JPH0439917A - Processing method of fine pattern - Google Patents

Processing method of fine pattern

Info

Publication number
JPH0439917A
JPH0439917A JP2146494A JP14649490A JPH0439917A JP H0439917 A JPH0439917 A JP H0439917A JP 2146494 A JP2146494 A JP 2146494A JP 14649490 A JP14649490 A JP 14649490A JP H0439917 A JPH0439917 A JP H0439917A
Authority
JP
Japan
Prior art keywords
layer
workpiece
pattern
ultraviolet
electrodeposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2146494A
Other languages
Japanese (ja)
Other versions
JP2878395B2 (en
Inventor
Akira Okazaki
岡崎 暁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP14649490A priority Critical patent/JP2878395B2/en
Publication of JPH0439917A publication Critical patent/JPH0439917A/en
Application granted granted Critical
Publication of JP2878395B2 publication Critical patent/JP2878395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To process a fine pattern with high accuracy, with high efficiency and at low costs by a method wherein a pattern-shaped ultraviolet-ray hindering electrodeposition layer which has been formed on a support material is transcribed on an object to be processed and a resist film is developed via the layer. CONSTITUTION:An ultraviolet-ray hindering electrodeposition layer 3 is electrodeposited and formed on a conductive support material 1 where an insulating layer 2 of a desired pattern has been formed. The support material on which said electrodeposition layer has been formed is aligned with and brought into close contact with an object 4, to be processed, on which a photoresist 5 and an adhesive layer 6 have been coated and formed sequentially. After that, the support material is stripped off; and the ultraviolet-ray hindering electrodeposition layer is transcribed on the object to be processed. Then, the electrodeposition layer is irradiated with ultraviolet rays 7. After that, a developing treatment of the above-mentioned photoresist is executed; in addition, its etching treatment is executed. As required, the processes up to the etching treatment are repeated a plurality of times. Thereby, a plurality of fine processing operations can be executed to the object to be processed such as a fine processing operation of a TFT or the like.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は微細パターンの加工方法に係わり、詳しくは′
gI膜トランジスタ、薄膜ダイオード、太陽電池、薄膜
センサー、SAWデバイス、TSB等の各種半導体素子
の製造過程おいて施される微細パターンの加工を高精度
で量産的に且つ安価に行うに好適な加工方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for processing fine patterns, and in detail,
A processing method suitable for high precision, mass production, and low cost processing of fine patterns performed in the manufacturing process of various semiconductor elements such as gI film transistors, thin film diodes, solar cells, thin film sensors, SAW devices, and TSBs. Regarding.

〔従来の技術 及び発明が解決しようとする課題〕[Conventional technology and the problem to be solved by the invention]

薄膜トランジスタを用いたカラー液晶デイスプレー(T
PT−LCD)が、近年ポケットテレビ、ポータプルテ
レビに組み込まれて実用化の段階に入ったばかりである
が、近頃では対角20インチ、40インチ、70インチ
のような大型液晶フラ・ノドデイスプレーを指向した開
発が既に盛んになっている。このような動向により40
インチ、70インチ等の如き大型TPTの製造が要求さ
れ始めた。そのため形成すべき薄膜トランジスタにおけ
るパターンも微細化とともに基板の大型化の傾向を余儀
無くされ、且つ量産化が必要となった。かかる生産内容
の要求に対して、現行のフォトリソグラフィー法はステ
ッパー等の大型露光装置の開発や設備投資に莫大な費用
がかかり、しかもフォトマスクの適用サイズの限界があ
る等、大きな問題点を抱えている。
Color liquid crystal display using thin film transistors (T
In recent years, PT-LCD (PT-LCD) has been incorporated into pocket TVs and portable TVs, and has just entered the stage of practical use. oriented development is already gaining momentum. Due to these trends, 40
The demand for manufacturing large-sized TPTs such as inch, 70-inch, etc. began to rise. For this reason, the pattern of thin film transistors to be formed has been forced to become smaller and the size of the substrate has become larger, and mass production has become necessary. In order to meet these production requirements, the current photolithography method has major problems such as the development of large exposure equipment such as steppers and equipment investment, which requires a huge amount of money, and there is a limit to the applicable size of the photomask. ing.

一方、上記フォトリソグラフィー法におけるレジスト膜
の現像までの工程に代えて、印刷法によりレジスト膜を
被加工物上に直接所望のパターンで印刷形成してエツチ
ングによる微細パターンを形成する方法も知られている
On the other hand, instead of the steps up to developing the resist film in the photolithography method, a method is also known in which a resist film is directly printed in a desired pattern on the workpiece using a printing method and a fine pattern is formed by etching. There is.

このレジスト膜の形成を印刷手段にて行う上記加工方法
は、20〜70インチ等のTPTの如き商品の大型化に
よるパターン形成にも大きな制約がなく対応し易いもの
の、以下に述べるような問題点がある。
Although the above-mentioned processing method in which the resist film is formed by printing means does not have any major restrictions and can be easily applied to pattern formation due to the increase in the size of products such as TPT of 20 to 70 inches, it has the following problems. There is.

