JP5304031B2 - Porous glass base material dehydration sintering apparatus and exhaust control method thereof - Google Patents

Porous glass base material dehydration sintering apparatus and exhaust control method thereof Download PDF

Info

Publication number
JP5304031B2
JP5304031B2 JP2008144866A JP2008144866A JP5304031B2 JP 5304031 B2 JP5304031 B2 JP 5304031B2 JP 2008144866 A JP2008144866 A JP 2008144866A JP 2008144866 A JP2008144866 A JP 2008144866A JP 5304031 B2 JP5304031 B2 JP 5304031B2
Authority
JP
Japan
Prior art keywords
exhaust
gas
dehydration
path
sintering apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008144866A
Other languages
Japanese (ja)
Other versions
JP2009292658A (en
Inventor
雅人 小貫
利已 幅崎
久嗣 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008144866A priority Critical patent/JP5304031B2/en
Publication of JP2009292658A publication Critical patent/JP2009292658A/en
Application granted granted Critical
Publication of JP5304031B2 publication Critical patent/JP5304031B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent exhaust defect, quality defect and the corrosion of ambient equipment, to prevent the reduction of operation rate due to the exchange of the exhaust pipe and to reduce the maintenance cost by preventing clogging of an exhaust pipe, the entrainment of the air and the indoor leakage of a dehydrated process gas. <P>SOLUTION: In a dehydration sintering apparatus 100 of the porous glass preform 1 for supplying a process gas for dehydration or fluorine addition to the porous glass preform to a heating furnace 3 and heating, an exhaust pathway 5 for introducing an exhaust gas in the heating furnace 3 to the outside of the furnace is constituted of two lines of a first pathway 61 through which an exhaust gas containing a suspended substance flows when the process gas producing the suspended substance by the reaction with water content or the like in the air is passed and a second pathway 63 for passing the exhaust gas when the process gas producing no suspended substance or the exhaust gas when a plant is under the standby, wherein the first and the second pathways 61, 63 are opened or closed corresponding to the process gas. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、加熱炉内の多孔質ガラス母材に脱水やフッ素添加のためのプロセスガスを供給して加熱する多孔質ガラス母材の脱水焼結装置及びその排気制御方法に関する。   The present invention relates to a dehydration sintering apparatus for a porous glass base material that heats the porous glass base material in a heating furnace by supplying a process gas for dehydration and fluorine addition to the porous glass base material, and an exhaust control method thereof.

石英系ガラス光ファイバのガラス母材は、ガラス微粒子堆積体(多孔質ガラス母材)を加熱処理し、脱水及び透明ガラス化を行うことによって製造される。加熱処理工程では、脱水、透明ガラス化などの加熱処理内容に応じて雰囲気ガスを選択する。例えば、第1加熱処理でHeとO2 及び脱水ガス(塩素ガス、塩化チオニル、フルオル系シランなど)を用い、多孔質ガラス母材を脱水し、続く第2加熱処理でHeとO2 又はHeのみを用いた雰囲気中で透明ガラス化することにより、プリフォームと呼ばれる円柱状のガラス棒を作る。その後、このプリフォームを加熱し、溶かしながら引っ張る線引処理を行って所定の太さの光ファイバに仕上げる。 The glass base material of the silica-based glass optical fiber is manufactured by subjecting a glass fine particle deposit body (porous glass base material) to heat treatment, dehydration and transparent vitrification. In the heat treatment step, an atmospheric gas is selected according to the heat treatment content such as dehydration and transparent vitrification. For example, the porous glass base material is dehydrated using He and O 2 and dehydrating gas (chlorine gas, thionyl chloride, fluorosilane, etc.) in the first heat treatment, and then He and O 2 or He in the second heat treatment. A cylindrical glass rod called a preform is made by vitrification into a transparent vitreous atmosphere. Thereafter, the preform is heated and drawn while being melted to finish an optical fiber having a predetermined thickness.

プリフォームは、線引処理するための前処理として、加熱された多孔質ガラス母材に脱水剤となるSiCl4 や、SiF4 等のガスを接触させて脱水焼結を行うことで、透明ガラス化して、最終的に仕上げる光ファイバのコアとクラッドとに相似の寸法、屈折率が付与される。図3は、このようなプリフォームの製造に使用される多孔質ガラス母材の脱水焼結装置の一例を示したものである(例えば特許文献1参照)。 As a pretreatment for preforming, transparent glass is obtained by performing dehydration sintering by bringing a heated porous glass base material into contact with a gas such as SiCl 4 or SiF 4 as a dehydrating agent. Thus, similar dimensions and refractive index are given to the core and clad of the optical fiber to be finally finished. FIG. 3 shows an example of an apparatus for dehydrating and sintering a porous glass base material used for manufacturing such a preform (see, for example, Patent Document 1).

この特許文献1に記載の脱水焼結装置500は、加熱炉501と、加熱炉501に排気管503を接続して装備された排ガス処理装置505とから構成される。加熱炉501は、軸線を上下方向に向けた筒状の炉芯管507と、この炉芯管507の上部を覆う炉芯管上蓋509と、炉芯管上蓋509の中心を昇降自在に挿通して炉芯管507内に多孔質ガラス母材511を吊持する支持棒513と、炉芯管507の外周から多孔質ガラス母材511を加熱するリングヒータ515と、リングヒータ515及び炉芯管507の周囲を覆う炉ケーシング517とを備える。   The dehydration and sintering apparatus 500 described in Patent Document 1 includes a heating furnace 501 and an exhaust gas treatment apparatus 505 equipped with an exhaust pipe 503 connected to the heating furnace 501. The heating furnace 501 has a cylindrical furnace core tube 507 whose axis is directed in the vertical direction, a furnace core tube upper cover 509 that covers the upper part of the furnace core tube 507, and a center of the furnace core tube upper cover 509 that can be moved up and down. A support rod 513 for suspending the porous glass preform 511 in the furnace core tube 507, a ring heater 515 for heating the porous glass preform 511 from the outer periphery of the furnace core tube 507, the ring heater 515, and the furnace core tube And a furnace casing 517 covering the periphery of 507.

脱水焼結装置500は、図に矢印Gで示すように、炉芯管507の下部から炉芯管507内に、Cl2 やSiCl4 やSiF4 等をガス状にして所定圧で供給する。これらのガスを、脱水処理用、屈折率調整用として使用するが、SiCl4 ガスやSiF4 ガスなどのSiを含むガスは、炉芯管507内で水分と反応してSiO2 ススを生成する。このSiO2 ススは、炉芯管507の低温部に堆積したり、排ガス中に浮遊して排気管503より排ガス処理装置505に排出される。 The dehydration and sintering apparatus 500 supplies Cl 2 , SiCl 4 , SiF 4, etc. in the form of gas from the lower part of the furnace core tube 507 into the furnace core tube 507 at a predetermined pressure, as indicated by an arrow G in the figure. These gases are used for dehydration treatment and refractive index adjustment. A gas containing Si such as SiCl 4 gas or SiF 4 gas reacts with moisture in the furnace core tube 507 to generate SiO 2 soot. . This SiO 2 soot accumulates in the low temperature part of the furnace core tube 507 or floats in the exhaust gas and is discharged from the exhaust pipe 503 to the exhaust gas treatment device 505.

排ガス処理装置505は、炉芯管507内の余分なガスを排ガスとして加熱炉501の外部に導く排気管503と、この排気管503から排出される排ガスを回収・処理するガス処理手段515とを備えている。ガス処理手段515は、排ガスを効率よく回収するために、排ガスを吸引する吸引ファン519を有している。   The exhaust gas processing device 505 includes an exhaust pipe 503 that guides excess gas in the furnace core tube 507 to the outside of the heating furnace 501 as exhaust gas, and a gas processing means 515 that collects and processes the exhaust gas discharged from the exhaust pipe 503. I have. The gas processing means 515 has a suction fan 519 for sucking the exhaust gas in order to efficiently recover the exhaust gas.

