JP2000001327A - Heat treatment apparatus for glass particulate deposit - Google Patents

Heat treatment apparatus for glass particulate deposit

Info

Publication number
JP2000001327A
JP2000001327A JP16161298A JP16161298A JP2000001327A JP 2000001327 A JP2000001327 A JP 2000001327A JP 16161298 A JP16161298 A JP 16161298A JP 16161298 A JP16161298 A JP 16161298A JP 2000001327 A JP2000001327 A JP 2000001327A
Authority
JP
Japan
Prior art keywords
furnace shell
inert gas
heat treatment
pressure
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16161298A
Other languages
Japanese (ja)
Inventor
Masataka Kin
正高 金
Minoru Okuno
実 奥野
Yoshiaki Ikeda
厳明 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP16161298A priority Critical patent/JP2000001327A/en
Publication of JP2000001327A publication Critical patent/JP2000001327A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce production cost of an optical fiber, etc., by reducing the amt. of the inert gas to be used at the time of a heat treatment of a glass particulate deposit as much as possible while preventing the oxidation consumption of a heater, etc., of a heat treatment apparatus for the glass particulate deposit constituted to execute the heat treatment by heating the glass particulate deposit in a muffle pipe by the carbon heater in a furnace shell while supplying the inert gas into the furnace shell by an upstream side gas supply pipe or respective downstream side gas supply pipes. SOLUTION: This apparatus has a difference pressure gage 21 which detects the pressure of the inert gas in the furnace shell 9, a regulating valve 17 which is disposed at the upstream side gas supply pipe 14 and is capable of regulating the supply rate of the inert gas into the furnace shell 9 by an opening degree and a controller 19 which receives the detection signal from the differential pressure gage 21 and controls the opening degree of the regulating valve 17 so as to suppress the fluctuation of the pressure in the furnace shell 9 by the temp. change in the furnace shell 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス微粒子堆積
体を熱処理して透明ガラス化するようにしたガラス微粒
子堆積体の熱処理装置に関する技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of an apparatus for heat-treating a glass fine particle deposit in which a glass fine particle deposit is heat-treated to form a transparent glass.

【0002】[0002]

【従来の技術】一般に、光ファイバー等に用いられてい
る透明ガラス体は、例えば特開昭57−17433号公
報や特開平7−81957号公報に示されているよう
に、熱処理装置によりガラス微粒子堆積体を加熱して透
明ガラス化することで製造されている。
2. Description of the Related Art Generally, a transparent glass body used for an optical fiber or the like is formed by depositing glass fine particles by a heat treatment apparatus as disclosed in, for example, JP-A-57-17433 and JP-A-7-81957. It is manufactured by heating the body to vitrify it.