即ち、上記印刷手段としては凹版オフセット印刷法、平
版オフセット印刷法、色別法、スクリーン印刷法等が代
表的に適用されているが、これらの印刷手段は何れも、
比較的画線幅が大きい(200μm以上)レジストパタ
ーン印刷には適するものの、画線幅がそれ以下の微細パ
ターンの印刷形成には不向きであった。中でも凹版オフ
セント印刷法の場合、硬めのインキを使用すれば10〜
90μm程度の細線パターンの印刷ができるが、被加工
物へのインキの転着性が悪くなってしまい、また他の印
刷法も同様、より細線のパターンを印刷しようとすると
塗膜厚が同時に薄くなる傾向があるため、結局、耐蝕性
を要すレジストパターン形成には不向きであった。また
印刷されるレジストパターンがインキの流動性、版の圧
力などの影響やインキの一部が転移しないで版に残留す
る等により変形したものとなってしまい、印刷パターン
の再現性に劣るという欠点もあった。更に、被加工物の
表面状態(凹凸の有無等)によって印刷形成するレジス
ト膜の線幅、膜厚等が異なってしまったり、凹部に印刷
ができない不具合があり、同様に被加工物の表層の種類
等によってインキとの密着性が悪く良好な印刷が行えな
いという不具合もある。しかもレジスト膜を被加工物表
面に直接印刷形成するため、印刷用レジストインキに含
まれている不都合な不純物(Naイオン等)がレジスト
膜中にそのまま残留してしまったり、その他にも被加工
物の種類によって印刷による汚染等が発生する問題があ
った。一般に上記印刷法に適用しているレジストインキ
は粘度が大きいため上記の不純物を除くための精製を行
なうことが不可能であった。
That is, as the above-mentioned printing means, intaglio offset printing method, lithographic offset printing method, color separation method, screen printing method, etc. are typically applied.
Although it is suitable for printing a resist pattern with a relatively large line width (200 μm or more), it is not suitable for printing a fine pattern with a smaller line width. Among them, in the case of intaglio offset printing method, if a harder ink is used,
Although it is possible to print fine line patterns of about 90 μm, the transfer of ink to the workpiece becomes poor, and similarly to other printing methods, when attempting to print thinner line patterns, the coating film thickness becomes thinner. As a result, it was unsuitable for forming resist patterns that required corrosion resistance. Another disadvantage is that the printed resist pattern is deformed due to the influence of the fluidity of the ink, the pressure of the plate, and some of the ink remains on the plate without being transferred, resulting in poor reproducibility of the printed pattern. There was also. Furthermore, the line width and thickness of the printed resist film may vary depending on the surface condition of the workpiece (presence or absence of unevenness, etc.), or there may be problems in printing on concave areas. Depending on the type, etc., there is also the problem that the adhesiveness with the ink is poor and good printing cannot be performed. Moreover, since the resist film is directly printed on the surface of the workpiece, undesirable impurities (such as Na ions) contained in the printing resist ink may remain in the resist film, and other problems may occur on the workpiece. Depending on the type of paper, there is a problem of contamination caused by printing. Generally, the resist ink used in the above-mentioned printing method has a high viscosity, so it has been impossible to purify it to remove the above-mentioned impurities.

以上のように、フォトリソ法による加工方法と印刷法に
よる加工方法は何れも一長一短があり、その結果、特に
前述の如き被加工物の加エバターンの微細化、加工基板
の大型化の傾向とともに量産化傾向に充分に対応できる
方法が必要とされていた。
As mentioned above, processing methods using photolithography and printing methods both have advantages and disadvantages, and as a result, mass production is becoming more difficult, especially with the trend of miniaturization of processing patterns of workpieces and enlargement of processing substrates as mentioned above. There was a need for a method that could adequately respond to trends.

〔課題を解決するための手段] 本発明者は上記従来技術の各種問題点を克服するために
研究を重ねた結果、フォトリソグラフィー法におけるフ
ォトマスクに代えて、別途支持材にパターン状に形成し
た紫外線遮断性電着層を、フォトレジストを塗布してな
る被加工物上に転写せしめ、その紫外線遮断性電着層に
よって上記レジスト膜を露光現像することにより、特に
レジスト膜の微細なパターン化を従来法に比べ精度を落
とすことなく極めて安価に且つ能率良く行うことが可能
となり、そのため目的とする微細パターンの加工もエツ
チング処理を経て高精度で且つ高率的に、しかも安価に
施すことができることを見出し、本発明を完成するに至
った。
[Means for Solving the Problem] As a result of repeated research in order to overcome the various problems of the above-mentioned conventional techniques, the present inventor has developed a method of forming a pattern on a separate support material in place of a photomask in the photolithography method. By transferring the ultraviolet-blocking electrodeposited layer onto a workpiece coated with a photoresist, and exposing and developing the resist film using the ultraviolet-blocking electrodeposited layer, it is possible to create particularly fine patterns of the resist film. Compared to conventional methods, it is possible to perform the process extremely cheaply and efficiently without compromising accuracy, and as a result, the desired fine pattern can be processed with high precision, efficiently, and at low cost through etching. They discovered this and completed the present invention.

即ち本発明の微細パターンの加工方法は、所望パターン
の絶縁層を形成した導電性支持材上に紫外線遮断性電着
層を電着形成し、該電着層が形成された支持材を、フォ
トレジスト及び粘着層を順次塗布形成してなる被加工物
上に位置合わせして密着させた後、支持材を剥離して紫
外線遮断性電着層を被加工物側に転写させ、次いで電着
層側より紫外線を照射した後、上記フォトレジストの現
像処理を行い、更にエツチング処理を行うことを特徴と
する構成を有するものである。
That is, in the method for processing a fine pattern of the present invention, an ultraviolet-blocking electrodeposited layer is electrodeposited on a conductive support material on which an insulating layer of a desired pattern has been formed, and the support material on which the electrodeposition layer is formed is subjected to photo-coating. After aligning and adhering the resist and adhesive layer to the workpiece formed by sequential coating, the support material is peeled off and the ultraviolet-blocking electrodeposited layer is transferred to the workpiece. After being irradiated with ultraviolet rays from the side, the photoresist is developed and then etched.