特開2003−246628号公報JP 2003-246628 A

しかしながら、SiF4 、SiCl4 のガスなどCl2 ガスと異なる性質を持つSi系プロセスガスを使用する焼結炉では、炉芯管内のSiF4 、SiCl4 ガスを排気する際、空気中の水分と反応して排ガス中の浮遊物質であるSiO2 (シリカ)が生成される。このSiO2 は、支持棒513が挿通される挿通穴521等から排ガスの吸引圧で炉芯管507内に引き込まれる空気中の水分とSiCl4 ガスやSiF4 ガスが反応することによっても生成されると考えられる。発生したSiO2 は排気管503内に堆積し、排気管閉塞を起こし、排気不良となる。排気不良となると、炉芯管内圧が不安定となる。また、脱水プロセスガスが装置設置室内に漏洩すれば、周辺設備の腐食や人体へ影響が生じた。従前において閉塞した排気管503は、閉塞部の切断、交換を行っている。このため、排気管503の交換による稼働率低下が生じ、補修費も増大した。
本発明は上記状況に鑑みてなされたもので、排気管詰まりを防止し、脱水プロセスガスの室内漏洩が生じない多孔質ガラス母材の脱水焼結装置及びその排気制御方法を提供し、もって、排気不良、品質不良、周辺設備の腐食を防止するとともに、排気管交換による稼働率低下の防止や、補修費の低減を図ることを目的とする。
However, in the sintering furnace using a Si-based process gas having different properties and Cl 2 gas such as a gas of SiF 4, SiCl 4, when evacuating the SiF 4, SiCl 4 gas in the furnace core tube, the moisture in the air By reacting, SiO 2 (silica) which is a suspended substance in the exhaust gas is generated. This SiO 2 is also generated by the reaction of moisture in the air drawn into the furnace core tube 507 with the suction pressure of the exhaust gas from the insertion hole 521 through which the support rod 513 is inserted, and the SiCl 4 gas or SiF 4 gas. It is thought. The generated SiO 2 accumulates in the exhaust pipe 503 and causes the exhaust pipe to be blocked, resulting in exhaust failure. When exhaust becomes poor, the furnace core tube internal pressure becomes unstable. In addition, if the dehydration process gas leaks into the equipment installation chamber, the peripheral equipment is corroded and the human body is affected. The previously closed exhaust pipe 503 is cutting and replacing the closed portion. For this reason, the operating rate declined by exchanging the exhaust pipe 503, and the repair cost also increased.
The present invention has been made in view of the above situation, and provides a dehydration sintering apparatus for a porous glass base material that prevents clogging of the exhaust pipe and does not cause indoor leakage of the dehydration process gas, and an exhaust control method therefor, The purpose is to prevent exhaustion defects, quality defects, and corrosion of peripheral equipment, to prevent a reduction in operating rate due to exhaust pipe replacement, and to reduce repair costs.

本発明に係る上記目的は、下記構成により達成される。
(1) 加熱炉内の多孔質ガラス母材に脱水又はフッ素添加のためのプロセスガスを供給して加熱する多孔質ガラス母材の脱水焼結装置であって、
前記加熱炉内の排ガスを炉外に導く排気経路が、
空気中の水分と反応して浮遊物質を生成する前記プロセスガスを流しているときの該浮遊物質を含む排ガスを流す第1経路と、
前記浮遊物質を生成しない前記プロセスガスを流しているときの排ガス、又は設備待機中の排ガスを流す第2経路と、の2系統で構成され、
前記第2経路にのみ前記加熱炉内圧を調整する吸気路が接続され、
前記第1、第2経路が前記プロセスガスの種類に応じて開閉されることを特徴とする多孔質ガラス母材の脱水焼結装置。
The above object of the present invention is achieved by the following configuration.
(1) A dehydration sintering apparatus for a porous glass base material that heats the porous glass base material in a heating furnace by supplying a process gas for dehydration or fluorine addition to the porous glass base material,
An exhaust path for guiding exhaust gas in the heating furnace to the outside of the furnace,
A first path for flowing an exhaust gas containing the suspended solid when flowing the process gas that reacts with moisture in the air to generate the suspended solid;
The exhaust gas when flowing the process gas that does not generate the suspended matter, or a second path for flowing exhaust gas during standby of equipment, and two systems,
An intake passage for adjusting the furnace pressure is connected only to the second passage,
An apparatus for dehydration and sintering of a porous glass base material, wherein the first and second paths are opened and closed according to the type of the process gas.

この多孔質ガラス母材の脱水焼結装置によれば、SiF4 、SiCl4 ガス専用の排気ライン(第1経路)を設け、余剰空気など空気を取り込まない排気ラインとしてSiO2 への反応を防止している。また、加熱炉へのCl2 添加時や設備待機時には、その他系の排気ライン(第2経路)に切替えることにより、SiF4 、SiCl4 ライン(第1経路)ヘの空気混入を防止し、SiO2 への反応を抑えることもできる。加熱炉からのSiF4 、SiCl4 ガスと空気(水分)が混合しないようにすることで、SiO2 が生成されない排気環境を形成し、配管閉塞を生じなくしている。
さらに、吸気路の開閉にて第2経路へ導入する余剰空気量を制御し、排気経路下流に設けた吸引ファンの回転制御では行うことのできない、加熱炉内圧の微調整が可能となる。第1経路には吸気路を設けず、SiO2 への反応を防止しながら、加熱炉内圧の微調整が可能となる。
According to this porous glass base material dehydration and sintering apparatus, an exhaust line (first path) dedicated to SiF 4 and SiCl 4 gas is provided to prevent reaction to SiO 2 as an exhaust line that does not take in air such as excess air. doing. In addition, when Cl 2 is added to the heating furnace or when the equipment is on standby, switching to the other exhaust line (second path) prevents the air from entering the SiF 4 and SiCl 4 lines (first path). The reaction to 2 can also be suppressed. By preventing the SiF 4 and SiCl 4 gas from the heating furnace from mixing with air (moisture), an exhaust environment in which SiO 2 is not generated is formed, and the piping is not blocked.
Furthermore, the amount of surplus air introduced into the second path is controlled by opening and closing the intake path, and fine adjustment of the heating furnace pressure, which cannot be performed by the rotation control of the suction fan provided downstream of the exhaust path, becomes possible. The first passage is not provided with an intake passage, and the internal pressure of the heating furnace can be finely adjusted while preventing reaction to SiO 2 .

(2) 前記第1、第2経路のそれぞれに開閉弁が設けられ、前記加熱炉内圧に応じて該開閉弁の弁開度が制御されることを特徴とする(1)に記載の多孔質ガラス母材の脱水焼結装置。 (2) The porous structure according to (1), wherein an opening / closing valve is provided in each of the first and second paths, and the opening degree of the opening / closing valve is controlled according to the internal pressure of the heating furnace. Glass base material dehydration and sintering equipment.

この多孔質ガラス母材の脱水焼結装置によれば、第1、第2経路のそれぞれに設けられた開閉弁の弁開度が個々に制御されることで、第1、第2経路の切替が可能になるとともに、第1、第2経路の排気量を漸次的に減少・増加させる切替が可能となる。   According to this porous glass base material dehydration and sintering apparatus, the first and second paths can be switched by individually controlling the opening degrees of the on-off valves provided in the first and second paths. Can be switched, and the exhaust amount of the first and second paths can be gradually decreased and increased.

(3) 前記第1経路の下流に洗浄塔が接続され、
前記開閉弁と該洗浄塔との間に電気集塵機が介挿されたことを特徴とする(1)又は(2)に記載の多孔質ガラス母材の脱水焼結装置。
(3) A washing tower is connected downstream of the first path,
The porous glass preform dehydration and sintering apparatus according to (1) or (2), wherein an electric dust collector is interposed between the on-off valve and the washing tower.

この多孔質ガラス母材の脱水焼結装置によれば、空気中の水分と反応してSiO2 を生成するプロセスガスに使用される排気管、すなわち、第1経路では、排ガスが、電気集塵機でSiO2 を除去してから洗浄塔にて中和処理される。 According to this porous glass base material dehydrating and sintering apparatus, in the exhaust pipe used for the process gas that reacts with moisture in the air to generate SiO 2 , that is, in the first path, the exhaust gas is discharged from the electric dust collector. After removing SiO 2 , neutralization is performed in a washing tower.

(4) (1)〜(3)のいずれか1つに記載の脱水焼結装置の排気制御方法であって、
前記第1、第2経路を切替えるに際し、双方の経路で排気する状態が生じてから該切替えを行うことを特徴とする脱水焼結装置の排気制御方法。
(4) An exhaust control method for a dehydration and sintering apparatus according to any one of (1) to (3),
An exhaust control method for a dehydration and sintering apparatus, characterized in that, when the first and second paths are switched, the switching is performed after an exhaust state occurs in both paths.

