JPH06174381A (en) Controlling equipment of atmosphere of furnace
JPH06204210A (en) Method and furnace for high pressure oxidation
CN207268574U (en) Temperature instrumentation detects special furnace
JPH09243275A (en) Method for controlling amount of gas introduced into furnace top preheating device
JPH069504Y2 (en) Buffer type heat treatment furnace
JPS59197729A (en) Combustion control of small furnace
JPS607792Y2 (en) mass flow controller
JPH04129696U (en) Heat exchanger protection device
JPS62115711A (en) Processing device
JPS6010714A (en) Depression type chemical vapor deposition device
JPH053964U (en) Gauge port