また本発明方法は、上述の加工方法の工程を複数回繰り
返し、被加工物に複数回の微細加工を行うことができる
Further, in the method of the present invention, the steps of the above-described processing method can be repeated multiple times to perform micromachining on the workpiece multiple times.

以下、本発明の加工方法を図面を参照しながら説明する
Hereinafter, the processing method of the present invention will be explained with reference to the drawings.

第1図(a)〜(ハ)は本発明加工方法の工程例を示す
断面説明図である。図中1は導電性支持材、2は絶縁層
、3は紫外線遮断性電着層、4は被加工物、5はフォト
レジスト膜、6は粘着層、7は現像のために照射する紫
外線、5aは現像によりパターン化されたレジスト膜を
示す。
FIGS. 1(a) to 1(c) are cross-sectional explanatory views showing process examples of the processing method of the present invention. In the figure, 1 is a conductive support material, 2 is an insulating layer, 3 is an ultraviolet-blocking electrodeposited layer, 4 is a workpiece, 5 is a photoresist film, 6 is an adhesive layer, 7 is an ultraviolet ray irradiated for development, 5a shows a resist film patterned by development.

本発明方法は、先ず第1図(b)に示すような転写され
るパターン状の紫外線遮断性電着層3を有する支持材1
と、同図(C)に示すようなフォトレジスト膜5及び粘
着層6がこの順に積層形成された被加工物4とを別々に
準備する。
In the method of the present invention, first, a support material 1 having a patterned ultraviolet-blocking electrodeposited layer 3 to be transferred as shown in FIG.
and a workpiece 4 on which a photoresist film 5 and an adhesive layer 6 are laminated in this order as shown in FIG. 3(C) are prepared separately.

パターン状の紫外線遮断性電着層3を有する支持材1は
、第1図(a)に示すように支持材1に加工すべき微細
パターンのポジ型又はネガ型パターンからなる絶縁層2
を設けた後、紫外線遮断性電着材料を電着法にて電着す
ることにより形成する。
A supporting material 1 having a patterned ultraviolet-blocking electrodeposited layer 3 has an insulating layer 2 consisting of a positive or negative pattern of a fine pattern to be processed into the supporting material 1, as shown in FIG. 1(a).
After that, an ultraviolet-blocking electrodeposition material is electrodeposited using an electrodeposition method.

支持材1は全体或いは少なくとも表層部が導電性を有す
る材質のものであればよく、具体的には金属製材料、絶
縁性基材に導電膜を形成した材料等である。また支持材
1表面には必要に応じて電着層3との良好な離型性を付
与するため温水デイツプ等の処理等を施してもよい。絶
縁層2は電着層3をパターン形成するため該電着層の非
形成部に相当する支持材表面部分をマスキングするもの
である。この絶縁層2は例えば、PVA、カゼインを重
クロム酸アンモニウムでセンシタイズしたものに通常の
溶剤型レジストを塗布し、フォトリソグラフィー法でパ
ターン化して形成したり、また支持材に無機絶縁膜を成
膜し、レジストを塗布した後、該無機絶縁膜をエツチン
グして形成したりすることができる。上記の紫外線遮断
性電着材料としては、一般の電着法に使用する金属物質
含有の電着液材料が代表的であるが、その他にも液中で
イオン成分となる有機物質や高分子物質、電極近傍での
電気分解成分との反応その他により導電性支持材1(電
極)面に析出する物質等を含有する材料等も使用できる
。電着層3の厚さは少なくとも絶縁層2の厚さ以上であ
り、通常1〜3μm程度が好ましい。
The supporting material 1 may be made of a material that has electrical conductivity in its entirety or at least in its surface layer, and specifically, it may be a metal material, a material in which a conductive film is formed on an insulating base material, or the like. Further, the surface of the support material 1 may be subjected to a treatment such as a warm water dip to impart good mold release properties from the electrodeposited layer 3, if necessary. The insulating layer 2 is used to mask the surface portion of the support material corresponding to the non-formed portion of the electrodeposited layer 3 in order to pattern the electrodeposited layer 3. This insulating layer 2 can be formed, for example, by coating PVA or casein sensitized with ammonium dichromate and applying an ordinary solvent-based resist and patterning it by photolithography, or by forming an inorganic insulating film on a support material. However, after applying a resist, the inorganic insulating film can be etched. Typical examples of the above-mentioned ultraviolet-blocking electrodeposition materials are electrodeposition liquid materials containing metal substances used in general electrodeposition methods, but there are also organic substances and polymeric substances that become ionic components in the liquid. It is also possible to use materials containing substances that precipitate on the surface of the conductive support material 1 (electrode) due to reactions with electrolytic components near the electrodes or the like. The thickness of the electrodeposited layer 3 is at least the thickness of the insulating layer 2, and preferably about 1 to 3 μm.

本発明ではパターン状の紫外線遮断性層3を電着法にて
形成するため下記のような利点がある。
In the present invention, since the patterned ultraviolet blocking layer 3 is formed by electrodeposition, there are the following advantages.

即ち、印刷手段にて紫外線遮断性層3を形成しようとす
ると、従来の印刷法では粘性のある印刷用インキを印刷
版等の画線部に擦りつけるようにしてインキングするた
め、粘性材料であるインキに圧着力、摺動力、引張力等
の物理的作用が複雑に影響を及ぼしてインキが画線部に
正確に充填されず、その結果、紫外線遮断性層を均一厚
で精度良くパターン印刷することができない難点がある
That is, when trying to form the ultraviolet blocking layer 3 by printing means, in conventional printing methods, viscous printing ink is inked by rubbing it against the image area of a printing plate, etc. Physical effects such as pressure force, sliding force, and tensile force affect certain inks in a complex manner, and the ink is not accurately filled into the image area, resulting in a pattern printing with uniform thickness and precision for the UV-blocking layer. There is a drawback that it cannot be done.

