JPH0439577Y2 - - Google Patents
Info
- Publication number
- JPH0439577Y2 JPH0439577Y2 JP14096486U JP14096486U JPH0439577Y2 JP H0439577 Y2 JPH0439577 Y2 JP H0439577Y2 JP 14096486 U JP14096486 U JP 14096486U JP 14096486 U JP14096486 U JP 14096486U JP H0439577 Y2 JPH0439577 Y2 JP H0439577Y2
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- sensor
- support
- velocity
- synthetic resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012530 fluid Substances 0.000 claims description 54
- 229920003002 synthetic resin Polymers 0.000 claims description 23
- 239000000057 synthetic resin Substances 0.000 claims description 23
- 239000000523 sample Substances 0.000 claims description 18
- 238000005259 measurement Methods 0.000 claims description 13
- 229910052732 germanium Inorganic materials 0.000 claims description 8
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 239000000615 nonconductor Substances 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 18
- 238000010586 diagram Methods 0.000 description 12
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012777 electrically insulating material Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920003217 poly(methylsilsesquioxane) Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012885 constant function Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
- Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
Description
【考案の詳細な説明】
〔産業上の利用分野〕
本考案は各種液体や気体の流れる速度あるいは
粒体や粉体の移動速度を測定する流体速度測定用
プローブに関し、更に詳しくは、流体の速度及び
流体の流れの方向をも測定することを可能にした
ものに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a fluid velocity measuring probe that measures the flow velocity of various liquids and gases or the moving velocity of particles and powder. and also relates to something that makes it possible to measure the direction of fluid flow.
ゲルマニウムには、ある温度領域を越えると抵
抗値が一定関数に従つて減少するという温度−抵
抗特性がある。
Germanium has a temperature-resistance characteristic in which the resistance value decreases according to a constant function when the temperature exceeds a certain temperature range.
特願昭59−207780号及び実願昭61−57682号の
流体速度測定用プローブは、この温度−抵抗特性
を利用して、ゲルマニウム単結晶の小片からなる
センサに電圧を印加して一定温度に昇温させ、流
体との接触による温度変化に伴つて変化する抵抗
値を電流、電圧または電力に変換して、これを測
定することによつて流体の速度を測定するもので
ある。 The fluid velocity measurement probe of Japanese Patent Application No. 59-207780 and Utility Application No. 61-57682 uses this temperature-resistance characteristic to maintain a constant temperature by applying voltage to a sensor made of a small piece of germanium single crystal. The velocity of the fluid is measured by raising the temperature and converting the resistance value that changes with the temperature change due to contact with the fluid into current, voltage, or power, and measuring this.
上記流体速度測定用プローブのうち実願昭61−
57682号の実施例に於いて示されたものとして、
第4図に示すように電気絶縁体であるとともに断
熱性に優れたセラミツク、ガラス等の無機材料ま
たは合成樹脂等からなる支持体bの上端面にゲル
マニウム単結晶の小片でなる直方体状のセンサa
の長さ方向の側面中央部を接着剤等を介して固着
して、支持体bの両側を導電率の高い金属製の支
柱cで挟持し、この支柱cを下端面で流体の力に
充分耐え得る太さの電気絶縁物の基台d上面に立
設させた流体速度測定用プローブが存在する。 Of the above fluid velocity measurement probes, the application was made in 1983.
As shown in the example of No. 57682,
As shown in Fig. 4, a rectangular parallelepiped sensor a made of a small piece of germanium single crystal is mounted on the upper end surface of a support b made of an inorganic material such as ceramic, glass, or synthetic resin, which is an electrical insulator and has excellent heat insulation properties.
The central part of the side surface in the length direction is fixed with an adhesive or the like, and both sides of the support b are sandwiched between highly conductive metal supports c, and the lower end surface of the support b is sufficient to absorb the force of the fluid. There is a probe for measuring fluid velocity that is erected on the upper surface of a base d made of electrically insulating material with a durable thickness.
上記流体速度測定用プローブで、流体の流れの
方向を測定する為には困難な点があつた。
The above-mentioned probe for measuring fluid velocity has some difficulties in measuring the direction of fluid flow.