この脱水焼結装置の排気制御方法によれば、第1、第2経路の双方が共に閉となる瞬間をなくすことができる。これにより、炉芯管内圧が不安定になること、あるいは、開閉弁に異常があった場合の排ガスの室内漏洩を防ぐことができる。   According to the exhaust control method of the dehydration and sintering apparatus, the moment when both the first and second paths are closed can be eliminated. This can prevent the furnace core tube internal pressure from becoming unstable or prevent the exhaust gas from leaking indoors when there is an abnormality in the on-off valve.

(5) (1)〜(3)のいずれか1つに記載の脱水焼結装置の排気制御方法であって、
前記加熱炉内圧が圧力目標値であると検知され、且つ前記第1経路に設けられた開閉弁が開検知されたときに前記加熱炉内に前記浮遊物質を生成するプロセスガスの供給を開始することを特徴とする脱水焼結装置の排気制御方法。
(5) An exhaust control method for a dehydration sintering apparatus according to any one of (1) to (3),
When it is detected that the internal pressure of the heating furnace is a pressure target value and the opening / closing valve provided in the first path is detected to be opened, supply of a process gas for generating the floating substance in the heating furnace is started. An exhaust gas control method for a dehydration sintering apparatus.

この脱水焼結装置の排気制御方法によれば、脱水焼結プロセス開始時、圧力計や開閉弁が故障したときのプロセス環境不備下におけるプロセスガス誤供給を未然に回避することができる。排気システム部品が腐食性ガスで故障しても、加熱炉(炉芯管の上蓋)からのSiF4 、SiCl4 ガスの漏洩を防止することができる。 According to the exhaust control method of this dehydration sintering apparatus, it is possible to avoid erroneous supply of process gas in the event of insufficient process environment when the pressure gauge or the on-off valve breaks down at the start of the dehydration sintering process. Even if the exhaust system component fails due to corrosive gas, leakage of SiF 4 and SiCl 4 gas from the heating furnace (upper lid of the furnace core tube) can be prevented.

(6) (1)〜(3)のいずれか1つに記載の脱水焼結装置の排気制御方法であって、
前記第1経路に設けられた開閉弁が開状態で該第1経路の排気圧が零近傍となったときに前記第2経路の開閉弁を開くことを特徴とする脱水焼結装置の排気制御方法。
(6) The exhaust control method for the dehydration and sintering apparatus according to any one of (1) to (3),
Exhaust control of the dehydration sintering apparatus characterized in that the on-off valve of the second path is opened when the on-off valve provided in the first path is open and the exhaust pressure of the first path becomes close to zero. Method.

この脱水焼結装置の排気制御方法によれば、浮遊物質の堆積により第1経路に排気異常が生じたとき、第2経路による代替排気を可能にして、加熱炉内におけるSiF4 、SiCl4 ガスの陽圧による漏洩を防止できる。 According to the exhaust control method of this dehydration and sintering apparatus, when exhaust abnormality occurs in the first path due to the accumulation of suspended solids, alternative exhaust by the second path is possible, and SiF 4 and SiCl 4 gas in the heating furnace Leakage due to positive pressure can be prevented.

(7) (1)〜(3)のいずれか1つに記載の脱水焼結装置の排気制御方法であって、
前記第1、第2経路のそれぞれに設けられた開閉弁の弁開度が2.5%以上に制御されることを特徴とする脱水焼結装置の排気制御方法。
(7) An exhaust control method for a dehydration sintering apparatus according to any one of (1) to (3),
An exhaust control method for a dehydration and sintering apparatus, wherein a valve opening degree of an on-off valve provided in each of the first and second paths is controlled to 2.5% or more.

この脱水焼結装置の排気制御方法によれば、脱水焼結プロセス中の圧力計故障により、開閉弁が誤制御されて全閉となることを防止できる。排気経路が全閉となり圧力変動が起こることによる排気システム部品への負担を軽減することができる。加熱炉内が陽圧となることによる加熱炉(炉芯管の上蓋)からのSiF4 、SiCl4 ガスの漏洩も防止することができる。 According to the exhaust control method of this dehydration and sintering apparatus, it is possible to prevent the on-off valve from being erroneously controlled and fully closed due to a pressure gauge failure during the dehydration and sintering process. It is possible to reduce the burden on the exhaust system parts due to the exhaust path being fully closed and pressure fluctuations. Leakage of SiF 4 and SiCl 4 gas from the heating furnace (the upper lid of the furnace core tube) due to the positive pressure in the heating furnace can also be prevented.

本発明に係る多孔質ガラス母材の脱水焼結装置によれば、排気経路を、水分等と反応して浮遊物質を生成するプロセスガス(SiF4 、SiCl4 ガスなど)を流しているときの排ガスを流す第1経路と、浮遊物質を生成しないプロセスガス(Cl2系ガスなど)を流しているときの排ガス、又は設備待機中の排ガスを流す第2経路の2系統で構成し、これら第1、第2経路を、流すプロセスガスに応じ各々開閉するので、SiF4 、SiCl4 などのSiを含むガスを流しているときの排ガスを分別して独立した経路で排気し、この排気にはほぼ空気を巻き込まないようにできる。この結果、Siを含む排ガスが空気中の水分等と反応せず、排気管詰まりによる排気不良を防止することができ、大気巻き込みによる品質不良の防止や、脱水プロセスガスの室内漏洩による周辺設備の腐食を防止できる。また、排気管交換による稼働率の低下を防止し、補修費を低減できる。 According to the dehydration and sintering apparatus for a porous glass base material according to the present invention, a process gas (SiF 4 , SiCl 4 gas, etc.) that reacts with moisture or the like to generate a suspended substance flows through the exhaust path. This system consists of two systems: a first path for flowing exhaust gas, and a second path for flowing exhaust gas when a process gas (such as Cl 2 -based gas) that does not generate suspended substances is flowing, or exhaust gas that is waiting for equipment. 1. Since the second path is opened and closed according to the process gas to be flown, the exhaust gas when Si containing gas such as SiF 4 and SiCl 4 is flowing is separated and exhausted through an independent path. Air can be prevented from being involved. As a result, the exhaust gas containing Si does not react with moisture in the air, so that exhaust failure due to clogging of the exhaust pipe can be prevented, quality failure due to air entrainment, and peripheral equipment due to indoor leakage of dehydrated process gas can be prevented. Corrosion can be prevented. In addition, it is possible to prevent a reduction in operating rate due to replacement of the exhaust pipe, and to reduce repair costs.

本発明に係る脱水焼結装置の排気制御方法によれば、第1、第2経路を切替えるに際し、双方の経路で排気する状態が生じてから切替えを行うので、双方経路が共に閉となる圧力変動による排気システム部品(排気経路、開閉弁、吸引ファン等)への負担を軽減できる。   According to the exhaust control method of the dehydration and sintering apparatus according to the present invention, when switching between the first and second paths, the switching is performed after the exhaust state occurs in both paths, and therefore the pressure at which both paths are closed. The burden on exhaust system parts (exhaust path, on-off valve, suction fan, etc.) due to fluctuations can be reduced.

以下、本発明に係る多孔質ガラス母材の脱水焼結装置及びその排気制御方法の好適な実施の形態を図面を参照して説明する。
なお、本明細書中、「プロセスガス」、「雰囲気ガス」、「圧力調整ガス」、「シールガス」の区別は次のとおり定義する。「プロセスガス」:プロセス(処理)に使用するガス。SiCl4 ,SiF4 ,Clなど。「雰囲気ガス」:プロセスガスを含む、各処理中に流すガス。He,Nなどを含む。「圧力調整ガス」:雰囲気ガスのうち、炉内圧調整用として用いるガス。本実施の形態ではHe。「シールガス」:雰囲気ガスのうち、シール用として用いるガス。本実施の形態ではN
図1は本発明に係る脱水焼結装置の構成図である。
本実施の形態による脱水焼結装置100は、脱水やフッ素添加のためのプロセスガスを供給してガラス微粒子堆積体(多孔質ガラス母材)1を加熱処理する加熱炉3と、加熱炉3内の排ガスを炉外に導く排気経路5の形成された排気装置7とを備える。
Preferred embodiments of a porous glass base material dehydration and sintering apparatus and its exhaust control method according to the present invention will be described below with reference to the drawings.
In this specification, the distinction between “process gas”, “atmosphere gas”, “pressure adjusting gas”, and “seal gas” is defined as follows. “Process gas”: Gas used for the process. SiCl 4 , SiF 4 , Cl 2 etc. “Atmosphere gas”: Gas that flows during each process, including process gas. Including He, N 2 and the like. “Pressure adjusting gas”: A gas used for adjusting the furnace pressure among the atmospheric gases. In this embodiment, He. “Sealing gas”: Gas used for sealing among atmospheric gases. N 2 in this embodiment.
FIG. 1 is a block diagram of a dehydration and sintering apparatus according to the present invention.
The dehydration and sintering apparatus 100 according to the present embodiment includes a heating furnace 3 that supplies a process gas for dehydration and fluorine addition to heat-treat the glass fine particle deposit (porous glass base material) 1, and the heating furnace 3. And an exhaust device 7 having an exhaust path 5 for guiding the exhaust gas to the outside of the furnace.