本発明者は、画線部に忠実にインキングする条件は上記
の如き諸物理力を排して完全に静的にインキングするこ
とにあるという観点に基づき、かかる目的を達成するた
めに本発明ではインキ成分を電気的に析出せしめる電着
法を採用し、該電着法により画線部への静的なインキン
グを可能ならしめた。電着画線の寸法精度が極めて良好
であることはフォトエレクトロフォーミング技術が微細
部品の加工に利用されていることからも明らかであり、
実際に上記技術によれば1〜5μm線幅の画像までも形
成することができる。また電着膜厚は電気量に依存し、
その制御が従来の印刷手段の如き物理的インキングより
も容易である。しかも画線部がフォトレジスト等で構成
されている場合、電着物は画線部のレジスト側壁で横へ
の成長が抑えられるので該レジストパターンの画線部に
忠実に電着が行われる。そのためレジスト画線部が精度
よく形成されていれば、電着画線もまたそれを忠実に複
製するので精度良く形成されることになる。以上のこと
から、印刷版(支持材)上の画線がたとえ1〜2μmの
微細画線でも電着物(インキ)を選択することによって
高精度のインキ画線を形成することができる。
Based on the viewpoint that the condition for inking faithfully to the printed area is to perform completely static inking by eliminating the various physical forces mentioned above, the present inventor has devised the present invention in order to achieve this objective. The invention employs an electrodeposition method in which ink components are electrically deposited, and this electrodeposition method enables static inking to the image area. It is clear from the fact that photoelectroforming technology is used to process minute parts that the dimensional accuracy of electrodeposited lines is extremely good.
In fact, according to the above technique, it is possible to form an image with a line width of 1 to 5 μm. In addition, the electrodeposited film thickness depends on the amount of electricity,
Its control is easier than physical inking such as conventional printing means. Moreover, when the image area is made of a photoresist or the like, the electrodeposited material is prevented from growing laterally on the resist side walls of the image area, so that electrodeposition is performed faithfully to the image area of the resist pattern. Therefore, if the resist image area is formed with high precision, the electrodeposited image line will also be faithfully copied, and will therefore be formed with high precision. From the above, even if the image on the printing plate (supporting material) is a fine image of 1 to 2 μm, a highly accurate ink image can be formed by selecting the electrodeposited material (ink).

従って、本発明では上記層3の形成に電着法を採用した
ことにより、核層3を上記印刷法の如き物理的作用を全
て排して静的に形成することができる上、極めて微細で
均一膜厚の層を高精度にパターン形成することができ、
しかも層厚の調整も電気的な操作により簡単に行うこと
ができるという大きなメリットがある。
Therefore, in the present invention, by adopting the electrodeposition method for forming the layer 3, the core layer 3 can be formed statically, eliminating all the physical effects of the printing method, and is extremely fine. It is possible to pattern a layer with uniform thickness with high precision,
Moreover, it has the great advantage that the layer thickness can be easily adjusted by electrical operation.

被加工物4としては、エツチングによりパターン加工を
行う物品であれば如何なるものでも用いることができる
。また−度の加工に供する被加工物4は単品であっても
、同一単品や異種品を固定枠等により複数個集合配置さ
せたものであっても、或いは単品が同一基板に多面付け
されたものであってもよい。このような被加工物4に表
面平滑となるようにフォトレジストを塗布してフォトレ
ジスト膜5を形成する。フォトレジストは公知のものを
適宜選定して使用することができ、これをスピンナーに
よる回転塗布、ブレードコーターによる塗布、スプレー
コートによる塗布等の手段にて0.2〜5μm、望まし
くは0.5〜2μm程度の膜厚となるように塗布する。
As the workpiece 4, any article can be used as long as it is patterned by etching. In addition, the workpiece 4 to be subjected to repeated processing may be a single item, a plurality of the same single item or different types of items arranged in a fixed frame, etc., or a single item may be mounted on multiple surfaces on the same board. It may be something. A photoresist film 5 is formed by applying photoresist to such a workpiece 4 so as to have a smooth surface. Known photoresists can be appropriately selected and used, and the photoresist is coated to a thickness of 0.2 to 5 μm, preferably 0.5 to 5 μm, by means such as spin coating with a spinner, coating with a blade coater, and coating with spray coating. Coat to a film thickness of approximately 2 μm.

このフォトレジストの塗工により被加工物表面は例え凹
凸等があっても隠蔽(埋設)されて平滑化される。フォ
トレジスト膜5上に更に粘着剤等をスピンナー、ブレー
ドコーター、スプレーコーターにより塗布して粘着層6
を形成する。上記粘着剤としては例えば商品名:PE−
118、KP−1004(以上、日本カーバイド製)等
の粘着剤を使用できる。尚、粘着層6は紫外線透過性を
確保しておく必要がある。
By applying this photoresist, even if the surface of the workpiece has irregularities, it is hidden (embedded) and smoothed. An adhesive or the like is further applied onto the photoresist film 5 using a spinner, blade coater, or spray coater to form an adhesive layer 6.
form. Examples of the above-mentioned adhesive include trade name: PE-
Adhesives such as 118 and KP-1004 (manufactured by Nippon Carbide) can be used. Note that the adhesive layer 6 needs to ensure ultraviolet transmittance.