【0003】上記熱処理装置は、例えば図2に示すよう
に、石英ガラス等からなりかつ内部に支持棒103を介
してガラス微粒子堆積体102が挿入されるマッフル管
101と、このマッフル管101の外周側に配置され、
内部に円筒状ヒーター110及び成型断熱材111を有
する炉殻109とを備えている。この炉殻109はその
上下両端部においてマッフル管101との間に僅かな隙
間を有して嵌合している。上記マッフル管101の下端
部には、ヘリウム及び塩素ガスを該マッフル管101内
部に流入させるための流入口105が設けられている一
方、上端部側周面にはそのガスを排出するための排気口
106が設けられている。上記炉殻109の下端部及び
上下方向中央部には、該炉殻109内にアルゴンや窒素
等の不活性ガスを所定の供給量で供給するための2本の
下流側ガス供給管115,115が接続され、この両下
流側ガス供給管115,115は、共に1つの上流側ガ
ス供給管114を介して図外のガス源に接続されてい
る。この上流側ガス供給管114ないし各下流側ガス供
給管115により炉殻109内のヒーター110及び成
型断熱材111周囲を不活性ガスが流れるようになって
いる。すなわち、炉殻109内のヒーター110及び成
型断熱材111は一般にカーボン製であるので、不活性
ガスにより高温での酸化消耗を防止するようにしてい
る。この炉殻109内に供給された不活性ガスは、主に
炉殻109上端部のマッフル管101との隙間から流出
する。尚、上記各下流側ガス供給管115には不活性ガ
スの流量を調整する流量計116がそれぞれ設けられて
いる。また、炉殻109の上端部近傍には、炉殻109
内の不活性ガスの圧力と大気圧との差圧を検出するため
の差圧計121が設けられている。
As shown in FIG. 2, for example, the above-mentioned heat treatment apparatus comprises a muffle tube 101 made of quartz glass or the like and into which a glass particle deposit 102 is inserted via a support rod 103, and an outer periphery of the muffle tube 101. Placed on the side,
It has a cylindrical heater 110 and a furnace shell 109 having a molded heat insulating material 111 therein. The furnace shell 109 is fitted at both upper and lower ends with a slight gap between the furnace shell 109 and the muffle tube 101. The lower end of the muffle tube 101 is provided with an inlet 105 for allowing helium and chlorine gas to flow into the inside of the muffle tube 101, while the upper end side peripheral surface has an exhaust for discharging the gas. A mouth 106 is provided. Two downstream gas supply pipes 115, 115 for supplying an inert gas such as argon or nitrogen into the furnace shell 109 at a predetermined supply amount are provided at a lower end portion and a vertical center portion of the furnace shell 109. The two downstream gas supply pipes 115, 115 are both connected to a gas source (not shown) via one upstream gas supply pipe 114. The upstream gas supply pipe 114 or each downstream gas supply pipe 115 allows an inert gas to flow around the heater 110 and the molded heat insulator 111 in the furnace shell 109. That is, since the heater 110 and the molded heat insulating material 111 in the furnace shell 109 are generally made of carbon, oxidative consumption at a high temperature by an inert gas is prevented. The inert gas supplied into the furnace shell 109 flows out mainly from a gap between the muffle tube 101 at the upper end of the furnace shell 109. Each downstream gas supply pipe 115 is provided with a flow meter 116 for adjusting the flow rate of the inert gas. Further, near the upper end of the furnace shell 109, the furnace shell 109 is provided.
A differential pressure gauge 121 for detecting a differential pressure between the pressure of the inert gas in the chamber and the atmospheric pressure is provided.

【0004】そして、上記炉殻109内のヒーター11
0に通電することによってマッフル管101内の温度を
1600℃程度まで上昇させておき、ガラス微粒子堆積
体102をその中心軸回りに回転させながら徐々に下降
させ、その下端部側から加熱して熱処理を行う。その
際、ヘリウム及び塩素ガスを流入口105から流入させ
て排気口106から排出させることで、ガラス微粒子堆
積体102の脱泡及び脱水を行う。こうして熱処理が行
われた部分は径が小さくなって透明ガラス化される。ま
た、炉殻109内の不活性ガスの圧力が大気圧よりも高
くなるように上流側ガス供給管114ないし各下流側ガ
ス供給管115から炉殻109内に不活性ガスを供給す
る。すなわち、差圧計121の検出圧力が正圧となるよ
うに不活性ガスの供給量を設定し、空気が炉殻109の
上下両端部とマッフル管101との隙間から炉殻109
内に流入しないようにしてヒーター110及び成型断熱
材111の酸化を確実に防止する。
The heater 11 in the furnace shell 109 is
0, the temperature inside the muffle tube 101 is raised to about 1600 ° C., and the glass fine particle deposit body 102 is gradually lowered while rotating around its central axis, and is heated from the lower end side to perform heat treatment. I do. At this time, helium and chlorine gas are introduced from the inflow port 105 and discharged from the exhaust port 106 to perform defoaming and dehydration of the glass particle deposit body 102. In this way, the portion subjected to the heat treatment becomes small in diameter and becomes transparent vitrified. The inert gas is supplied into the furnace shell 109 from the upstream gas supply pipe 114 or each downstream gas supply pipe 115 so that the pressure of the inert gas in the furnace shell 109 becomes higher than the atmospheric pressure. That is, the supply amount of the inert gas is set so that the detection pressure of the differential pressure gauge 121 becomes a positive pressure, and air is supplied from the gap between the upper and lower ends of the furnace shell 109 and the muffle tube 101 to the furnace shell 109.
Oxidation of the heater 110 and the molded heat insulating material 111 is reliably prevented by preventing the heater 110 and the molded heat insulating material 111 from flowing into the inside.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記従来のも
のでは、炉殻109内の温度がカーボンの酸化消耗が始
まる600℃であるときに炉殻109内の圧力が正圧
(+1mmH2O程度)となるように不活性ガスの供給
量を設定しているが、その供給量は一定のままであるの
で、ガラス微粒子堆積体102の熱処理時(1600
℃)には熱膨張により必要以上の正圧(+2〜+4mm
2O程度)となる。このため、不活性ガスが無駄に消
費される一方、マッフル管が内側に変形するという問題
がある。
However, in the above-mentioned conventional apparatus, when the temperature inside the furnace shell 109 is 600 ° C. at which the oxidation and depletion of carbon starts, the pressure inside the furnace shell 109 becomes a positive pressure (about +1 mmH 2 O). ), The supply amount of the inert gas is set. However, since the supply amount is kept constant, the inert gas supply amount during the heat treatment (1600
° C) due to thermal expansion, a positive pressure more than necessary (+2 to +4 mm)
H 2 O). Therefore, there is a problem that the muffle tube is deformed inward while the inert gas is wasted.