これは、上記流体速度測定用プローブが、流体
の方向に対して、センサが一様に応答し、流体の
方向に対して出力値の変化が少ない為と思われ
る。 This is thought to be because the sensor of the fluid velocity measurement probe responds uniformly to the direction of the fluid, and the output value changes little with respect to the direction of the fluid.
そこで、本考案は上記問題点に鑑み、センサの
出力を支持体bの長さ方向の軸回りの流体の流れ
の方向に応じて変化させて、流体の方向及び速度
の測定を可能にした流体速度測定用プローブを提
供せんとするものである。 Therefore, in view of the above problems, the present invention changes the output of the sensor according to the direction of the fluid flow around the longitudinal axis of the support b, thereby making it possible to measure the direction and velocity of the fluid. The present invention aims to provide a speed measurement probe.
上記目的を達成せんとして、基台上面に支柱を
立設し、該支柱に取付けられる電気絶縁体でなる
略棒状の支持体の上端面に、ゲルマニウム単結晶
の小片を直方体にしたセンサの長さ方向の一つの
側面の中央部を固着し、該センサの支持体を固着
した側面に隣接する長さ方向の何れか一方の側面
に合成樹脂層を形成し、前記センサに電圧を印加
して流体との接触による温度変化に伴い変化する
抵抗値を電流、電圧又は電力量の変化に変換し、
流体の速度を測定する流体速度測定用プローブを
提供する。
In order to achieve the above purpose, a support is erected on the top of the base, and a length of a sensor made of a small piece of germanium single crystal in the shape of a rectangular parallelepiped is attached to the upper end of a roughly rod-shaped support made of an electrical insulator that is attached to the support. A synthetic resin layer is formed on one side surface in the length direction adjacent to the side surface to which the sensor support is fixed, and a voltage is applied to the sensor to control the fluid flow. Converts the resistance value that changes due to temperature change due to contact with the device into a change in current, voltage or electric energy,
A fluid velocity measurement probe for measuring the velocity of a fluid is provided.
上述のように、センサの長さ方向の一方の側面
に合成樹脂層を形成し、支持体の長さ方向を軸と
する流体の流れの方向に対して、センサの合成樹
脂層を形成した面がなす角度により、変化する出
力に基づいて、流体の流れの方向を測定でき、且
つ流体の速度を測定することも可能にしたもので
ある。
As mentioned above, a synthetic resin layer is formed on one side in the length direction of the sensor, and the side on which the synthetic resin layer of the sensor is formed is formed in the direction of fluid flow with the longitudinal direction of the support as an axis. This makes it possible to measure the direction of fluid flow and also the velocity of the fluid based on the varying output.
本考案の流体速度測定用プローブの実施例を図
面について説明する。
An embodiment of the fluid velocity measuring probe of the present invention will be described with reference to the drawings.
第1図は、本考案に係る流体速度測定用プロー
ブの実施例の説明用斜視図である。 FIG. 1 is an explanatory perspective view of an embodiment of a probe for measuring fluid velocity according to the present invention.
図中1はゲルマニウムの単結晶を直方体にした
センサで、このセンサ1の長さ方向の一側面2の
両端に金、銀、銅または白金等の導電率の高い金
属片を固着して電極3a,3bとなし、この電極
3a,3bから後述の支持体側面または支柱に接
続されるリード線4a,4bを引き出し、電極3
a,3bを設けた側面2と隣接する長さ方向の何
れか一方の側面の全体に合成樹脂層5を設けたも
のである。 In the figure, 1 is a sensor made of a germanium single crystal in the form of a rectangular parallelepiped. Highly conductive metal pieces such as gold, silver, copper, or platinum are fixed to both ends of one side 2 in the length direction of the sensor 1, and electrodes 3a , 3b, and lead wires 4a, 4b connected to the side surfaces of the support body or pillars, which will be described later, are drawn out from the electrodes 3a, 3b, and the electrodes 3
A synthetic resin layer 5 is provided on the entire side surface 2 in the longitudinal direction adjacent to the side surface 2 having the side surfaces a and 3b.