加熱炉3は、縦型に配置された円筒形状の炉心管9と、炉心管9の外周側に配置された加熱源である円筒形状のヒータ11とを備えている。ヒータ11はカーボンにより形成されており、また、ヒータ11の周囲には断熱材13が配設されている。さらに、炉心管9と断熱材13は、炉の外殻をなす炉体15により覆われている。   The heating furnace 3 includes a cylindrical core tube 9 arranged in a vertical shape and a cylindrical heater 11 serving as a heating source arranged on the outer peripheral side of the core tube 9. The heater 11 is made of carbon, and a heat insulating material 13 is disposed around the heater 11. Furthermore, the core tube 9 and the heat insulating material 13 are covered with a furnace body 15 that forms the outer shell of the furnace.

炉心管9は、石英により形成されており、ヒータ11の発熱により炉心管9のうちヒータ11の内側に位置する箇所を中心に昇温させられる。そして、炉心管9の内側の炉内空間17に多孔質ガラス母材1を収容して加熱することができる。多孔質ガラス母材1は、支持棒19により吊り下げられる形で支持棒19と一体的に形成されており、支持棒19が取り付けられる昇降装置21により上下に昇降させることが可能である。また、昇降装置21は支持棒19とともに多孔質ガラス母材1をその軸回りに回転させることも可能となっている。また、炉心管9の上端には、多孔質ガラス母材1の導入時や取り出し時にその開口部を開閉するための上蓋23が着脱可能であり、また、炉心管9の下端には、適宜着脱可能な下蓋25が設けられている。   The core tube 9 is made of quartz, and the temperature of the core tube 9 is raised mainly by a portion of the core tube 9 located inside the heater 11 due to heat generated by the heater 11. And the porous glass preform | base_material 1 can be accommodated in the in-furnace space 17 inside the furnace core tube 9, and can be heated. The porous glass base material 1 is integrally formed with the support bar 19 so as to be suspended by the support bar 19, and can be moved up and down by an elevating device 21 to which the support bar 19 is attached. Further, the elevating device 21 can also rotate the porous glass base material 1 together with the support rod 19 around its axis. Further, an upper lid 23 for opening and closing the opening at the time of introduction and removal of the porous glass base material 1 can be attached to and detached from the upper end of the core tube 9, and it can be attached to the lower end of the core tube 9 as appropriate. A possible lower lid 25 is provided.

また、脱水焼結装置100は、多孔質ガラス母材1を加熱処理する際に使用するガスを供給するとともにその供給量を制御するガス供給制御装置27を備えている。ガス供給制御装置27は、炉心管9の下端近傍に設けられた雰囲気ガス導入部29から、炉心管9内に雰囲気ガスを供給する。雰囲気ガスとして、脱水処理時にはHeとO2及び脱水ガス(塩素ガス、塩化チオニル、フルオル系シランなど)が用いられ、透明ガラス化時にはHeとO2又はHeのみが用いられる。もしくは、脱水処理後に、ガラス母材の屈折率調整のためSiF4 などを含んだガスを雰囲気ガスとして使用する。 The dehydration and sintering apparatus 100 also includes a gas supply control device 27 that supplies a gas used when the porous glass base material 1 is heat-treated and controls the supply amount. The gas supply control device 27 supplies the atmospheric gas into the core tube 9 from the atmospheric gas introduction unit 29 provided near the lower end of the core tube 9. As the atmospheric gas, He and O 2 and dehydrated gas (chlorine gas, thionyl chloride, fluorosilane, etc.) are used during dehydration, and only He and O 2 or He are used during transparent vitrification. Alternatively, after dehydration, a gas containing SiF 4 or the like is used as the atmospheric gas for adjusting the refractive index of the glass base material.

また、炉心管9の上端近傍には炉心管内圧モニタ31が設けられており、炉内空間17の圧力を適時モニタすることができるようになっている。この炉心管内圧モニタ31にて測定されたデータは、ガス供給制御装置27に送られて、雰囲気ガス導入部29への雰囲気ガスの供給量を調節するのに利用される。   Further, a reactor core pressure monitor 31 is provided in the vicinity of the upper end of the reactor core tube 9 so that the pressure in the reactor space 17 can be monitored in a timely manner. Data measured by the reactor core pressure monitor 31 is sent to the gas supply control device 27 and used to adjust the supply amount of the atmospheric gas to the atmospheric gas introduction unit 29.

炉内空間17の雰囲気ガスは、上蓋23に設けられた空間を通して排気装置7へ排気される。上蓋23には、炉内空間17に面した蓋部33の上面に、蓋部33の略中央に形成された支持棒挿通口35及びこの支持棒挿通口35を貫通させた支持棒19を覆う形で短円筒状の圧力調整室37が設けられている。そして、この圧力調整室37の側部には、圧力調整ガスを導入する調整ガス導入部39が設けられ、ガス供給制御装置27からの圧力調整ガスがこの調整ガス導入部39を通して圧力調整室37へ供給される。圧力調整ガスには、例えばHeガスを使用すると良い。   The atmospheric gas in the furnace space 17 is exhausted to the exhaust device 7 through the space provided in the upper lid 23. The upper lid 23 covers the support rod insertion port 35 formed in the approximate center of the lid portion 33 and the support rod 19 penetrating the support rod insertion port 35 on the upper surface of the lid portion 33 facing the furnace space 17. A short cylindrical pressure regulation chamber 37 is provided. A side of the pressure regulation chamber 37 is provided with a regulation gas introduction section 39 for introducing a pressure regulation gas, and the pressure regulation gas from the gas supply control device 27 passes through the regulation gas introduction section 39 and the pressure regulation chamber 37. Supplied to. For example, He gas may be used as the pressure adjusting gas.

さらに、上蓋23には、圧力調整室37の上面に、圧力調整室37の上壁に設けられた支持棒挿通口41及びこの支持棒挿通口41を挿通させた支持棒19を覆う形で短円筒状の排気室43が設けられている。この排気室43の側部には、排気室43内のガスを排気する排気部45が設けられ、排気室43から排気されるガスがこの排気部45を通して排気装置7へ排気される。排気装置7は、排気されてきたガスを清浄化処理する。   Further, the upper lid 23 is short so that the upper surface of the pressure adjustment chamber 37 covers the support rod insertion port 41 provided on the upper wall of the pressure adjustment chamber 37 and the support rod 19 through which the support rod insertion port 41 is inserted. A cylindrical exhaust chamber 43 is provided. An exhaust part 45 for exhausting the gas in the exhaust chamber 43 is provided on the side of the exhaust chamber 43, and the gas exhausted from the exhaust chamber 43 is exhausted to the exhaust device 7 through the exhaust part 45. The exhaust device 7 cleans the exhausted gas.

加熱炉3では、圧力調整室37の上面に排気室43が設けられているため、排気装置7の排気圧が変動した場合でも、その圧の変動は圧力調整室37内の圧力調整ガスにより調整されて吸収され、炉内空間17に対して与える圧力変動の影響を小さく抑えられる。   In the heating furnace 3, since the exhaust chamber 43 is provided on the upper surface of the pressure adjustment chamber 37, even when the exhaust pressure of the exhaust device 7 fluctuates, the fluctuation of the pressure is adjusted by the pressure adjustment gas in the pressure adjustment chamber 37. Thus, the influence of the pressure fluctuation on the furnace internal space 17 is suppressed to a low level.

排気室43の側部には、排気圧モニタ47が設けられ、排気室43の圧力を適時モニタすることにより排気装置7への排気圧をモニタできるようになっている。この排気圧モニタ47にて測定されたデータは、ガス供給制御装置27に送られて、測定した排気圧の変動に応じて圧力調整室37へ供給される圧力調整ガスの供給量を調節するのに利用される。   An exhaust pressure monitor 47 is provided at the side of the exhaust chamber 43 so that the exhaust pressure to the exhaust device 7 can be monitored by monitoring the pressure in the exhaust chamber 43 in a timely manner. Data measured by the exhaust pressure monitor 47 is sent to the gas supply control device 27 to adjust the supply amount of the pressure adjusting gas supplied to the pressure adjusting chamber 37 in accordance with the measured fluctuation of the exhaust pressure. Used for

排気室43の上面には、支持棒挿通口49及びこの支持棒挿通口49を挿通させた支持棒19を覆う形で短円筒状のシール室51が設けられている。このシール室51の側部には、シールガスを導入するシールガス導入部53が設けられ、ガス供給制御装置27からのシールガスがこのシールガス導入部53を通してシール室51へ供給される。シール室51へ供給されたシールガスは、ほぼシール室51内に留まるが、そのうち一部はシール室51の上壁の支持棒挿通口55を通して装置外へ流れ出るか、支持棒挿通口49を通して排気室43へ流れ出る。シールガスの導入により、炉内への外気の巻き込みや、プロセスガスの炉外への漏出を防ぐことができる。シールガスには、不活性ガス、例えばN2 ガスを使用すると良い。 A short cylindrical seal chamber 51 is provided on the upper surface of the exhaust chamber 43 so as to cover the support rod insertion port 49 and the support rod 19 through which the support rod insertion port 49 is inserted. A seal gas introduction portion 53 for introducing a seal gas is provided at a side portion of the seal chamber 51, and the seal gas from the gas supply control device 27 is supplied to the seal chamber 51 through the seal gas introduction portion 53. The seal gas supplied to the seal chamber 51 stays in the seal chamber 51, but a part of the seal gas flows out of the apparatus through the support rod insertion port 55 on the upper wall of the seal chamber 51 or exhausts through the support rod insertion port 49. Flows into chamber 43. By introducing the seal gas, it is possible to prevent the outside air from getting into the furnace and the process gas from leaking out of the furnace. An inert gas such as N 2 gas may be used as the seal gas.

本実施の形態では、排気経路5が第1経路61と、第2経路63の2系統で構成されている。第1経路61は、空気中の水分等と反応して浮遊物質を生成するプロセスガス(SiF4 、SiCl4 ガス)を流しているときの浮遊物質を含む排ガスを流す。これに対し第2経路63は、浮遊物質を生成しないプロセスガス(Cl2 系ガス)を流しているときの排ガス、又は設備待機中の排ガスを流す。 In the present embodiment, the exhaust path 5 is composed of two systems, a first path 61 and a second path 63. The first path 61 flows exhaust gas containing suspended substances when a process gas (SiF 4 , SiCl 4 gas) that reacts with moisture in the air to generate suspended substances is flowing. On the other hand, the second path 63 flows exhaust gas when a process gas (Cl 2 gas) that does not generate suspended substances is flowing, or exhaust gas during equipment standby.

第1、第2経路61,63のそれぞれにはモータ開閉弁65,67が設けられ、開閉弁65,67は制御手段(PLC)69によって弁開度、開閉タイミングが制御される。制御手段69には排気部45の圧力を検出する圧力計71、炉心管9内圧を検出する圧力計73が接続され、これら圧力計71,73は検出圧力値を検出信号として制御手段69へ送出可能となっている。   Motor opening / closing valves 65 and 67 are provided in the first and second paths 61 and 63, respectively. The opening and closing timings of the opening and closing valves 65 and 67 are controlled by a control means (PLC) 69. A pressure gauge 71 for detecting the pressure in the exhaust part 45 and a pressure gauge 73 for detecting the internal pressure of the core tube 9 are connected to the control means 69. These pressure gauges 71 and 73 send the detected pressure value to the control means 69 as a detection signal. It is possible.

排気経路5は、第1、第2経路61,63のそれぞれに開閉弁65,67が設けられ、炉心管9内圧に応じて開閉弁65,67の弁開度が制御される。第1、第2経路61,63のそれぞれに設けられた開閉弁65,67の弁開度が個々に制御されることで、第1、第2経路61,63の切替が可能になるとともに、第1、第2経路61,63の排気量を漸次的に減少・増加させる切替が可能となっている。   In the exhaust path 5, on-off valves 65 and 67 are provided in the first and second paths 61 and 63, respectively, and the opening degrees of the on-off valves 65 and 67 are controlled according to the internal pressure of the core tube 9. By individually controlling the valve opening degree of the on-off valves 65 and 67 provided in the first and second paths 61 and 63, the first and second paths 61 and 63 can be switched. The first and second paths 61 and 63 can be switched to gradually decrease or increase the exhaust amount.

また、制御手段69は、使用するプロセスガスの種類によっても開閉弁65,67を制御して、第1、第2経路61,63を切替可能としている。SiF4 、SiCl4 ガスの排気時には第1経路61へ切替、Cl2 系ガスの排気時には第2経路63へ切替られる。プロセスガスの種類は、ガス供給制御装置27からガス種別信号を制御手段69へ送出することで判別可能となる。この他、ガス種別は制御手段69に手動によって入力されてもよい。 Further, the control means 69 can switch the first and second paths 61 and 63 by controlling the on-off valves 65 and 67 according to the type of process gas to be used. When the SiF 4 or SiCl 4 gas is exhausted, the first path 61 is switched, and when the Cl 2 gas is exhausted, the second path 63 is switched. The type of process gas can be determined by sending a gas type signal from the gas supply control device 27 to the control means 69. In addition, the gas type may be manually input to the control means 69.

さらに、排気装置7に設けられる制御手段69は、炉心管9内圧を圧力目標値とするよう開閉弁65,67を制御する。圧力計71,73にて加熱炉内圧と、排気部45の圧力が検出され、その検出値が制御手段69に与えられ、検出値が、予め与えられている圧力目標値となるように開閉弁65,67の開閉(弁開度、開閉タイミング)がフィードバック制御され、その結果、炉心管9内圧が自動で圧力目標値となるように制御される。   Furthermore, the control means 69 provided in the exhaust device 7 controls the on-off valves 65 and 67 so that the internal pressure of the core tube 9 is set to the pressure target value. The pressure gauges 71 and 73 detect the internal pressure of the heating furnace and the pressure of the exhaust part 45, and the detected value is given to the control means 69, so that the detected value becomes a pressure target value given in advance. The opening and closing (valve opening, opening / closing timing) of 65 and 67 is feedback-controlled, and as a result, the internal pressure of the core tube 9 is controlled automatically to the pressure target value.

第2経路63の下流には洗浄塔77が接続され、洗浄塔77は排気経路5からの排気ガスを中和処理する。図中79は水循環ポンプを示す。洗浄塔77の下流には吸引ファン81が接続され、吸引ファン81は洗浄塔77を介して排気経路5中の排気ガスを吸引する。排気経路5中の排気ガスは、洗浄塔77に吸引され、洗浄水落下雰囲気中を通過することで洗浄処理され、吸引ファン81から排気経路外へ排気される。   A cleaning tower 77 is connected downstream of the second path 63, and the cleaning tower 77 neutralizes the exhaust gas from the exhaust path 5. In the figure, reference numeral 79 denotes a water circulation pump. A suction fan 81 is connected downstream of the cleaning tower 77, and the suction fan 81 sucks the exhaust gas in the exhaust path 5 through the cleaning tower 77. Exhaust gas in the exhaust path 5 is sucked into the cleaning tower 77, passed through the cleaning water dropping atmosphere, cleaned, and exhausted from the suction fan 81 to the outside of the exhaust path.

開閉弁67と洗浄塔77の間の第2経路63には炉心管9内圧を調整する吸気路83が接続される。排気経路5は、吸気路83の開閉にて第2経路63へ導入する余剰空気量を制御し、排気経路下流に設けた吸引ファン81の回転制御では行うことのできない、炉心管9内圧の微調整が可能となる。第1経路61には吸気路を設けず、SiO2 への反応を防止しながら、炉心管9内圧の微調整が可能となっている。 An intake passage 83 that adjusts the internal pressure of the core tube 9 is connected to the second path 63 between the on-off valve 67 and the cleaning tower 77. The exhaust path 5 controls the amount of surplus air introduced into the second path 63 by opening and closing the intake path 83, and the internal pressure of the reactor core tube 9 cannot be controlled by the rotation control of the suction fan 81 provided downstream of the exhaust path. Adjustment is possible. The first passage 61 is not provided with an intake passage, and the internal pressure of the core tube 9 can be finely adjusted while preventing reaction to SiO 2 .

開閉弁65より下流の第1経路61には電気集塵機85が介挿されている。電気集塵機85の排気側は、吸気路83と洗浄塔77の間の第2経路63に接続されている。つまり、電気集塵機85は、開閉弁65と洗浄塔77との間に介挿されている。空気中の水分と反応してSiO2 を生成するプロセスガス供給時に使用される第1経路61では、排ガスが、電気集塵機85でSiO2 を除去してから洗浄塔77にて中和処理される。 An electric dust collector 85 is inserted in the first path 61 downstream from the on-off valve 65. The exhaust side of the electric dust collector 85 is connected to a second path 63 between the intake path 83 and the cleaning tower 77. That is, the electric dust collector 85 is interposed between the on-off valve 65 and the cleaning tower 77. In the first path 61 used when supplying the process gas that generates SiO 2 by reacting with moisture in the air, the exhaust gas is neutralized by the washing tower 77 after the SiO 2 is removed by the electric dust collector 85. .

以上説明した脱水焼結装置100を使用して多孔質ガラス母材1を加熱処理し、透明なガラス母材とする方法について説明する。図2は図1に示した脱水焼結装置100による脱水焼結工程のタイムチャートである。
炉心管9上から上蓋23を外した状態で、多孔質ガラス母材1を吊り下げた支持棒19を昇降装置21に取り付け、多孔質ガラス母材1を炉心管9の上端開口部より炉心管9内に導入する。そして、炉心管9のうちヒータ11により昇温される部分の内側に多孔質ガラス母材1の下端部が位置するように多孔質ガラス母材1を配置する。次いで、上蓋23を炉心管9の上端に装着する。
A method for heat-treating the porous glass base material 1 using the dehydration and sintering apparatus 100 described above to form a transparent glass base material will be described. FIG. 2 is a time chart of the dehydration and sintering process by the dehydration and sintering apparatus 100 shown in FIG.
With the top cover 23 removed from the top of the core tube 9, a support rod 19 suspending the porous glass base material 1 is attached to the lifting device 21, and the porous glass base material 1 is connected to the core tube from the upper end opening of the core tube 9. 9 is introduced. Then, the porous glass base material 1 is arranged so that the lower end portion of the porous glass base material 1 is positioned inside the portion of the core tube 9 heated by the heater 11. Next, the upper lid 23 is attached to the upper end of the core tube 9.

プロセス運転開始前の待機状態では、開閉弁65が閉じられ、開閉弁67が開かれている。プロセス運転開始と共に、閉じられていた開閉弁65が徐々に開かれる。圧力目標値であった炉心管9内圧は徐々に低下する。開閉弁65の全開信号ONにて、第2経路63における開閉弁67の閉制御が開始される。第1経路61における開閉弁65も一旦全開された後、開閉弁67に続いて徐々に閉じられる。   In the standby state before starting the process operation, the on-off valve 65 is closed and the on-off valve 67 is opened. As the process operation starts, the closed on-off valve 65 is gradually opened. The pressure inside the core tube 9 that was the target pressure value gradually decreases. When the full open signal of the on / off valve 65 is turned on, the closing control of the on / off valve 67 in the second path 63 is started. The open / close valve 65 in the first path 61 is also fully opened and then gradually closed after the open / close valve 67.

このように、第1、第2経路61,63を切替えるに際し、双方の経路で排気する状態が生じてから切替えを行う。これにより、第1、第2経路61,63の双方が共に閉となる瞬間をなくし、炉芯管内圧が不安定になること、あるいは、開閉弁に異常があった場合の排ガスの室内漏洩を防ぐことができる。   As described above, when the first and second paths 61 and 63 are switched, the switching is performed after the exhaust state occurs in both paths. As a result, the moment when both the first and second paths 61 and 63 are closed is eliminated, the furnace core tube internal pressure becomes unstable, or the exhaust gas leaks indoors when there is an abnormality in the on-off valve. Can be prevented.

第1経路61に設けられた開閉弁65が開検知され、且つ炉心管9内圧が圧力目標値であると検知されたときに、炉心管9内に脱水処理のためのプロセスガス(SiF4 、SiCl4 ガス)の供給を開始する。供給されたプロセスガスは、開閉弁67が閉じられていることで、第2経路63へは流れない。ヒータ11の温度を上げて、炉心管9内の温度を上げるとともに、雰囲気ガスとして、プロセスガス(SiF4 、SiCl4 ガス)を雰囲気ガス導入部29から炉心管9内に供給する。そして、炉心管9内の炉内空間17を上記雰囲気ガスで充満させた状態で、ヒータ11の内側に位置する炉内空間17の温度を1000℃〜1350℃(好ましくは、1100℃〜1250℃)の温度範囲に保持し、数十分程度の所定時間の間加熱して脱水処理を行う。 When the opening / closing valve 65 provided in the first path 61 is detected to be open and the internal pressure of the core tube 9 is detected to be a pressure target value, a process gas (SiF 4 , The supply of SiCl 4 gas) is started. The supplied process gas does not flow to the second path 63 because the on-off valve 67 is closed. While the temperature of the heater 11 is raised to raise the temperature in the core tube 9, process gas (SiF 4 , SiCl 4 gas) is supplied into the core tube 9 from the atmosphere gas introduction unit 29 as the atmosphere gas. And in the state which filled the furnace space 17 in the furnace core tube 9 with the said atmospheric gas, the temperature of the furnace space 17 located inside the heater 11 is 1000 to 1350 degreeC (preferably 1100 to 1250 degreeC). ) And is heated for a predetermined time of about several tens of minutes for dehydration.

脱水焼結装置100の排気制御方法では、圧力目標値の検知と開閉弁65の開検知でプロセスガス供給を開始することで、脱水焼結プロセス開始時、圧力計71,73や開閉弁65,67が故障したときのプロセス環境不備下におけるプロセスガス誤供給を未然に回避することができる。これにより、排気システム部品が腐食性ガスで故障しても、上蓋23等からのSiF4 ・SiCl4 ガスの漏洩を防止することができる。 In the exhaust control method of the dehydration sintering apparatus 100, the pressure gauges 71 and 73 and the on-off valves 65, 65, An erroneous supply of process gas when the process environment is inadequate when 67 fails can be avoided. Thereby, even if the exhaust system parts break down due to the corrosive gas, it is possible to prevent leakage of SiF 4 · SiCl 4 gas from the upper lid 23 or the like.

また、炉心管9内圧は、圧力目標値を0〜−200Paとして開閉弁65,67を制御するので、上蓋23からのSiF4 ・SiCl4 ガスの漏洩防止と品質の向上とを両立させることができる。 Further, since the internal pressure of the core tube 9 is set to a pressure target value of 0 to −200 Pa and the on-off valves 65 and 67 are controlled, it is possible to achieve both prevention of leakage of SiF 4 / SiCl 4 gas from the upper lid 23 and improvement of quality. it can.

さらに、脱水焼結プロセス開始時、所定時間(例えば4min)以内に圧力目標値に到達しないときには異常信号を発報し、脱水焼結プロセス開始時における開閉弁65,67の異常を検出できるようにすることが好ましい。   Further, when the pressure target value is not reached within a predetermined time (for example, 4 min) at the start of the dehydration sintering process, an abnormal signal is issued so that the abnormality of the on-off valves 65 and 67 at the start of the dehydration sintering process can be detected. It is preferable to do.

また、炉心管9内圧が所定圧力(異常圧力)で所定時間以上続いたときにはSiF4 、SiCl4 ガスの供給を停止し、脱水焼結プロセス中における開閉弁の異常を検出できるようにすることが好ましい。この場合には、開閉弁67の開動作を開始する。これにより、排気システム部品が腐食性ガスで故障しても、第2経路63による代替排気を可能にして、炉心管9内からプロセスガスの漏洩が生じないようにできる。 Further, when the internal pressure of the furnace core tube 9 continues at a predetermined pressure (abnormal pressure) for a predetermined time or longer, the supply of SiF 4 or SiCl 4 gas is stopped so that the on-off valve abnormality during the dehydration sintering process can be detected. preferable. In this case, the opening operation of the on-off valve 67 is started. Thereby, even if the exhaust system component breaks down with the corrosive gas, the alternative exhaust by the second path 63 is enabled, and the leakage of the process gas from the core tube 9 can be prevented.