次いで、本発明方法は紫外線遮断性電着層3を形成した
支持材1を、同図(d)に示すように該電着層3と粘着
層6が対峙するようにして被加工物4上に重合わせて密
圧着させる。この際、両者を正確に位置合わせ(アライ
メン日してから密着させることが重要である。しかる後
、支持材1を(絶縁層2共々)剥離して除去することに
よりパターン状の紫外線遮断性電着層3を粘着層6上に
貼着させて被加工物4側に転写させる(同図(e))。
Next, in the method of the present invention, the support material 1 on which the ultraviolet-blocking electrodeposited layer 3 is formed is placed on the workpiece 4 so that the electrodeposited layer 3 and the adhesive layer 6 face each other, as shown in FIG. overlap and press tightly. At this time, it is important to accurately position (align) the two and then bring them into close contact.Then, by peeling and removing the support material 1 (along with the insulating layer 2), a patterned ultraviolet-blocking electrode is formed. The adhesive layer 3 is adhered onto the adhesive layer 6 and transferred to the workpiece 4 side (FIG. 4(e)).

電着層3の転写終了後、第1図(e)に示すように該電
着層3がある面倒より被加工物4に向けて紫外線7を照
射すると共に現像処理を行い、レジスト膜5をパターン
化する(同図(f))。次いで、パターン化されたレジ
スト膜5aを有する被加工物4を公知のドライエツチン
グ法又はウェットエツチング法にてエツチング処理しく
同図(6))、最後にレジスト膜5等を剥膜、除去する
ことにより、本発明による被加工物4に対する微細パタ
ーン8の加工が完了する(同図(e))。
After the transfer of the electrodeposition layer 3 is completed, as shown in FIG. 1(e), ultraviolet rays 7 are irradiated onto the workpiece 4 from where the electrodeposition layer 3 is located, and a development process is performed to form the resist film 5. Pattern it ((f) in the same figure). Next, the workpiece 4 having the patterned resist film 5a is etched by a known dry etching method or wet etching method (FIG. 6(6)), and finally the resist film 5, etc. is peeled off and removed. Thus, the processing of the fine pattern 8 on the workpiece 4 according to the present invention is completed (FIG. 4(e)).

本発明では必要に応して上記エンチング処理までの工程
を複数回繰り返して行うことにより、TPT等のパター
ン加工等のように被加工物に対して複数回の微細加工を
施すことができる。尚、本発明により全ての微細パター
ン加工が終了した被加工物は後工程に送り、それ以後に
必要な処理、加工等に供する。
In the present invention, by repeating the steps up to the etching process multiple times as necessary, it is possible to perform fine processing on the workpiece multiple times, such as pattern processing of TPT or the like. Incidentally, according to the present invention, the workpiece on which all the fine pattern processing has been completed is sent to a post-process and subjected to necessary processing, processing, etc. thereafter.

第2図(a)〜(d)は本発明の他側を示す一部工程の
断面説明である。同図(a)はフォトレジスト膜5及び
粘着層6を形成した後の被加工物4上に、第1図(b)
に図示された同様の電着層3を有する支持材1を用いて
該電着層3を被加工物側に正確に位置合わせを行って転
写させ、しかる後、紫外線7を照射している工程部分を
示している。尚、第2図例示の被加工物4は最表層14
がエツチングされる構成の複合構造物である。第1図に
例示の加工方法と異なる点は、フォトレジスト(5)と
して第1回の例示の方法ではポジ型レジストを使用して
いるのに対し、第2図に例示の方法ではネガ型レジスト
を使用していることにある。従って、ポジ型フォトレジ
ストを使用した場合は、第1図(f)に示す如く現像処
理により電着層3の非形成部分であるレジスト膜5部分
が除去され、これに対しネガ型のフォトレジストを使用
した場合は、第2図(a)〜(b)に示すように現像処
理により電着層3の形成部分にあるレジスト膜5部分が
除去される。
FIGS. 2(a) to 2(d) are cross-sectional explanations of some steps showing the other side of the present invention. Figure 1(a) shows that the photoresist film 5 and adhesive layer 6 have been formed on the workpiece 4, as shown in Figure 1(b).
A process in which the electrodeposited layer 3 is accurately aligned and transferred onto the workpiece using a support material 1 having a similar electrodeposited layer 3 as shown in the figure, and then irradiated with ultraviolet rays 7 shows the part. Note that the workpiece 4 illustrated in FIG.
It is a composite structure in which the structure is etched. The difference from the processing method illustrated in FIG. 1 is that a positive resist is used as the photoresist (5) in the first illustrated method, whereas a negative resist is used in the method illustrated in FIG. The reason lies in the fact that it is used. Therefore, when a positive photoresist is used, the portion of the resist film 5 where the electrodeposited layer 3 is not formed is removed by the development process as shown in FIG. 1(f), whereas the negative photoresist is When using the resist film 5, a portion of the resist film 5 in the area where the electrodeposited layer 3 is formed is removed by a development process, as shown in FIGS. 2(a) and 2(b).

第2図に例示の本発明方法は上記の現像終了後、前記の
如(工、チング処理を行い(同図(C))、最後にレジ
スト膜5等を剥膜、除去することにより、被加工物4に
対して微細パターン8を加工形成することができる(同
図(d))。
In the method of the present invention illustrated in FIG. 2, after the above-mentioned development is completed, the above-mentioned process and ching process are performed (FIG. 2(C)), and finally, the resist film 5 and the like are peeled off and removed. A fine pattern 8 can be formed on the workpiece 4 (FIG. 4(d)).

(実施例〕 次に、実施例を挙げて本発明を更に詳細に説明する。(Example〕 Next, the present invention will be explained in more detail by giving examples.