【0006】本発明は斯かる諸点に鑑みてなされたもの
であり、その目的とするところは、上述の如くガス供給
管により炉殻内に不活性ガスを供給しながら炉殻内のヒ
ーターによりマッフル管内のガラス微粒子堆積体を加熱
して熱処理を行うようにした熱処理装置において、その
不活性ガス供給の構成を改良することによって、ヒータ
ー等の酸化消耗を防止しつつ、ガラス微粒子堆積体の熱
処理時における不活性ガスの使用量を可及的に減らすと
共にマッフル管の変形を抑えて、光ファイバー等の製造
コストを低減しようとすることにある。
[0006] The present invention has been made in view of the above points, and an object of the present invention is to supply an inert gas into a furnace shell by using a gas supply pipe as described above, and to perform muffle by a heater in the furnace shell. In a heat treatment apparatus that heats a glass particle deposit in a tube by performing a heat treatment, by improving the configuration of the supply of the inert gas, it is possible to prevent oxidation and depletion of the heater and the like, and to perform heat treatment of the glass particle deposit. It is an object of the present invention to reduce the use of an inert gas as much as possible and to suppress the deformation of a muffle tube to reduce the production cost of an optical fiber or the like.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明では、不活性ガスの炉殻内への供給量を
開度により調整可能な調整弁をガス供給管に設け、炉殻
内の不活性ガスの圧力を検出する圧力検出手段からの検
出信号を受けて、炉殻内の温度変化による該炉殻内の圧
力変動を抑制するように上記調整弁を制御する制御手段
を備えるようにした。
In order to achieve the above object, according to the present invention, a regulating valve capable of adjusting the amount of inert gas supplied into a furnace shell by an opening degree is provided in a gas supply pipe. Control means for receiving the detection signal from the pressure detecting means for detecting the pressure of the inert gas in the shell and controlling the regulating valve so as to suppress pressure fluctuations in the furnace shell due to temperature changes in the furnace shell. I prepared for it.

【0008】具体的には、請求項1の発明では、内部に
ガラス微粒子堆積体が挿入されるマッフル管と、上記マ
ッフル管の外周側に配置され、内部にヒーターを有する
炉殻と、上記炉殻内に不活性ガスを所定の供給量で供給
するガス供給管とを備え、該ガス供給管により炉殻内に
不活性ガスを供給しながら炉殻内のヒーターにより上記
マッフル管内のガラス微粒子堆積体を加熱して熱処理を
行うようにしたガラス微粒子堆積体の熱処理装置を前提
とする。
More specifically, according to the first aspect of the present invention, a muffle tube into which a glass fine particle deposit is inserted, a furnace shell disposed inside the muffle tube and having a heater therein, A gas supply pipe for supplying an inert gas at a predetermined supply rate into the shell; and supplying the inert gas into the furnace shell through the gas supply pipe while depositing glass fine particles in the muffle tube by a heater in the furnace shell. It is assumed that the apparatus is a heat treatment apparatus for depositing a glass fine particle in which a body is heated to perform a heat treatment.