この合成樹脂層5はエポキシ樹脂、シリコン樹
脂、アニリン樹脂、フエノール樹脂、ポリエステ
ル樹脂、ウレタン樹脂等の合成樹脂を塗布して作
成したもので、これらの合成樹脂を採用する理由
は後述の実験結果から定められた。 This synthetic resin layer 5 is made by coating synthetic resins such as epoxy resin, silicone resin, aniline resin, phenol resin, polyester resin, and urethane resin.The reason for adopting these synthetic resins is based on the experimental results described below. Ordained.
6はセンサ1の電極3a,3bを設けた面の中
央に接着剤層7を介して上端が固着された棒状の
支持体で、該支持体6は電気絶縁材であるととも
に断熱性に優れたセラミツクを棒状に形成したも
のである。 Reference numeral 6 denotes a rod-shaped support whose upper end is fixed to the center of the surface of the sensor 1 on which the electrodes 3a and 3b are provided via an adhesive layer 7, and the support 6 is an electrically insulating material and has excellent heat insulation properties. It is made of ceramic in the form of a rod.
但し、他にガラス等の無機材料または合成樹脂
等を使用してもよい。 However, other inorganic materials such as glass or synthetic resins may also be used.
8a,8bはステンレス等の導電率が高く且つ
腐食する可能性が少ない金属製円筒を基台9に平
行に立設した支柱で、この支柱8a,8b上端よ
りやや下側に支持体6の下端を位置せしめ、支持
体6を支柱8a,8bにリード線4a,4bとと
もに導電性接着剤で接着または半田付等して固着
している。 8a and 8b are columns made of metal cylinders such as stainless steel with high conductivity and low possibility of corrosion, which are erected parallel to the base 9, and the lower ends of the supports 6 are slightly below the upper ends of these columns 8a and 8b. The support body 6 is fixed to the pillars 8a and 8b together with the lead wires 4a and 4b by adhesive or soldering with a conductive adhesive.
基台9は前記支柱8a,8bを固定するもの
で、上端面が平坦な円筒形でその内部は支柱8
a,8bと接続される線材が設けられている。 The base 9 is for fixing the columns 8a and 8b, and has a cylindrical shape with a flat upper end surface, and the inside of the base 9 is for fixing the columns 8a and 8b.
A wire rod is provided to be connected to a and 8b.
但し、支柱8a,8bは測定精度をより高める
ためのものであり、流体の種類や流速によつて
は、強固に支持体6を支持する必要があり、その
場合は基台9と一体に形成することが考慮され
る。 However, the supports 8a and 8b are used to further improve measurement accuracy, and depending on the type of fluid and flow rate, it is necessary to firmly support the support body 6. In that case, they may be formed integrally with the base 9. will be considered.
このように構成することにより、支持体6回り
からの全方向に対して流体速度の検出を可能とす
るとともに、センサ1の中央部で両極を分割する
ためにセンサ1の両端での抵抗値のばらつきがな
くなり、測定誤差を少なくする。 With this configuration, the fluid velocity can be detected in all directions from around the support 6, and the resistance value at both ends of the sensor 1 can be divided in the center of the sensor 1. Eliminate variations and reduce measurement errors.
上記流体速度測定用プローブの電流経路につい
て説明すると、センサ1の電極3a,3b間に電
圧を印加すると、電流の往路は支柱8a→リード
線4a→センサ1、復路はセンサ1→リード線4
b→支柱8bと流れる。 To explain the current path of the fluid velocity measurement probe, when a voltage is applied between the electrodes 3a and 3b of the sensor 1, the current path is from the column 8a to the lead wire 4a to the sensor 1, and the return path is from the sensor 1 to the lead wire 4.
Flows from b to pillar 8b.
次に、熱経路について説明すると、電圧が印加
され、センサ1は抵抗熱を発生し昇温される。 Next, the thermal path will be explained. When a voltage is applied, the sensor 1 generates resistance heat and is heated up.
この抵抗熱が支持体6を介して支柱8a,8b
にも熱伝導されてセンサ1の温度が下がり、流速
や方向測定に誤差が生じるのを支持体6と支柱8
a,8bの接触面を極力小さくすることにより防
止している。 This resistance heat passes through the support 6 to the pillars 8a and 8b.
The temperature of the sensor 1 decreases due to heat conduction, which causes errors in flow velocity and direction measurements.
This is prevented by making the contact surfaces of a and 8b as small as possible.
この誤差を小さくしたことは気流の速度変化に
対して応答速度をも上げたことを意味する。 Reducing this error means increasing the response speed to changes in airflow speed.
また、流体の方向が支柱8a,8bの下方から
センサ1方向に設定されているときには、支持体
6の表面によつて流体が集中してセンサ1の下面
へ案内されることがあるが、図例の如く、支柱8
a,8bの間に流体通過用の空間を形成してなる
場合には、流体は装置後方へ通過し、支持体6表
面による集中的案内が防止され、流体の流れの方
向による測定誤差の発生を防止する。 Further, when the direction of the fluid is set from below the support columns 8a and 8b toward the sensor 1, the fluid may be concentrated by the surface of the support body 6 and guided to the bottom surface of the sensor 1. As usual, pillar 8
When a space for fluid passage is formed between a and 8b, the fluid passes toward the rear of the device, preventing intensive guidance by the surface of the support 6, and causing measurement errors due to the direction of fluid flow. prevent.
上記プローブを用いた実験を次に示す。 Experiments using the above probe are shown below.
第1実験例
第1実験例は使用するプローブの構成として、
センサ1はゲルマニウム単結晶を0.6mm×0.6mm×
4mmの略直方体に形成したものを用い、支持体6
を長さ5mm、支柱8a,8bを直径0.5mm長さ6.5
mmとし、また合成樹脂層5としてエポキシ樹脂を
用いる。 First experimental example In the first experimental example, the configuration of the probe used is as follows:
Sensor 1 uses germanium single crystal 0.6mm x 0.6mm x
The support 6 was formed into a 4 mm approximately rectangular parallelepiped.
The length is 5mm, and the diameter of struts 8a and 8b is 0.5mm, and the length is 6.5mm.
mm, and the synthetic resin layer 5 is made of epoxy resin.
第2図aで示される電源電圧を30Vで400Ωの
抵抗を介してセンサに接続した直列抵抗回路を用
い、気流温度が21℃一定条件の下で、気流速度を
1〜10m/sに変化させ、センサ1の端子電圧を
グラフ上にプロツトしたものが第2図cである。 Using a series resistance circuit connected to the sensor through a 400Ω resistor with a power supply voltage of 30V shown in Figure 2a, the airflow velocity was varied from 1 to 10m/s under the condition that the airflow temperature was constant at 21℃. , the terminal voltage of sensor 1 is plotted on a graph as shown in FIG. 2c.
但し、第2図bに示す如く、気流がセンサ1の
合成樹脂層5面に対して直角に到来してくる場合
をAとし、合成樹脂層5と背設する面に直角に到
来してくる場合をBとし、端面10に対し直角に
到来してくる場合をCとしている。 However, as shown in FIG. 2b, the case where the airflow comes at right angles to the surface of the synthetic resin layer 5 of the sensor 1 is referred to as A, and the airflow comes at right angles to the surface facing the synthetic resin layer 5. Case B is the case, and case C is the case where the light comes at right angles to the end face 10.
この風速−出力電圧特性図からCの出力が最も
小さくあらわれ、Aの出力がBの出力よりも大き
く、Aの場合の方がBの場合よりも良く冷えるこ
とを意味している。 From this wind speed-output voltage characteristic diagram, the output of C appears to be the smallest, and the output of A is larger than the output of B, which means that case A cools better than case B.
この原因は合成樹脂層5に直接当たる気流によ
る影響よりも、渦状になつて背面に当たる気流の
影響の方が大きいことに起因していると思われ
る。 This seems to be due to the fact that the influence of the airflow that forms a spiral and hits the back surface is greater than the influence of the airflow that hits the synthetic resin layer 5 directly.
いずれにしても、第2図cの特性図から気流が
合成樹脂層5を形成した側面に対して前方、後
方、側方の何れの方向から来るか区別することが
できることを実験結果から知見できた。 In any case, it can be seen from the experimental results that it is possible to distinguish from the characteristic diagram in FIG. Ta.
また、第2図dは支持体6の長さ方向を軸とし
た時の軸に直交する面と流体の流れの方向とがな
す角度を30度に設定した場合の出力特性図であ
る。 Further, FIG. 2d is an output characteristic diagram when the angle between the plane perpendicular to the longitudinal direction of the support 6 and the direction of fluid flow is set to 30 degrees.
この出力特性図から、流体の流れの方向がセン
サ1の軸方向の傾きをもつている場合にも、少な
くともその傾斜角度が30度において出力の大きさ
に相違はあるが、ほぼ流体の流れの向きは、合成
樹脂層5を形成した側面に対して後方、前方、側
方の区別ができることが判明した。 From this output characteristic diagram, even when the direction of fluid flow has an inclination in the axial direction of sensor 1, there is a difference in the magnitude of the output at least when the inclination angle is 30 degrees, but it is almost the same as that of the fluid flow. It has been found that the direction can be distinguished as rear, front, or side with respect to the side surface on which the synthetic resin layer 5 is formed.
尚、合成樹脂層5の素材にその他の素材を使用
した結果、出力の大小はあつたが、概ね同様な特
性を示した。 In addition, as a result of using other materials as the material of the synthetic resin layer 5, although the magnitude of the output was different, the characteristics were generally similar.
第2実験例
第3図aは実験に使用したプローブを使用
し、一定速度(5m/s)の気流中で支持体6の
長さ方向を軸にして回転させて、回転角度を横軸
にとり、出力電圧を縦軸にして、センサ1の端子
間電圧をプロツトした。 Second Experimental Example Figure 3a shows the probe used in the experiment, rotated around the length direction of the support 6 in an airflow at a constant speed (5 m/s), and the rotation angle taken as the horizontal axis. , the voltage between the terminals of sensor 1 was plotted with the output voltage as the vertical axis.
但し、端面10に対して直角に気流が到来する
角度を0度にして、反時計方向に回転する側をマ
イナス側とし、時計方向に回転する側をプラス側
としている。 However, the angle at which the airflow arrives perpendicularly to the end face 10 is set to 0 degrees, the side that rotates counterclockwise is defined as the minus side, and the side that rotates clockwise is defined as the plus side.
この実験結果を示す第3図aから、出力特性は
0度を境に略対称形であるが、合成樹脂層5を形
成した側面に気流が到来する側(−90度〜0度)
の出力が合成樹脂層5を形成した側面と背設する
側面に気流が到来する側(0度〜90度)の出力よ
りやや大きいことが判断される。 From Fig. 3a showing the experimental results, the output characteristics are approximately symmetrical with respect to 0 degrees, but the side where the airflow arrives at the side where the synthetic resin layer 5 is formed (-90 degrees to 0 degrees)
It is determined that the output is slightly larger than the output on the side (0 degrees to 90 degrees) where the airflow arrives at the side surface opposite to the side surface on which the synthetic resin layer 5 is formed.
なお、第3図aを0度近傍で拡大した図を第3
図bに示す。 In addition, Fig. 3 is an enlarged view of Fig. 3 a near 0 degrees.
Shown in Figure b.
第3図cは、支持体6の長さ方向を軸とした時
の軸に直交する面と流体の流れの方向がなす角度
を30度に設定した状態で、第3図aの場合と同様
に支持体6の長さ方向を軸にして回転させた出力
特性図である。 Figure 3c is the same as in Figure 3a, with the angle between the plane orthogonal to the axis of the support 6 and the direction of fluid flow set to 30 degrees. 2 is an output characteristic diagram rotated around the longitudinal direction of the support body 6. FIG.
この第3図cによれば第3図aよりも出力特性
曲線は緩慢ではあるが方向特性は充分に判断でき
る。 According to FIG. 3c, the output characteristic curve is slower than that in FIG. 3a, but the directional characteristics can be determined sufficiently.
以上の実験例1,2より合成樹脂層を片面に形
成することにより、気流の方向に対して変化する
出力を得ることができ、風速測定ができるととも
に、風向測定が可能になつたのである。 From Experimental Examples 1 and 2 above, by forming the synthetic resin layer on one side, it was possible to obtain an output that varied with the direction of the airflow, making it possible to measure the wind speed as well as the wind direction.
また、センサ1がゲルマニウム単結晶の小片か
らなることから、熱線風速計と比して丈夫であ
り、センサ1全体を合成樹脂で外嵌し、一側面の
み厚く合成樹脂を塗布し、合成樹脂層5を形成す
ることによつて、水等の導電性の流体の速度、方
向をも測定可能になることはいうまでもない。 In addition, since the sensor 1 is made of a small piece of germanium single crystal, it is more durable than a hot wire anemometer. 5, it goes without saying that the speed and direction of conductive fluids such as water can also be measured.
以上でなる本考案に係る流体速度測定用プロー
ブは、センサの長さ方向の一つの側面に合成樹脂
層を形成し、該合成樹脂層に向かつて到来してく
る流体と他の側面に到来してくる流体との出力の
変化により、流体が何れの方向から到来してくる
か測定するとともに、流体の速度をも併せて測定
することができる。
The probe for measuring fluid velocity according to the present invention as described above has a synthetic resin layer formed on one side surface in the length direction of the sensor, and the synthetic resin layer has a structure in which the fluid coming towards the synthetic resin layer and the fluid coming towards the other side surface are separated from each other. By changing the output with the incoming fluid, it is possible to measure which direction the fluid is coming from, and also measure the velocity of the fluid.
また、実施例に示すように、支持体を二本の支
柱間で挾持せしめて支持体と支柱の接触面積を小
さくすることにより、センサの熱が支柱に逃げる
ことを極力防止して流体速度の測定誤差を減少さ
せることができる。 In addition, as shown in the example, by sandwiching the support between two pillars and reducing the contact area between the support and the pillars, the heat of the sensor is prevented as much as possible from escaping to the pillars, and the fluid velocity is reduced. Measurement errors can be reduced.
第1図は、本考案に係る流体速度測定用プロー
ブの実施例の斜視図、第2図aは実験に使用した
直列抵抗回路、第2図bは実験を行つた流体の流
れの方向を示す説明図、第2図cは流体速度−出
力電圧特性図、第2図dはセンサを流体の流れの
方向に対して30度傾斜させた状態の流体速度−出
力電圧特性図、第3図aは支持体の長さ方向を軸
にして回転させた場合の回転角度−出力電圧特性
図、第3図bは第3図aの回転角度0度近傍を拡
大した回転角度−出力電圧特性図、第3図cはセ
ンサを流体の流れの方向に対して30度傾斜させた
状態において支持体の長さ方向を軸にして回転さ
せた場合の回転角度−出力電圧特性図、第4図は
従来例を示す斜視図である。
1……センサ、2……側面、3a,3b……電
極、4a,4b……リード線、5……合成樹脂
層、6……支持体、7……接着剤層、8a,8b
……支柱、9……基台、10……端面。
Fig. 1 is a perspective view of an embodiment of the probe for measuring fluid velocity according to the present invention, Fig. 2a shows the series resistance circuit used in the experiment, and Fig. 2b shows the direction of fluid flow in which the experiment was conducted. Explanatory diagram, Fig. 2c is a fluid velocity-output voltage characteristic diagram, Fig. 2d is a fluid velocity-output voltage characteristic diagram with the sensor tilted at 30 degrees with respect to the fluid flow direction, and Fig. 3a is a fluid velocity-output voltage characteristic diagram. is a rotation angle-output voltage characteristic diagram when the support is rotated around the length direction of the support, and FIG. 3b is a rotation angle-output voltage characteristic diagram that is an enlarged view of the vicinity of the rotation angle of 0 degrees in FIG. 3a. Figure 3c is a rotation angle-output voltage characteristic diagram when the sensor is rotated around the length direction of the support with the sensor tilted 30 degrees to the direction of fluid flow, and Figure 4 is the conventional It is a perspective view showing an example. DESCRIPTION OF SYMBOLS 1...Sensor, 2...Side surface, 3a, 3b...Electrode, 4a, 4b...Lead wire, 5...Synthetic resin layer, 6...Support, 7...Adhesive layer, 8a, 8b
... Support column, 9 ... Base, 10 ... End surface.
Claims (1)
れる電気絶縁体でなる略棒状の支持体の上端面
に、ゲルマニウム単結晶の小片を直方体にした
センサの長さ方向の一つの側面の中央部を固着
し、該センサの支持体を固着した側面に隣接す
る長さ方向の何れか一方の側面に合成樹脂層を
形成し、前記センサに電圧を印加して流体との
接触による温度変化に伴い変化する抵抗値を電
流、電圧又は電力量の変化に変換し、流体の速
度を測定する流体速度測定用プローブ。 2 支柱が、基台上面に離間して平行立設される
二本の電気良導体の金属柱でなり、該支柱間に
支持体を挾持してなる実用新案登録請求の範囲
第1項記載の流体速度測定用プローブ。[Claims for Utility Model Registration] 1. A sensor in which a column is erected on the top surface of a base, and a small piece of germanium single crystal is placed in the shape of a rectangular parallelepiped on the upper end surface of a substantially rod-shaped support made of an electrical insulator that is attached to the column. A central part of one side surface in the length direction is fixed, a synthetic resin layer is formed on either side surface in the length direction adjacent to the side surface to which the sensor support is fixed, and a voltage is applied to the sensor. A fluid velocity measurement probe that measures the velocity of a fluid by converting the resistance value that changes with temperature changes due to contact with the fluid into changes in current, voltage, or electric power. 2. The fluid according to claim 1 of the utility model registration claim, in which the pillars are two metal pillars of good electrical conductivity that are erected in parallel and spaced apart from each other on the upper surface of the base, and a support body is sandwiched between the pillars. Probe for speed measurement.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14096486U JPH0439577Y2 (en) | 1986-09-12 | 1986-09-12 | |
US07/039,198 US4856330A (en) | 1986-04-17 | 1987-04-16 | Fluid speed or direction measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14096486U JPH0439577Y2 (en) | 1986-09-12 | 1986-09-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6347272U JPS6347272U (en) | 1988-03-30 |
JPH0439577Y2 true JPH0439577Y2 (en) | 1992-09-16 |
Family
ID=31048313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14096486U Expired JPH0439577Y2 (en) | 1986-04-17 | 1986-09-12 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0439577Y2 (en) |
-
1986
- 1986-09-12 JP JP14096486U patent/JPH0439577Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS6347272U (en) | 1988-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4583296A (en) | Electrical inclination sensor and method for its manufacture | |
US4307373A (en) | Solid state sensor element | |
KR100825998B1 (en) | Microsensor to measure the velocity and angular direction of the incoming air stream | |
US4433576A (en) | Mass airflow sensor | |
US4666656A (en) | Device for measuring temperature | |
GB2038485A (en) | Directional heat loss anemometer transducer | |
US4856330A (en) | Fluid speed or direction measuring apparatus | |
US5321382A (en) | Thermal type flow rate sensor | |
JPH0439577Y2 (en) | ||
JPH0439578Y2 (en) | ||
JPH0521019Y2 (en) | ||
US4419652A (en) | Temperature sensor | |
USRE24436E (en) | Sensitive heat exchange detector | |
JP2000298135A (en) | Heater | |
US6453571B1 (en) | Thermocouple tilt sensing device | |
JPH0256612B2 (en) | ||
US20190128831A1 (en) | Gas sensor | |
CN207730339U (en) | A kind of outer wrap spring type nickel current sensing element | |
JPH0439576Y2 (en) | ||
JPS6381268A (en) | Composite probe for fluid speed measurement | |
JP2014190804A (en) | Humidity sensor | |
JPS6184563A (en) | Method and instrument for measuring fluid velocity | |
JP2673550B2 (en) | Probe for fluid sample of thermal constant measuring device and method for measuring thermal constant of fluid sample | |
CN207503741U (en) | PTC ceramics thermistor | |
JPH06242048A (en) | Thermal conduction type absolute humidity sensor |