実施例1 0.2M厚のステンレスの支持シートにPVA・重クロ
ム酸アンモニウムを主成分とする水溶性感光液を塗布し
、所定形状のフォトマスクを用いて露光、現像を行い、
線幅10μm、膜厚1.0μmのパターンからなる絶縁
層を形成した。更にバーニング処理を施して絶縁層の耐
水性及び電気絶縁性を強化した。次に、Ni板を陽極、
支持シートを陰極として下記組成の浴と電着条件の電着
を行い、支持シートのステンレス露出面に膜厚が1.2
μmのニッケル電着層を形成した。
Example 1 A water-soluble photosensitive solution containing PVA and ammonium dichromate as main components was applied to a 0.2M thick stainless steel support sheet, exposed and developed using a photomask of a predetermined shape, and
An insulating layer consisting of a pattern with a line width of 10 μm and a film thickness of 1.0 μm was formed. Furthermore, a burning process was performed to strengthen the water resistance and electrical insulation of the insulating layer. Next, the Ni plate was used as an anode,
Using the support sheet as a cathode, electrodeposition was performed in a bath with the following composition and under the electrodeposition conditions to form a film with a thickness of 1.2 mm on the exposed stainless steel surface of the support sheet.
A nickel electrodeposition layer of μm thickness was formed.

俗」底・硫酸ニッケル    250g#!・塩化ニッ
ケル     45g/j2・ホウ酸        
30g7N iJL条i・P H: 4.5、温度=50°C1電流
密度:5A/di” 一方、ポリシリコン(p−3i)が成膜されている被加
工物全面にフォトレジスト(東京応化型:0FPR)を
膜厚が1.5μmとなるように塗布した後、酢酸ビニル
系の粘着剤溶液を膜厚が1゜2μmとなるように塗布し
た。
Zoku” bottom/Nickel sulfate 250g #!・Nickel chloride 45g/j2・Boric acid
30g7N iJL strip i/PH H: 4.5, Temperature = 50°C1 Current density: 5A/di" Meanwhile, photoresist (Tokyo Ohka type) was applied to the entire surface of the workpiece on which polysilicon (p-3i) was formed :0FPR) was applied to a film thickness of 1.5 μm, and then a vinyl acetate adhesive solution was applied to a film thickness of 1° to 2 μm.

次いで、被加工物の粘着層と支持シート上のニッケル電
着層面を正確に位置合わせした状態で密着させ、しかる
後支持シートを剥がした。その結果、パターン状のニッ
ケル電着層が第1図(e)に示すように支持シートより
剥離して被加工物側(粘着層面)に転写した。次に電着
層側から紫外線を照射すると、ニッケル電着層は紫外線
を遮断するためポジ型のフォトレジスト膜は第1図(f
)に示すように現像される。現像終了後、酸素5%含有
のCF、ガスを用いてドライエツチングを行い、最後に
常法にてレジスト膜、粘着層及び電着層を除去した。
Next, the adhesive layer of the workpiece and the surface of the nickel electrodeposition layer on the support sheet were brought into close contact with each other in accurate alignment, and then the support sheet was peeled off. As a result, the patterned nickel electrodeposition layer was peeled off from the support sheet and transferred to the workpiece side (adhesive layer side) as shown in FIG. 1(e). Next, when ultraviolet rays are irradiated from the electrodeposited layer side, the nickel electrodeposited layer blocks the ultraviolet rays, so the positive photoresist film is
) is developed as shown. After the development was completed, dry etching was performed using CF gas containing 5% oxygen, and finally the resist film, adhesive layer, and electrodeposited layer were removed by a conventional method.

その結果、ポリシリコンが成膜されている被加工物に線
幅10μm、深さ5μmの第1図(5)に示すような微
細凹溝パターンを加工することができた。
As a result, a fine groove pattern as shown in FIG. 1(5) having a line width of 10 .mu.m and a depth of 5 .mu.m could be formed on the workpiece on which polysilicon was formed.

実施例2 被加工物として第2図(a)に図示の如<1.1m+厚
のガラス基板11(旭硝子製:AN)上にポリシリコン
(p−3i)を成膜加工後、ポリシリコン膜12を含む
表面全面に5iOzの絶縁膜13を形成し、その表面に
ゲート用ポリシリコン(p−St)をLPCVD法で膜
厚0.1umに成膜14シて構成したTPT基板を用い
た。この被加工物全面にスピンナー塗布法にてネガ型の
フォトレジスト(東京応化型: OMR)を膜厚が1μ
mとなるように塗布した後、その塗膜上にアクリレート
モノマーと光重合開始剤を主成分とする光重合型接着剤
を膜厚が1μmとなるように塗布した。
Example 2 After forming a polysilicon (p-3i) film on a glass substrate 11 (manufactured by Asahi Glass Co., Ltd.: AN) with a thickness of <1.1 m as shown in FIG. 2(a) as a workpiece, a polysilicon film was formed. A TPT substrate was used, in which an insulating film 13 of 5 iOz was formed on the entire surface including 12, and a gate polysilicon (p-St) was deposited 14 to a thickness of 0.1 um on the surface by LPCVD. A negative photoresist (Tokyo Ohka type: OMR) is applied to the entire surface of the workpiece using a spinner coating method to a thickness of 1 μm.
m, and then a photopolymerizable adhesive containing an acrylate monomer and a photopolymerization initiator as main components was applied onto the coating film to a thickness of 1 μm.