さらに、第1経路61に設けられた開閉弁65が開状態で第1経路61の排気圧が零近傍となったときには、第2経路63の開閉弁67を開くようにすることが好ましい。これにより、浮遊物質の堆積により第1経路61に排気異常が生じたとき、第2経路63による代替排気を可能にして、炉心管9内におけるSiF4 、SiCl4 ガスの陽圧による漏洩を防止できる。 Furthermore, it is preferable to open the on-off valve 67 of the second path 63 when the on-off valve 65 provided in the first path 61 is in an open state and the exhaust pressure of the first path 61 becomes near zero. As a result, when an exhaust abnormality occurs in the first path 61 due to the accumulation of floating substances, alternative exhaust through the second path 63 is enabled, and leakage of SiF 4 and SiCl 4 gas in the reactor core tube 9 due to positive pressure is prevented. it can.

プロセス停止と共に第2経路63における開閉弁67の開動作が開始される。開閉弁67の開動作が開始されるまでの間、炉心管9内のプロセスガスは、排気ガスとなって第1経路61から排気装置7へと排気される。この際、開閉弁67が閉じられていることにより、SiF4 、SiCl4 ガスが第2経路63へ進入することがない。開閉弁67の全開信号ONにて、第1経路61における開閉弁65の閉動作が開始される。開閉弁65が閉じられることで、第1経路61には空気(水分)が混合しなくなる。 When the process is stopped, the opening / closing valve 67 in the second path 63 is opened. Until the opening operation of the on-off valve 67 is started, the process gas in the core tube 9 is exhausted from the first path 61 to the exhaust device 7 as exhaust gas. At this time, since the on-off valve 67 is closed, SiF 4 and SiCl 4 gas do not enter the second path 63. When the full open signal of the on / off valve 67 is turned on, the closing operation of the on / off valve 65 in the first path 61 is started. By closing the on-off valve 65, air (moisture) does not mix in the first path 61.

なお、第1、第2経路61,63のそれぞれに設けられた開閉弁65,67の弁開度は、2.5%以上に制御されることが好ましい。脱水焼結プロセス中の圧力計71,73の故障により、開閉弁65,67が誤制御されて全閉となることを防止できる。これにより、排気経路5が全閉となる急激な圧力変動による排気システム部品への負担を軽減することができる。また、炉心管9内が陽圧となることによる上蓋23からのSiF4 、SiCl4 ガスの漏洩も防止することができる。 In addition, it is preferable that the valve opening degree of the on-off valves 65 and 67 provided in the first and second paths 61 and 63 is controlled to 2.5% or more. It is possible to prevent the on-off valves 65 and 67 from being erroneously controlled and fully closed due to a failure of the pressure gauges 71 and 73 during the dehydration sintering process. As a result, it is possible to reduce the burden on the exhaust system components due to a sudden pressure fluctuation that causes the exhaust path 5 to be fully closed. In addition, leakage of SiF 4 and SiCl 4 gas from the upper lid 23 due to the positive pressure in the furnace core tube 9 can be prevented.

このように、脱水焼結装置100では、SiF4 、SiCl4 ガス専用の排気ライン(第1経路61)を設け、余剰空気など空気を取り込まない排気ラインとしてSiO2 への反応を防止している。また、炉心管9へのCl2 添加時や設備待機時には、その他系の排気ライン(第2経路63)に切替えることにより、SiF4 、SiCl4 ライン(第1経路61)ヘの空気混入を防止し、SiO2 への反応を抑えることもできる。炉心管9からのSiF4 、SiCl4 ガスと空気(水分)が混合しないようにすることで、SiO2 が生成されない排気環境を形成し、配管閉塞を生じなくしている。 As described above, the dehydration sintering apparatus 100 is provided with an exhaust line (first path 61) dedicated to SiF 4 and SiCl 4 gas, and prevents reaction to SiO 2 as an exhaust line that does not take in air such as excess air. . Further, when Cl 2 is added to the reactor core tube 9 or when the equipment is on standby, switching to the other exhaust line (second path 63) prevents air from entering the SiF 4 and SiCl 4 lines (first path 61). In addition, reaction to SiO 2 can be suppressed. By preventing the SiF 4 and SiCl 4 gases from the furnace core tube 9 from being mixed with air (moisture), an exhaust environment in which SiO 2 is not generated is formed, and the piping is not blocked.

したがって、上記実施の形態による多孔質ガラス母材の脱水焼結装置100によれば、排気経路5を、水分等と反応して浮遊物質を生成するプロセスガス(SiF4 、SiCl4 ガス)を流しているときの排ガスを流す第1経路61と、浮遊物質を生成しないプロセスガス(Cl2 系ガス)を流しているときの排ガス、又は設備待機中の排ガスを流す第2経路63の2系統で構成し、これら第1、第2経路をプロセスガスに応じ開閉するので、SiF4 、SiCl4 ガスを流しているときの排ガスを、分別して独立した経路で排気し、排気に空気を巻き込まないようにできる。この結果、排気管詰まりによる排気不良を防止し、大気巻き込みによる品質不良を防止できる。脱水プロセスガスの室内漏洩による周辺設備の腐食を防止できる。また、排気管交換による稼働率の低下を防止し、補修費を低減できる。 Therefore, according to the porous glass base material dehydration and sintering apparatus 100 according to the above-described embodiment, the process gas (SiF 4 , SiCl 4 gas) that reacts with moisture or the like to generate floating substances flows through the exhaust path 5. The first path 61 for flowing the exhaust gas when flowing, and the second path 63 for flowing the exhaust gas when flowing the process gas (Cl 2 gas) that does not generate floating substances, or the exhaust gas during standby of the equipment Since the first and second paths are configured to open and close according to the process gas, the exhaust gas when the SiF 4 or SiCl 4 gas is flowing is separated and exhausted through an independent path so that air is not involved in the exhaust. Can be. As a result, exhaust failure due to clogging of the exhaust pipe can be prevented, and quality failure due to air entrainment can be prevented. Corrosion of peripheral equipment due to indoor leakage of dehydration process gas can be prevented. In addition, it is possible to prevent a reduction in operating rate due to replacement of the exhaust pipe, and to reduce repair costs.

また、脱水焼結装置100の排気制御方法によれば、第1、第2経路61,63を切替えるに際し、双方の経路で排気する状態が生じてから切替えを行うので、双方経路が共に閉となり圧力変動が起こることによる排気システム部品(排気経路5、開閉弁65,67、吸引ファン81等)への負担を軽減できる。   Further, according to the exhaust control method of the dehydration and sintering apparatus 100, when the first and second paths 61 and 63 are switched, switching is performed after an exhaust state occurs in both paths, so both paths are closed. The burden on exhaust system components (exhaust path 5, on-off valves 65 and 67, suction fan 81, etc.) due to pressure fluctuation can be reduced.

本発明に係る脱水焼結装置の構成図である。It is a block diagram of the dehydration sintering apparatus which concerns on this invention. 図1に示した脱水焼結装置による脱水焼結工程のタイムチャートである。It is a time chart of the dehydration sintering process by the dehydration sintering apparatus shown in FIG. 従来の脱水焼結装置の構成図である。It is a block diagram of the conventional dehydration sintering apparatus.

符号の説明Explanation of symbols

1 多孔質ガラス母材
3 加熱炉
5 排気経路
61 第1経路
63 第2経路
65,67 開閉弁
69 制御手段
77 洗浄塔
83 吸気路
85 電気集塵機
100 脱水焼結装置
DESCRIPTION OF SYMBOLS 1 Porous glass base material 3 Heating furnace 5 Exhaust path 61 1st path 63 2nd path 65,67 On-off valve 69 Control means 77 Cleaning tower 83 Intake path 85 Electric dust collector 100 Dehydration sintering apparatus

Claims (7)

加熱炉内の多孔質ガラス母材に脱水又はフッ素添加のためのプロセスガスを供給して加熱する多孔質ガラス母材の脱水焼結装置であって、
前記加熱炉内の排ガスを炉外に導く排気経路が、
空気中の水分と反応して浮遊物質を生成する前記プロセスガスを流しているときの該浮遊物質を含む排ガスを流す第1経路と、
前記浮遊物質を生成しない前記プロセスガスを流しているときの排ガス、又は設備待機中の排ガスを流す第2経路と、の2系統で構成され、
前記第2経路にのみ前記加熱炉内圧を調整する吸気路が接続され、
前記第1、第2経路が前記プロセスガスの種類に応じて開閉されることを特徴とする多孔質ガラス母材の脱水焼結装置。
A dehydration and sintering apparatus for a porous glass base material that heats by supplying a process gas for dehydration or fluorine addition to the porous glass base material in a heating furnace,
An exhaust path for guiding exhaust gas in the heating furnace to the outside of the furnace,
A first path for flowing an exhaust gas containing the suspended solid when flowing the process gas that reacts with moisture in the air to generate the suspended solid;
The exhaust gas when flowing the process gas that does not generate the suspended matter, or a second path for flowing exhaust gas during standby of equipment, and two systems,
An intake passage for adjusting the furnace pressure is connected only to the second passage,
An apparatus for dehydration and sintering of a porous glass base material, wherein the first and second paths are opened and closed according to the type of the process gas.
前記第1、第2経路のそれぞれに開閉弁が設けられ、前記加熱炉内圧に応じて該開閉弁の弁開度が制御されることを特徴とする請求項1に記載の多孔質ガラス母材の脱水焼結装置。   2. The porous glass base material according to claim 1, wherein an opening / closing valve is provided in each of the first and second paths, and a valve opening degree of the opening / closing valve is controlled according to the pressure in the heating furnace. Dehydration and sintering equipment. 前記第1経路の下流に洗浄塔が接続され、
前記開閉弁と該洗浄塔との間に電気集塵機が介挿されたことを特徴とする請求項1又は2に記載の多孔質ガラス母材の脱水焼結装置。
A washing tower is connected downstream of the first path,
The apparatus for dehydration and sintering of a porous glass base material according to claim 1 or 2, wherein an electrostatic precipitator is interposed between the on-off valve and the washing tower.
請求項1〜3のいずれか1項に記載の脱水焼結装置の排気制御方法であって、
前記第1、第2経路を切替えるに際し、双方の経路で排気する状態が生じてから該切替えを行うことを特徴とする脱水焼結装置の排気制御方法。
An exhaust control method for a dehydration and sintering apparatus according to any one of claims 1 to 3,
An exhaust control method for a dehydration and sintering apparatus, characterized in that, when the first and second paths are switched, the switching is performed after an exhaust state occurs in both paths.
請求項1〜3のいずれか1項に記載の脱水焼結装置の排気制御方法であって、
前記加熱炉内圧が目標値であると検知され、且つ前記第1経路に設けられた開閉弁が開検知されたときに前記加熱炉内に前記浮遊物質を生成するプロセスガスの供給を開始することを特徴とする脱水焼結装置の排気制御方法。
An exhaust control method for a dehydration and sintering apparatus according to any one of claims 1 to 3,
When supply of the process gas for generating the suspended solids into the heating furnace is started when the internal pressure of the heating furnace is detected to be a target value and an opening / closing valve provided in the first path is detected to be opened An exhaust gas control method for a dehydration and sintering apparatus.
請求項1〜3のいずれか1項に記載の脱水焼結装置の排気制御方法であって、
前記第1経路に設けられた開閉弁が開状態で該第1経路の排気圧が零近傍となったときに前記第2経路の開閉弁を開くことを特徴とする脱水焼結装置の排気制御方法。
An exhaust control method for a dehydration and sintering apparatus according to any one of claims 1 to 3,
Exhaust control of the dehydration sintering apparatus characterized in that the on-off valve of the second path is opened when the on-off valve provided in the first path is open and the exhaust pressure of the first path becomes close to zero. Method.
請求項1〜3のいずれか1項に記載の脱水焼結装置の排気制御方法であって、
前記第1、第2経路のそれぞれに設けられた開閉弁の弁開度が2.5%以上に制御されることを特徴とする脱水焼結装置の排気制御方法。
An exhaust control method for a dehydration and sintering apparatus according to any one of claims 1 to 3,
An exhaust control method for a dehydration and sintering apparatus, wherein a valve opening degree of an on-off valve provided in each of the first and second paths is controlled to 2.5% or more.
JP2008144866A 2008-06-02 2008-06-02 Porous glass base material dehydration sintering apparatus and exhaust control method thereof Active JP5304031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008144866A JP5304031B2 (en) 2008-06-02 2008-06-02 Porous glass base material dehydration sintering apparatus and exhaust control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008144866A JP5304031B2 (en) 2008-06-02 2008-06-02 Porous glass base material dehydration sintering apparatus and exhaust control method thereof

Publications (2)

Publication Number Publication Date
JP2009292658A JP2009292658A (en) 2009-12-17
JP5304031B2 true JP5304031B2 (en) 2013-10-02

Family

ID=41541211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008144866A Active JP5304031B2 (en) 2008-06-02 2008-06-02 Porous glass base material dehydration sintering apparatus and exhaust control method thereof

Country Status (1)

Country Link
JP (1) JP5304031B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225412A (en) * 2010-04-22 2011-11-10 Asahi Glass Co Ltd Apparatus and method for producing porous quartz glass preform
JP5968262B2 (en) * 2013-05-21 2016-08-10 信越化学工業株式会社 Sintering apparatus and sintering method for glass preform for optical fiber
JP2017088458A (en) * 2015-11-13 2017-05-25 住友電気工業株式会社 Dehydration sintering device for porous glass preform, and dehydration sintering method
JPWO2019107557A1 (en) * 2017-12-01 2020-11-19 古河電気工業株式会社 Glass body manufacturing equipment, glass body manufacturing method, soot transfer mechanism, and soot heating mechanism
WO2021192500A1 (en) * 2020-03-25 2021-09-30 株式会社フジクラ Method for manufacturing optical fiber preform, and heating furnace

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476927A (en) * 1987-02-16 1989-03-23 Sumitomo Electric Industries Heating oven for optical fiber parent glass and its production
JP4106528B2 (en) * 2002-02-26 2008-06-25 住友電気工業株式会社 Porous glass base material dehydration and sintering equipment

Also Published As

Publication number Publication date
JP2009292658A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP5304031B2 (en) Porous glass base material dehydration sintering apparatus and exhaust control method thereof
EP2805928B1 (en) Method and apparatus for sintering a glass preform for an optical fiber
WO2017181649A1 (en) Manufacturing device and manufacturing method for optical fiber preform rod
JP3785788B2 (en) Vacuum degassing equipment for molten glass
JPWO2007111351A1 (en) Manufacturing method of semiconductor device
JP3949425B2 (en) Heat treatment apparatus and method for optical fiber preform
KR20180117648A (en) Method and apparatus for purifying a target material for an EUV light source
WO2001016038A1 (en) Porous preform vitrifying device
CN108129017A (en) It is a kind of to improve OVD sintering efficiency and extend the device and method for drawing bar service life
JPS61270231A (en) Heat-treating apparatus
JP4737031B2 (en) Glass base material manufacturing method and manufacturing apparatus
JP2007131936A (en) Burnout method for vacuum carburizing furnace
JP4813854B2 (en) Substrate processing apparatus and semiconductor manufacturing method
CN109721236B (en) Apparatus and method for manufacturing glass base material
JP2005241211A (en) Method for preventing dew condensation in piping
JP2004349442A (en) Method and apparatus for detoxifying exhaust gas
JP2005162573A (en) Method for manufacturing glass preform
JP7558894B2 (en) Optical fiber preform manufacturing apparatus and method for manufacturing optical fiber preform
JP2008094633A (en) Method for producing optical fiber preform
EP4219416A1 (en) Method for manufacturing fluorine-containing silica glass
JP2020152624A (en) Corrosion prevention method of heating furnace, and heating furnace
JP6540450B2 (en) Method of manufacturing glass base material
US20120279258A1 (en) Method of dehydrating and sintering porous preform for optical fiber and dehydration-sintering furnace
JP2006219309A (en) Method and apparatus for producing porous quartz glass preform
JPH04254432A (en) Method and device for drawing optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110930

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5304031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250