【0009】そして、上記炉殻内の不活性ガスの圧力を
検出する圧力検出手段と、上記ガス供給管に設けられ、
不活性ガスの炉殻内への供給量を開度により調整可能な
調整弁と、上記圧力検出手段からの検出信号を受けて、
炉殻内の温度変化による該炉殻内の圧力変動を抑制する
ように上記調整弁の開度を制御する制御手段とを備えて
いるものとする。
A pressure detecting means for detecting a pressure of the inert gas in the furnace shell;
An adjusting valve capable of adjusting the supply amount of the inert gas into the furnace shell by an opening degree, and receiving a detection signal from the pressure detecting means,
Control means for controlling the opening of the regulating valve so as to suppress pressure fluctuations in the furnace shell due to temperature changes in the furnace shell.

【0010】上記の構成により、例えば、調整弁の開度
が最大でありかつ炉殻内の温度が600℃であるときに
炉殻内の圧力が大気圧に対して+1mmH2O程度とな
るように不活性ガスの供給量を設定しておくと、ガラス
微粒子堆積体の熱処理時のように炉殻内の温度が600
℃よりも高くなると炉殻内の圧力は熱膨張により+1m
mH2Oから上昇しようとするが、制御手段により調整
弁の開度が小さくされるので、+1mmH2Oに安定さ
せることができる。また、熱処理の終了に伴いヒータヘ
の通電を停止して炉殻内の温度が低下すると、今度は調
整弁の開度が大きくされて+1mmH2Oを維持するこ
とができる。このため、カーボン製のヒーター等の酸化
消耗を確実に防止しつつ、ガラス微粒子堆積体の熱処理
時における不活性ガスの使用量を可能な限り削減しかつ
マッフル管の変形を抑えることができる。よって、光フ
ァイバー等の製造コストを低減することができる。
With the above arrangement, for example, when the opening degree of the regulating valve is maximum and the temperature in the furnace shell is 600 ° C., the pressure in the furnace shell is about +1 mmH 2 O with respect to the atmospheric pressure. When the supply amount of the inert gas is set in advance, the temperature in the furnace shell becomes 600
When the temperature rises above ℃, the pressure inside the furnace shell increases by +1 m due to thermal expansion.
Although an attempt is made to increase from mH 2 O, since the opening degree of the regulating valve is reduced by the control means, it can be stabilized at +1 mmH 2 O. Further, when the power supply to the heater is stopped with the end of the heat treatment and the temperature in the furnace shell decreases, the opening degree of the regulating valve is increased to maintain +1 mmH 2 O. For this reason, while reliably preventing oxidative consumption of the carbon heater and the like, the amount of the inert gas used during the heat treatment of the glass fine particle deposit can be reduced as much as possible, and the deformation of the muffle tube can be suppressed. Therefore, the manufacturing cost of an optical fiber or the like can be reduced.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1は本発明の実施形態に係るガラ
ス微粒子堆積体の熱処理装置Aを示し、この熱処理装置
Aは、上下方向に延びる石英ガラス等からなるマッフル
管1を備えている。このマッフル管1内部の中心部には
上端部から支持棒3を介してガラス微粒子堆積体2が挿
入され、このガラス微粒子堆積体2はその中心軸回りに
回転可能にかつマッフル管1に対して上下移動可能に構
成されている。マッフル管1の下端部には、ヘリウム及
び塩素ガスを該マッフル管1内部に流入させるための流
入口5が設けられている一方、上端部側周面にはそのガ
スを排出するための排気口6が設けられている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a heat treatment apparatus A for a glass fine particle deposit according to an embodiment of the present invention. The heat treatment apparatus A includes a muffle tube 1 made of quartz glass or the like extending vertically. A glass particle deposit 2 is inserted into the center of the muffle tube 1 from the upper end via a support rod 3, and the glass particle deposit 2 is rotatable about its central axis and is positioned relative to the muffle tube 1. It is configured to be able to move up and down. At the lower end of the muffle pipe 1, an inflow port 5 for allowing helium and chlorine gas to flow into the inside of the muffle pipe 1 is provided, while at the upper end side peripheral surface, an exhaust port for discharging the gas is provided. 6 are provided.

【0012】上記マッフル管1の外周側には、内部に円
筒状ヒーター10と該ヒーター10の上下及び外周を覆
う成型断熱材11とを有する炉殻9が設けられ、この炉
殻9はその上下両端部においてマッフル管1との間に僅
かな隙間を有して嵌合している。この炉殻9内のヒータ
ー10及び成型断熱材11は共にカーボン製である。上
記炉殻9の下端部及び上下方向中央部には、該炉殻9内
にアルゴンや窒素等の不活性ガスを供給するための2本
の下流側ガス供給管15,15が接続され、この両下流
側ガス供給管15,15は、共に1つの上流側ガス供給
管14を介して図外のガス源に接続されている。この上
流側ガス供給管14ないし各下流側ガス供給管15によ
り炉殻9内のヒーター10及び成型断熱材11周囲を不
活性ガスが流れるようになっている。この炉殻9内に供
給された不活性ガスは、主に炉殻9上端部のマッフル管
1との隙間から流出する。
On the outer peripheral side of the muffle tube 1, there is provided a furnace shell 9 having a cylindrical heater 10 and a molded heat insulating material 11 for covering the upper and lower sides and the outer circumference of the heater 10. The two ends are fitted with a slight gap between them and the muffle tube 1. The heater 10 and the molded heat insulating material 11 in the furnace shell 9 are both made of carbon. Two downstream gas supply pipes 15, 15 for supplying an inert gas such as argon or nitrogen into the furnace shell 9 are connected to the lower end of the furnace shell 9 and the center in the vertical direction. Both downstream gas supply pipes 15 and 15 are connected to a gas source (not shown) via one upstream gas supply pipe 14. The upstream gas supply pipe 14 or each downstream gas supply pipe 15 allows an inert gas to flow around the heater 10 and the molded heat insulating material 11 in the furnace shell 9. The inert gas supplied into the furnace shell 9 mainly flows out from the gap between the furnace shell 9 and the muffle tube 1 at the upper end.

【0013】上記上流側ガス供給管14には、不活性ガ
スの炉殻9内への供給量を開度により調整可能な調整弁
17が設けられ、この調整弁17の開度は制御手段とし
てのコントローラ19により後述の如く制御されるよう
になっている。尚、上記各下流側ガス供給管15には不
活性ガスの流量を測定する流量計16がそれぞれ設けら
れている。
The upstream gas supply pipe 14 is provided with a regulating valve 17 capable of adjusting the supply amount of the inert gas into the furnace shell 9 by an opening. The opening of the regulating valve 17 is controlled by a control means. Is controlled by the controller 19 as described later. Each downstream gas supply pipe 15 is provided with a flow meter 16 for measuring the flow rate of the inert gas.

【0014】上記炉殻9の上端部近傍には、炉殻9内の
不活性ガスの圧力と大気圧との差圧を検出する圧力検出
手段としての差圧計21が設けられ、この差圧計21の
検出信号は上記コントローラ19に入力されるようにな
っている。そして、コントローラ19は差圧計21から
の検出信号を受けて上記調整弁17の開度を制御し、上
記炉殻9内の温度変化による該炉殻9内の圧力変動を抑
制するようになっている。すなわち、炉殻9内の温度が
高くなって圧力が上昇すると調整弁17の開度を小さく
し、逆に炉殻9内の温度が低下すると調整弁17の開度
を大きくして炉殻9内の圧力を略一定に維持するように
なっている。
A differential pressure gauge 21 is provided near the upper end of the furnace shell 9 as pressure detecting means for detecting a pressure difference between the pressure of the inert gas in the furnace shell 9 and the atmospheric pressure. Is input to the controller 19. The controller 19 receives the detection signal from the differential pressure gauge 21 and controls the opening of the regulating valve 17 so as to suppress a pressure change in the furnace shell 9 due to a temperature change in the furnace shell 9. I have. That is, when the temperature inside the furnace shell 9 increases and the pressure rises, the opening of the regulating valve 17 decreases, and when the temperature inside the furnace shell 9 decreases, the opening of the regulating valve 17 increases and the furnace shell 9 increases. The internal pressure is maintained substantially constant.

【0015】以上の構成からなる熱処理装置Aによりガ
ラス微粒子堆積体2を加熱して熱処理を行う方法を説明
する。先ず、炉殻9内のヒーター10に通電することに
よってマッフル管1内の温度を1600℃程度まで上昇
させておき、ガラス微粒子堆積体2をその中心軸回りに
回転させながら徐々に下降させ、その下端部側から加熱
して熱処理を行う。その際、ヘリウム及び塩素ガスを流
入口5から流入させて排気口6から排出させることで、
ガラス微粒子堆積体2の脱泡及び脱水を行う。こうして
ガラス微粒子堆積体2の熱処理が行われた部分は径が小
さくなって透明ガラス化される。
A method of performing heat treatment by heating the glass fine particle deposit 2 by the heat treatment apparatus A having the above-described configuration will be described. First, the temperature in the muffle tube 1 is raised to about 1600 ° C. by energizing the heater 10 in the furnace shell 9, and the glass fine particle deposit body 2 is gradually lowered while rotating about its central axis. Heat treatment is performed by heating from the lower end side. At that time, by allowing helium and chlorine gas to flow in through the inflow port 5 and discharge through the exhaust port 6,
Degassing and dehydration of the glass fine particle deposit 2 are performed. In this way, the portion of the glass fine particle stack 2 that has been subjected to the heat treatment has a smaller diameter and is turned into a transparent glass.

【0016】一方、炉殻9内にはガス源から上流側ガス
供給管14ないし各下流側ガス供給管15により不活性
ガスを供給する。この不活性ガスの炉殻9内への供給量
は、調整弁17の開度が最大でありかつ炉殻9内の温度
が600℃であるときに炉殻9内の大気圧に対する圧力
(差圧計21の検出圧力)が+1mmH2O程度の正圧
となるように設定しておく。そして、ガラス微粒子堆積
体2の熱処理時のように炉殻9内の温度が600℃より
も高くなると熱膨張により炉殻9内の圧力は+1mmH
2Oから上昇しようとするが、コントローラ19により
調整弁17の開度が小さくされ、+1mmH2Oの値が
維持される。また、熱処理の終了に伴いヒーター10ヘ
の通電を停止して炉殻9内の温度が低下すると、今度は
調整弁17の開度が大きくされ、炉殻9内の温度が60
0℃以上である限り炉殻9内の圧力が+1mmH2Oよ
りも低くなることはない。このことで、炉殻9内の温度
がカーボンの酸化消耗が生じる600℃以上であるとき
に、空気が炉殻9の上下両端部とマッフル管1との隙間
から炉殻9内に流入することがなく、不活性ガスにより
ヒーター10及び成型断熱材11の酸化消耗を確実に防
止することができる。このときの不活性ガスの使用量は
必要最小限で済み、不活性ガスの炉殻9内への供給量を
一定にしたままの従来の装置よりも不活性ガスの使用量
を削減することができると共に、マッフル管1の変形を
抑制することができる。この結果、コントローラ19や
調整弁17を従来の装置に追加しても十分に光ファイバ
ー等の製造コストを低減することができる。そのコスト
低減効果は、ガラス微粒子堆積体2の径が大きくて熱処
理装置Aが大型化するほど、また大量のガラス微粒子堆
積体2を熱処理するほど大きくなる。
On the other hand, an inert gas is supplied into the furnace shell 9 from a gas source through an upstream gas supply pipe 14 or each downstream gas supply pipe 15. The amount of supply of the inert gas into the furnace shell 9 depends on the pressure (differential pressure) with respect to the atmospheric pressure in the furnace shell 9 when the opening of the regulating valve 17 is maximum and the temperature inside the furnace shell 9 is 600 ° C. detection pressure) is set so that + 1mmH 2 O about positive pressure gauge 21. When the temperature in the furnace shell 9 becomes higher than 600 ° C. as in the heat treatment of the glass particle deposit 2, the pressure in the furnace shell 9 becomes +1 mmH due to thermal expansion.
Although an attempt is made to increase from 2 O, the opening of the regulating valve 17 is reduced by the controller 19, and the value of +1 mmH 2 O is maintained. Further, when the energization of the heater 10 is stopped and the temperature in the furnace shell 9 decreases with the end of the heat treatment, the opening of the regulating valve 17 is increased, and the temperature in the furnace shell 9 is reduced to 60 degrees.
As long as the temperature is 0 ° C. or higher, the pressure in the furnace shell 9 does not become lower than +1 mmH 2 O. As a result, when the temperature inside the furnace shell 9 is 600 ° C. or more at which the carbon is oxidized and consumed, air flows into the furnace shell 9 from the gap between the upper and lower ends of the furnace shell 9 and the muffle tube 1. Therefore, the oxidative consumption of the heater 10 and the molded heat insulating material 11 can be reliably prevented by the inert gas. At this time, the amount of the inert gas used is required to be a minimum necessary, and the amount of the inert gas used can be reduced as compared with the conventional apparatus in which the supply amount of the inert gas into the furnace shell 9 is kept constant. In addition, the deformation of the muffle tube 1 can be suppressed. As a result, even if the controller 19 and the regulating valve 17 are added to the conventional device, the manufacturing cost of the optical fiber and the like can be sufficiently reduced. The cost reduction effect increases as the diameter of the glass fine particle deposit 2 increases and the heat treatment apparatus A increases in size, and as a large amount of the glass fine particle deposit 2 heat-treats.

【0017】[0017]

【発明の効果】以上説明したように、請求項1の発明に
よると、ガス供給管により炉殻内に不活性ガスを供給し
ながら炉殻内のヒーターによりマッフル管内のガラス微
粒子堆積体を加熱して熱処理を行うようにしたガラス微
粒子堆積体の熱処理装置に対して、上記炉殻内の不活性
ガスの圧力を検出する圧力検出手段と、上記ガス供給管
に設けられ、不活性ガスの炉殻内への供給量を開度によ
り調整可能な調整弁と、上記圧力検出手段からの検出信
号を受けて、炉殻内の温度変化による該炉殻内の圧力変
動を抑制するように上記調整弁の開度を制御する制御手
段とを備えるようにしたことにより、カーボン製のヒー
ター等の酸化消耗を防止しつつ、ガラス微粒子堆積体の
熱処理時における不活性ガスの使用量を可及的に減らし
かつマッフル管の変形を抑えて、光ファイバー等の製造
コストの低減化を図ることができる。
As described above, according to the first aspect of the present invention, the glass particle deposit in the muffle tube is heated by the heater in the furnace shell while the inert gas is supplied into the furnace shell by the gas supply tube. Pressure detecting means for detecting the pressure of the inert gas in the furnace shell; and a furnace shell for the inert gas provided in the gas supply pipe. An adjusting valve capable of adjusting the supply amount to the inside by an opening degree, and the adjusting valve configured to receive a detection signal from the pressure detecting means and suppress a pressure change in the furnace shell due to a temperature change in the furnace shell. Control means for controlling the degree of opening of the glass, while preventing the oxidative consumption of the carbon heater and the like, and reducing the amount of inert gas used during the heat treatment of the glass particle deposit as much as possible. And of the muffle tube By suppressing shape, it is possible to reduce the cost of manufacturing an optical fiber or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係るガラス微粒子堆積体の
熱処理装置を示す概略断面図である。
FIG. 1 is a schematic sectional view showing a heat treatment apparatus for a glass fine particle deposit according to an embodiment of the present invention.

【図2】熱処理装置の従来例を示す概略断面図である。FIG. 2 is a schematic sectional view showing a conventional example of a heat treatment apparatus.

【符号の説明】[Explanation of symbols]

A ガラス微粒子堆積体の熱処理装置 1 マッフル管 2 ガラス微粒子堆積体 9 炉殻 10 ヒーター 14 上流側ガス供給管 15 下流側ガス供給管 17 調整弁 19 コントローラ(制御手段) 21 差圧計(圧力検出手段) Reference Signs List A Heat treatment apparatus for glass particulate deposit 1 Muffle tube 2 Glass particulate deposit 9 Furnace shell 10 Heater 14 Upstream gas supply pipe 15 Downstream gas supply pipe 17 Regulator valve 19 Controller (control means) 21 Differential pressure gauge (pressure detection means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 厳明 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 Fターム(参考) 4G014 AH21 4G021 CA13  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeaki Ikeda 4-3 Ikejiri, Itami-shi, Hyogo F-term in Mitsubishi Cable Industries, Ltd. Itami Works 4G014 AH21 4G021 CA13

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内部にガラス微粒子堆積体が挿入される
マッフル管と、 上記マッフル管の外周側に配置され、内部にヒーターを
有する炉殻と、 上記炉殻内に不活性ガスを所定の供給量で供給するガス
供給管とを備え、該ガス供給管により炉殻内に不活性ガ
スを供給しながら炉殻内のヒーターにより上記マッフル
管内のガラス微粒子堆積体を加熱して熱処理を行うよう
にしたガラス微粒子堆積体の熱処理装置において、 上記炉殻内の不活性ガスの圧力を検出する圧力検出手段
と、 上記ガス供給管に設けられ、不活性ガスの炉殻内への供
給量を開度により調整可能な調整弁と、 上記圧力検出手段からの検出信号を受けて、炉殻内の温
度変化による該炉殻内の圧力変動を抑制するように上記
調整弁の開度を制御する制御手段とを備えていることを
特徴とするガラス微粒子堆積体の熱処理装置。
1. A muffle tube into which a glass particle deposit is inserted, a furnace shell disposed on an outer peripheral side of the muffle tube and having a heater inside, and a predetermined supply of an inert gas into the furnace shell. A gas supply pipe for supplying an inert gas into the furnace shell through the gas supply pipe, and heating the glass particle deposit in the muffle tube by a heater in the furnace shell to perform heat treatment. In a heat treatment apparatus for a glass fine particle deposit, the pressure detection means for detecting the pressure of the inert gas in the furnace shell, and the gas supply pipe is provided with an opening amount of the inert gas into the furnace shell. And a control means for receiving a detection signal from the pressure detection means and controlling an opening degree of the adjustment valve so as to suppress a pressure change in the furnace shell due to a temperature change in the furnace shell. That you have The heat treatment apparatus of the soot preform to symptoms.
JP16161298A 1998-06-10 1998-06-10 Heat treatment apparatus for glass particulate deposit Pending JP2000001327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16161298A JP2000001327A (en) 1998-06-10 1998-06-10 Heat treatment apparatus for glass particulate deposit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16161298A JP2000001327A (en) 1998-06-10 1998-06-10 Heat treatment apparatus for glass particulate deposit

Publications (1)

Publication Number Publication Date
JP2000001327A true JP2000001327A (en) 2000-01-07

Family

ID=15738484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16161298A Pending JP2000001327A (en) 1998-06-10 1998-06-10 Heat treatment apparatus for glass particulate deposit

Country Status (1)

Country Link
JP (1) JP2000001327A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100671378B1 (en) 2004-04-26 2007-01-22 도시바 기카이 가부시키가이샤 Press forming machine for glass
JP2010132503A (en) * 2008-12-05 2010-06-17 Fujikura Ltd Dehydration sintering apparatus of optical fiber preform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100671378B1 (en) 2004-04-26 2007-01-22 도시바 기카이 가부시키가이샤 Press forming machine for glass
JP2010132503A (en) * 2008-12-05 2010-06-17 Fujikura Ltd Dehydration sintering apparatus of optical fiber preform

Similar Documents

Publication Publication Date Title
CN110904498A (en) Guide cylinder for crystal pulling furnace and crystal pulling furnace
KR102505546B1 (en) semiconductor crystal growth device
JPS61270231A (en) Heat-treating apparatus
JP2000001327A (en) Heat treatment apparatus for glass particulate deposit
JP5304031B2 (en) Porous glass base material dehydration sintering apparatus and exhaust control method thereof
US9074766B2 (en) Combustion method and system
JP2000128564A (en) Production of optical fiber preform
JP2009132549A (en) Synthetic quartz glass production device
JPH10279326A (en) Drawing and heating furnace for optical fiber
JPH05208840A (en) Method for optical fiber spinning and equipment therefor
JP3288020B2 (en) Burner for optical fiber preform processing
JP3075173B2 (en) Vertical heat treatment equipment
JP2005162573A (en) Method for manufacturing glass preform
JPS62226834A (en) Optical fiber drawing device
JPH1062069A (en) High temperature heater for rod shaped work
JPH05193972A (en) Heat treatment device for glass particulate deposit
JPH04127234U (en) Heating furnace for optical fiber manufacturing
JPH10135142A (en) Impurity diffusing equipment
JP6540450B2 (en) Method of manufacturing glass base material
KR20020067261A (en) Apparatus for controlling a temperature of a wafer in a semiconductor diffusion furnace system
JP2004331414A (en) Method and apparatus for manufacturing glass preform
JPH0437899Y2 (en)
JP2009234860A (en) Apparatus for producing synthetic silica glass tube and method for producing synthetic silica glass tube
CN113716858A (en) Sintering equipment and sintering method
JPH06206735A (en) Drawing of optical fiber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040819

A131 Notification of reasons for refusal

Effective date: 20050105

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20050628

Free format text: JAPANESE INTERMEDIATE CODE: A02