一方、2IIIIa厚のポリイミドフィルム上にITO
が0.2μm厚で成膜した支持フィルムにフォトレジト
ス(東京応化製二〇MR)を塗布した後、マスクを用い
て露光、現像を行い、線幅5μm、層厚1μmのパター
ンの絶縁層を形成し、次にブランク顔料を用い電気流動
電着法で厚さ1.5μmの電着層をパターン状に形成し
た。
On the other hand, ITO was deposited on a 2IIIa thick polyimide film.
After applying photoresistos (20MR manufactured by Tokyo Ohka Co., Ltd.) to a support film formed with a thickness of 0.2 μm, exposure and development were performed using a mask to form an insulating layer with a pattern of 5 μm in line width and 1 μm in layer thickness. Then, using a blank pigment, an electrodeposition layer having a thickness of 1.5 μm was formed in a pattern by electrorheological electrodeposition.

次いで、被加工物の粘着層と支持フィルム上の電着層面
を正確に位置合わせした状態で密着させ、しかる後支持
フィルムを剥がし、パターン状の電着層を第2図(a)
に示すように被加工物側(粘着層面)に転写させた。次
に電着層側から紫外線を照射すると、ネガ型のフォトレ
ジストのためレジスト膜は第2図b)に示すように現像
される。現像終了後、酸素5%含有のCF4ガスを用い
てドライエツチングを行い、最後に常法にてレジスト膜
及び粘着層を除去した。
Next, the adhesive layer of the workpiece and the surface of the electrodeposited layer on the support film are brought into close contact with each other with accurate alignment, and then the support film is peeled off to form the patterned electrodeposited layer as shown in Figure 2 (a).
It was transferred to the workpiece side (adhesive layer side) as shown in . Next, when ultraviolet rays are irradiated from the electrodeposited layer side, the resist film is developed as shown in FIG. 2b) since it is a negative type photoresist. After the development was completed, dry etching was performed using CF4 gas containing 5% oxygen, and finally the resist film and adhesive layer were removed by a conventional method.

その結果、TPT基板にゲート長(線幅)5μmのパタ
ーン加工を行うことができた。しかも、この加工形成さ
れたパターンはステ7パーで露光して加工を行う従来法
により加工したものと同等の特性が得られた。
As a result, it was possible to pattern a TPT substrate with a gate length (line width) of 5 μm. Furthermore, the pattern thus formed had characteristics equivalent to those processed by the conventional method of exposing and processing in Step 7.

(発明の効果〕 以上説明したように、本発明の加工方法は特にフォトリ
ソグラフィー法におけるフォトマスクに代えて、別途支
持材にパターン状に形成した紫外線遮断性電着層を、フ
ォトレジストを塗布してなる被加工物上に転写せしめ、
その紫外線遮断性電着層を介して該レジスト膜の現像(
パターン化)を行う構成を有するため、加工形成すべき
微細パターンの内容が例え多種多様化、広域化したとし
てもレジスト膜のパターン化を精度を損なうことなく能
率良く且つ安価に行なうことができる。
(Effects of the Invention) As explained above, the processing method of the present invention uses a UV-blocking electrodeposited layer separately formed in a pattern on a support material and coated with a photoresist instead of a photomask in the photolithography method. transferred onto the workpiece,
Development of the resist film through the ultraviolet-blocking electrodeposited layer (
Even if the contents of the fine patterns to be processed and formed become more diverse and wider, the resist film can be patterned efficiently and at low cost without sacrificing accuracy.

詳述するに、フォトリソグラフィー法を単に適用してい
た従来法の如くフォトマスクのサイズ限界による制約や
生産性の低下を招く虞れがなく、多種多様なレジスト膜
のパターン化を容易に且つ効率的に行なうことができ、
しかも上記電着層の形成に通常の手段を適用しているた
めレジスト膜の各種パターン内容(条件)に対して新た
な装置開発等を必要とせず柔軟に対応することができ、
製造コストの極端な上昇を招く戊れもない。また露光装
置としてステフパー等を使う必要がなく、製造装置が簡
便である。更に本発明方法では被加工物表面をフォトレ
ジストの塗布により平滑化できると共に紫外線遮断性層
の形成に印刷手段を採用していないことから、紫外線遮
断性電着層を被加工物上に正確に且つ確実に転写させる
ことが可能となり、その結果、パターン状のレジスト膜
を被加工物に直接印刷形成していた従来法の如き、被加
工物の表面状態や表層の種類等による前記したレジスト
膜の印刷不良、不純物混入、汚染等の不具合が発生する
震れがない。そしてフォトリソ法に近似した所定の膜厚
を有し、線幅が100μm以下(最小では数μm程度ま
で)の極めて微細なパターンからなるレジスト膜のパタ
ーン([Jでを確実に且つ再現性良く達成することがで
きる。
In detail, it is possible to pattern a wide variety of resist films easily and efficiently, without the constraints due to photomask size limitations and the risk of reducing productivity, which is the case with conventional methods that simply apply photolithography. can be carried out according to
Moreover, since ordinary means are applied to the formation of the electrodeposited layer, it is possible to flexibly respond to various pattern contents (conditions) of the resist film without the need to develop new equipment.
There is no way that this will lead to an extreme increase in manufacturing costs. Furthermore, there is no need to use a stepper or the like as an exposure device, and the manufacturing device is simple. Furthermore, in the method of the present invention, the surface of the workpiece can be smoothed by applying a photoresist, and no printing means is used to form the UV-blocking layer, so it is possible to accurately form the UV-blocking electrodeposited layer on the workpiece. In addition, it is possible to transfer the resist film reliably, and as a result, unlike the conventional method in which a patterned resist film is directly printed on the workpiece, the above-mentioned resist film can be changed depending on the surface condition of the workpiece, the type of surface layer, etc. There is no vibration that can cause problems such as printing defects, impurities, contamination, etc. Then, a resist film pattern ([J] is achieved reliably and with good reproducibility) that has a predetermined film thickness similar to that of the photolithography method and consists of an extremely fine pattern with a line width of 100 μm or less (minimum of several μm). can do.

従って、本発明加工方法によれば最終目的とする微細パ
ターンの加工を、上記の如き優れたレジスト膜のパター
ン化後のエツチング処理を経ることにより、微細パター
ンの種類や規模等に左右されることなく高精度で且つ効
率的に、しかも非常に安価に施すことができる。また本
発明方法ではエツチング処理までの工程を複数回繰り返
して行なうことにより、従来のフォトリソ法でのアライ
メント露光工程が不要となることに相まって、大型化に
適したプロセス加工ができる。
Therefore, according to the processing method of the present invention, the final target of processing a fine pattern can be achieved by performing etching treatment after patterning the excellent resist film as described above. It can be applied with high precision, efficiently, and at a very low cost. Further, in the method of the present invention, by repeating the steps up to the etching process multiple times, the alignment exposure process in the conventional photolithography method is not necessary, and processing suitable for large-scale processing can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(ハ)は本発明加工方法の工程例を示す
断面説明図、第2図(a)〜(ロ)は本発明の他の工程
例を示す断面説明図である。 1・・・導電性支持材  2・・・絶縁層3・・・紫外
線遮断性を1層 4・・・被加工物   5・・・フォトレジスト膜6・
・・粘着層    7・・・紫外線8・・・加工された
微細パターン 第1図 第2図 ↓ ↓ ↓ ↓ ↓ ご−7
FIGS. 1(a) to (c) are cross-sectional explanatory views showing process examples of the processing method of the present invention, and FIGS. 2(a) to (b) are cross-sectional explanatory views showing other process examples of the present invention. 1... Conductive support material 2... Insulating layer 3... One layer with ultraviolet blocking properties 4... Workpiece 5... Photoresist film 6.
... Adhesive layer 7 ... Ultraviolet light 8 ... Processed fine pattern Figure 1 Figure 2 ↓ ↓ ↓ ↓ ↓ Go-7

Claims (2)

【特許請求の範囲】[Claims] (1)所望パターンの絶縁層を形成した導電性支持材上
に紫外線遮断性電着層を電着形成し、該電着層が形成さ
れた支持材を、フォトレジスト及び粘着層を順次塗布形
成してなる被加工物上に位置合わせして密着させた後、
支持材を剥離して紫外線遮断性電着層を被加工物側に転
写させ、次いで電着層側より紫外線を照射した後、上記
フォトレジストの現像処理を行い、更にエッチング処理
を行うことを特徴とする微細パターンの加工方法。
(1) A UV-blocking electrodeposited layer is electrodeposited on a conductive support material on which an insulating layer of a desired pattern has been formed, and a photoresist and an adhesive layer are sequentially applied to the support material on which the electrodeposition layer is formed. After aligning and adhering to the workpiece,
The supporting material is peeled off and the ultraviolet-blocking electrodeposited layer is transferred to the workpiece side, and then ultraviolet rays are irradiated from the electrodeposited layer side, and then the photoresist is developed and then etched. A method for processing fine patterns.
(2)請求項1記載の加工方法の工程を複数回繰り返し
、被加工物に複数回の微細加工を行うことを特徴とする
微細パターンの加工方法。
(2) A method for processing a fine pattern, which comprises repeating the steps of the method according to claim 1 a plurality of times to perform micromachining on a workpiece a plurality of times.
JP14649490A 1990-06-05 1990-06-05 Processing method of fine pattern Expired - Fee Related JP2878395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14649490A JP2878395B2 (en) 1990-06-05 1990-06-05 Processing method of fine pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14649490A JP2878395B2 (en) 1990-06-05 1990-06-05 Processing method of fine pattern

Publications (2)

Publication Number Publication Date
JPH0439917A true JPH0439917A (en) 1992-02-10
JP2878395B2 JP2878395B2 (en) 1999-04-05

Family

ID=15408897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14649490A Expired - Fee Related JP2878395B2 (en) 1990-06-05 1990-06-05 Processing method of fine pattern

Country Status (1)

Country Link
JP (1) JP2878395B2 (en)

Also Published As

Publication number Publication date
JP2878395B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
US5458715A (en) Alignment transfer method
JPH0511270A (en) Formation of mask pattern
CN107121890A (en) A kind of nano-imprint stamp and preparation method thereof
US7544395B2 (en) Patterning method of liquid crystal display device
US11714353B2 (en) Mask and method of manufacturing the same, evaporation apparatus and display device
JP2001118913A (en) Substrate suction plane
JPH0439917A (en) Processing method of fine pattern
JPH04239684A (en) Method for forming of fine pattern
CN109703225A (en) A kind of silk-screen deviation ameliorative way
TW200815847A (en) Method of manufacturing master of light-guide plates
CN218298763U (en) Makeup structure of micro-nano structure
JP2986856B2 (en) Fine pattern transfer device
JPH04282890A (en) Formation of fine pattern
JP3179524B2 (en) Method of forming fine pattern
JPH03150376A (en) Fine pattern forming method
JPH04260389A (en) Method for forming fine pattern
JP2664128B2 (en) Metal plating mask pattern
JPH0430416A (en) Microscopic patterning method
JPH0682825A (en) Method for transferring fine pattern
KR20120087675A (en) High Definition Printing Plate of Liquid Crystal Display and Method for Manufacture using the same
JPH04147988A (en) Method for working fine pattern
KR101477299B1 (en) Intaglio for gravure offset printing apparatus and fabrication method thereof
JPS584140A (en) Applying method for liquid type photosensitive resin
JPH0689858A (en) Transfer of fine pattern
CN107107603A (en) Manufacture method for the stereotype of hectographic printing and the stereotype for hectographic printing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees