JPH043934A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPH043934A JPH043934A JP10604790A JP10604790A JPH043934A JP H043934 A JPH043934 A JP H043934A JP 10604790 A JP10604790 A JP 10604790A JP 10604790 A JP10604790 A JP 10604790A JP H043934 A JPH043934 A JP H043934A
- Authority
- JP
- Japan
- Prior art keywords
- contact hole
- conductor layer
- contact
- growth
- conductive substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000004020 conductor Substances 0.000 claims abstract description 27
- 230000006911 nucleation Effects 0.000 claims abstract description 9
- 238000010899 nucleation Methods 0.000 claims abstract description 9
- 239000000758 substrate Substances 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 4
- 238000007740 vapor deposition Methods 0.000 claims description 4
- 238000000151 deposition Methods 0.000 abstract description 12
- 230000008021 deposition Effects 0.000 abstract description 12
- 238000012856 packing Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 67
- 230000008569 process Effects 0.000 description 10
- 239000012535 impurity Substances 0.000 description 8
- 238000001947 vapour-phase growth Methods 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 7
- 239000011229 interlayer Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 229910008814 WSi2 Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- NXHILIPIEUBEPD-UHFFFAOYSA-H tungsten hexafluoride Chemical compound F[W](F)(F)(F)(F)F NXHILIPIEUBEPD-UHFFFAOYSA-H 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
〔目 次〕
概要
産業上の利用分野
従来の技術
発明が解決しようとする課題
課題を解決するための手段
作用
実施例
一実施例の工程断面図(第3図)
他の実施例の工程断面図(第4図)
発明の効果
〔概 要〕
半導体装置の製造方法、特にコンタクトホール内へ導電
体層を埋込んで配線形成面の平坦化を図る方法の改良に
関し、
深さの異なるコンタクトホールに、大差のない充填率で
導電体層を埋込むことが可能な方法を提供して埋込み後
の深さの異なるコンタクトホール上部の段差を総て配線
金属層の良好なカバレッジの得られる低い段差に収める
ことを目的とし、コンタクトホール内のみに、選択気相
成長手段により該コンタクトホール底部の下地導電性基
体に接する導電体層を埋込むに際して、該コンタクトホ
ール底部の下地導電性基体の表出面積と該コンタクトホ
ールの開口面積との比率を相対的に変化させるか、或い
は該コンタクトホールの底部に表出する下地導電性基体
の材質を変えることによって、該コンタクトホール内へ
の該導電体層の埋込み速度を制御する工程を含む構成を
有する。[Detailed Description of the Invention] [Table of Contents] Overview Industrial Field of Application Conventional Technology Problems to be Solved by the Invention Means for Solving the Problems Action Example 1 Process sectional view of the example (Figure 3) etc. Process sectional view of the embodiment (FIG. 4) Effects of the invention [Summary] Regarding the improvement of a method for manufacturing a semiconductor device, especially a method for flattening a wiring formation surface by embedding a conductive layer in a contact hole, We provide a method that allows conductor layers to be buried in contact holes of different depths with a filling rate that is not significantly different, and after embedding, all the steps at the top of contact holes of different depths can be completely filled with a good wiring metal layer. For the purpose of burying a conductive layer in contact with the underlying conductive substrate at the bottom of the contact hole using selective vapor growth only within the contact hole, the underlying layer at the bottom of the contact hole is buried. By changing the relative ratio between the exposed area of the conductive substrate and the opening area of the contact hole, or by changing the material of the underlying conductive substrate exposed at the bottom of the contact hole, The structure includes a step of controlling the embedding speed of the conductor layer into the conductor layer.
本発明は半導体装置の製造方法、特にコンタクトホール
内へ導電体層を埋込んで配線形成面の平坦化を図る方法
の改良に関する。The present invention relates to a method of manufacturing a semiconductor device, and particularly to an improvement in a method of burying a conductor layer into a contact hole to planarize a surface on which wiring is formed.
近年、半導体デバイスの微細化及び高集積化に伴い、配
線接続用のコンタクトホールのアスペクト比は高くなる
一途を辿っており、配線形成に際し、その信頼性が確保
できるような配線金属のカバレッジを得るために、選択
気相成長技術を用いてコンタクトホール内に導電体層を
埋込み、コンタクトホール上部に形成される段差を軽減
する工程が不可欠になって来ている。In recent years, with the miniaturization and higher integration of semiconductor devices, the aspect ratio of contact holes for wiring connections has been increasing, and it is important to obtain wiring metal coverage that ensures reliability when forming wiring. Therefore, it has become essential to bury a conductor layer in the contact hole using selective vapor deposition technology to reduce the step formed above the contact hole.
一方、高集積化と共に配線の多層化が進んでいる現状に
おいては、配線を引き出す場所によってコンタクトホー
ルの深さが異なることが生じており、デバイスの微細化
に伴う高アスペクト比化の進行に伴って、深さの異なる
コンタクトホールのアスペクト比の差は一層大きくなる
傾向にあり、上記深さが異なリアスペクト比も大きく異
なるコンタクトホール上部の段差を、小さく且つ大差な
(するような導電体層の埋込み技術が望まれている。On the other hand, in the current situation where wiring is becoming more multi-layered along with higher integration, the depth of the contact hole differs depending on where the wiring is drawn out, and as devices become smaller and the aspect ratio becomes higher. Therefore, the difference in aspect ratio of contact holes with different depths tends to become even larger. embedding technology is desired.
従来の半導体デバイスにおいては、同一基板上に形成さ
れる複数のコンタクトホールは、総て同一の形状を有し
、その上部の開口面積と底部の下地導電体基体表出面積
との相対比率は、総て同一に形成されていた。In a conventional semiconductor device, a plurality of contact holes formed on the same substrate all have the same shape, and the relative ratio between the opening area at the top and the exposed area of the underlying conductive substrate at the bottom is as follows: All were formed identically.
従って、複数のコンタクトホールに対する導電体層によ
る埋込みをタングステン(W)等の選択気相成長により
行う場合、同一基板上の総てのコンタクトホールにおい
て埋込み速度(ストレートなコンタクトホールでは気相
成長速度に対応)は総て一様であった。Therefore, when filling multiple contact holes with a conductive layer by selective vapor phase growth of tungsten (W), etc., the filling speed for all contact holes on the same substrate (for straight contact holes, the vapor phase growth rate Responses) were all the same.
そのため、前述のように配線の多層化等によりコンタク
トホールの深さが一様でなくなった際には、導電体層の
充填率(充填厚さ/コンタクトホ−ル深さ)が−律でな
くなり、例えば最も浅いコンタクトホールに対して適切
な埋込み厚さを選ぶと、最も深いコンタクトホールでは
その充填率が低下し埋込み厚さが充分ではなくなって、
コンタクトホールの上部に大きな段差が残り、スパッタ
等によりこのコンタクトホール上に形成される配線金属
膜のカバレッジ性が悪化して配線の信頼性が低下すると
いう問題を生じていた。Therefore, as mentioned above, when the depth of the contact hole becomes uneven due to multi-layered wiring, etc., the filling rate of the conductor layer (filling thickness/contact hole depth) becomes irregular. For example, if an appropriate embedding thickness is selected for the shallowest contact hole, the filling rate will decrease in the deepest contact hole and the embedding thickness will not be sufficient.
A large step remains in the upper part of the contact hole, which causes a problem in that the coverage of the wiring metal film formed over the contact hole by sputtering or the like deteriorates, resulting in a decrease in the reliability of the wiring.
そこで本発明は、深さの異なるコンタクトホールに、大
差のない充填率で導電体層を埋込むことが可能な方法を
提供して、埋込み後の深さの異なるコンタクトホール上
部の段差を、総て配線金属膜の良好なカバレッジの得ら
れる低い段差に収めることを目的とする。Therefore, the present invention provides a method capable of embedding a conductive layer in contact holes of different depths with a filling rate that is not significantly different, and completely eliminates the level difference at the top of the contact holes of different depths after embedding. The purpose is to keep the height difference within a low level so that good coverage of the wiring metal film can be obtained.
上記課題は、コンタクトホール内のみに、選択気相成長
手段により該コンタクトホール底部の下地導電性基体に
接する導電体層を埋込むに際して、該コンタクトホール
底部の下地導電性基体の表出面積と該コンタクトホール
の開口面積との比率を相対的に変化させるか、或いは、
該コンタクトホールの底部に表出する下地導電性基体の
材質を変えることによって、該コンタクトホール内への
該導電体層の埋込み速度を制御する工程を含む本発明に
よる半導体装置の製造方法、又は、同一基板上の絶縁膜
に形成さた深さの異なる複数のコンタクトホール内に、
選択気相成長手段により該コンタクトホール底部の下地
導電性基体に接する導電体層を同時に埋込んで、該コン
タクトホール部の該絶縁膜上面に対する段差を軽減する
工程を有する半導体装置の製造方法において、該深さの
異なる複数のコンタクトホールを形成するに際して、
浅いコンタクトホールにおける上部開口面積に対する底
部の下地導電性基体表出面積との比率を、深いコンタク
トホールにおける前記比率より小さく形成するか、或い
は、浅いコンタクトホールの下部に配設される下地導電
性基体の少なくとも該コンタクトホールの底部に表出す
る領域を、深いコンタクトホールの底部に表出する下地
導電性基体面よりも選択気相成長における成長核形成速
度の遅い導電性材料により形成する工程を含む本発明に
よる半導体装置の製造方法によって解決される。The above-mentioned problem is that when a conductor layer that is in contact with the underlying conductive substrate at the bottom of the contact hole is buried by selective vapor growth means only in the contact hole, the exposed area of the underlying conductive substrate at the bottom of the contact hole and the By relatively changing the ratio of the opening area of the contact hole, or
A method for manufacturing a semiconductor device according to the present invention, comprising the step of controlling the filling speed of the conductive layer into the contact hole by changing the material of the underlying conductive substrate exposed at the bottom of the contact hole, or In multiple contact holes with different depths formed in the insulating film on the same substrate,
A method for manufacturing a semiconductor device comprising the step of simultaneously embedding a conductive layer in contact with the underlying conductive substrate at the bottom of the contact hole by selective vapor growth means to reduce a step difference between the contact hole portion and the upper surface of the insulating film, When forming the plurality of contact holes having different depths, the ratio of the exposed area of the bottom conductive substrate to the top opening area in the shallow contact hole is smaller than the ratio in the deep contact hole, or At least the region of the underlying conductive substrate disposed below the shallow contact hole that is exposed at the bottom of the contact hole is grown by selective vapor phase epitaxy over the surface of the underlying conductive substrate that is exposed at the bottom of the deep contact hole. This problem is solved by the method of manufacturing a semiconductor device according to the present invention, which includes a step of forming the semiconductor device using a conductive material with a slow nucleation rate.
第1図(a)〜(d)は本発明の原理説明用工程断面図
で、(イ)は深いコンタクトホール部、(ロ)は浅いコ
ンタクトホール部を示す。FIGS. 1(a) to 1(d) are process sectional views for explaining the principle of the present invention, in which (a) shows a deep contact hole portion and (b) shows a shallow contact hole portion.
本発明に係る一方法においては、第1図(a)に示すよ
うに、下地導電性基体l上の絶縁膜2にコンタクトホー
ルを形成する際に、予め、浅いコンタクトホール3Bに
おける開口面積即ち開口径(Dss )と底部の下地導
電性基体の表出面積即ち下地導電性基体表出径(DIB
)との相対比率(DIR/Dsa)を、コンタクトホー
ル3Bの底部にテーパ部5を設けることによって、深い
コンタクトホール3Aにおける開口径(D!A)と下地
導電性基体表出径(D+A)との相対比率(D、A/D
!A)より小さく形成しておく。In one method according to the present invention, as shown in FIG. 1(a), when forming a contact hole in the insulating film 2 on the underlying conductive substrate l, the opening area of the shallow contact hole 3B is diameter (Dss) and the exposed area of the underlying conductive substrate at the bottom, i.e. the exposed diameter of the underlying conductive substrate (DIB
) by providing a tapered portion 5 at the bottom of the contact hole 3B, the opening diameter (D!A) in the deep contact hole 3A and the exposed diameter of the underlying conductive substrate (D+A) relative ratio (D, A/D
! A) Make it smaller.
このようにして導電体層の選択気相成長を行うと、第1
図(a)の核形成過程において、選択気相成長における
核形成が表面反応律速であって核の形成密度が一定にな
るために、深いコンタクトホール3Aの成長核104の
数は浅いコンタクトホール3Bの成長核104の数より
も多くなる。When the conductor layer is selectively grown in vapor phase in this way, the first
In the nucleation process shown in Figure (a), the number of growth nuclei 104 in the deep contact hole 3A is smaller than that in the shallow contact hole 3B because the nucleation in the selective vapor phase epitaxy is rate-determined by the surface reaction and the density of nucleation is constant. The number of growth nuclei 104 is greater than the number of growth nuclei 104.
そして第1図(b)に示すように、浅いコンタクトホー
ル3Bにおいて、下地導電性基体表出径(DIB)に対
応するテーパ部5内に導電体層4が成長せしめられてい
る間は、その堆積厚さ(ta+ )は深いコンタクトホ
ール3B内の堆積厚さ(tA+ )とほぼ等しい。As shown in FIG. 1(b), while the conductive layer 4 is grown in the tapered portion 5 corresponding to the exposed diameter (DIB) of the underlying conductive substrate in the shallow contact hole 3B, The deposition thickness (ta+) is approximately equal to the deposition thickness (tA+) in the deep contact hole 3B.
次いで第1図(C1に示すように、堆積が進んで浅いコ
ンタクトホール3Bにおいて堆積厚さが前記テーパ部5
を越えた時点で成長は横方向へも進行し、この過程で浅
いコンタクトホール3B内の上方へ向かう導電体層4の
堆積速度は、深いコンタクトホール3A内の導電体層4
の上方へ向かう堆積速度より大幅に遅れる。Then, as shown in FIG.
Growth also progresses in the lateral direction at the point when the growth exceeds 1, and in this process, the deposition rate of the conductor layer 4 in the upward direction in the shallow contact hole 3B is lower than that of the conductor layer 4 in the deep contact hole 3A.
It lags significantly behind the upward deposition rate.
そして第1図(dlに示すように、更に成長が進んで堆
積された導電体層4がコンタクトホール3Bの底部全域
を覆った時点で浅いコンタクトホール3B内の導電体層
4の上方へ向かう堆積速度は深いコンタクトホール3A
のそれと等しくなる。Then, as shown in FIG. 1 (dl), when the growth progresses further and the deposited conductor layer 4 covers the entire bottom of the contact hole 3B, the conductor layer 4 is deposited upward in the shallow contact hole 3B. The speed is deep contact hole 3A
is equal to that of
この結果、浅いコンタクトホールの開口径と底部の導電
性基体表出径との相対比率を適切に選ぶことによって、
例えば深いストレートなコンタクトホール3Aと浅いコ
ンタクトホール3Bにおける見掛は上の堆積速度が変え
られ、それぞれのコンタクトホール3A、3Bに埋込ま
れた導電体層4の上面と周囲の絶縁膜2の上面との段差
を大差のない微小段差d+及びd2に形成することが可
能になる。As a result, by appropriately selecting the relative ratio between the opening diameter of the shallow contact hole and the exposed diameter of the conductive substrate at the bottom,
For example, the apparent deposition rate in a deep straight contact hole 3A and a shallow contact hole 3B is changed, and the top surface of the conductor layer 4 buried in each contact hole 3A, 3B and the top surface of the surrounding insulating film 2 are changed. It becomes possible to form minute steps d+ and d2 with no large difference.
また上記見掛は上の堆積速度は、コンタクトホールの底
部に表出する下地導電性基体の材質を変えることによっ
ても変化させることができる。The apparent deposition rate can also be changed by changing the material of the underlying conductive substrate exposed at the bottom of the contact hole.
第2図は、下地導電性基体がシリコン(Si)の場合(
カーブA)と、タングステンシリサイド(WSiz)の
場合(カーブB)との、W層の成長時間と埋込み厚さ(
堆積厚さ)との関係を示した図であるが、この図に見ら
れるように、成長核の形成速度の遅いWSi2を被成長
基体に用いた際には、成長当初の核形成過程において成
長の遅れを生じ、所定時間の成長が終わるまで上記遅れ
による厚さの差が持続される。従って浅いコンタクトホ
ールの下部の下地導電性基体には核形成速度の遅い物質
を、深いコンタクトホールの下部の下地導電性基体には
核形成速度の速い物質をそれぞれ用いることにより、前
記本発明の一方法同様に、導電体層埋込み後の浅いコン
タクトホール及び深いコンタクトホール上部の段差を、
大差ない微小段差に形成することが可能になる。Figure 2 shows the case where the underlying conductive substrate is silicon (Si) (
W layer growth time and embedding thickness (curve A) and tungsten silicide (WSiz) case (curve B)
As can be seen in this figure, when WSi2, which has a slow formation rate of growth nuclei, is used as the growth substrate, the growth rate increases during the nucleation process at the beginning of growth. The difference in thickness caused by the delay is maintained until the growth for a predetermined period of time is completed. Therefore, by using a substance with a slow nucleation rate in the underlying conductive substrate under the shallow contact hole and a substance with a fast nucleation rate in the underlying conductive substrate under the deep contact hole, it is possible to achieve the above-mentioned aspect of the present invention. Similarly to the method, the steps at the top of the shallow contact hole and deep contact hole after embedding the conductor layer are
It becomes possible to form minute steps with no significant difference.
以上により、同一基板上に形成される深さの異なるコン
タクトホール上部の段差は微小段差に均一化されるので
、配線金属膜のカバレッジ性は向上し、配線の段切れが
防止される。As described above, the steps above the contact holes having different depths formed on the same substrate are made uniform to minute steps, so that the coverage of the wiring metal film is improved and step breaks in the wiring are prevented.
以下本発明を、図示実施例により具体的に説明する。 The present invention will be specifically explained below with reference to illustrated embodiments.
第3図(a)〜(e)は本発明の方法に係る一実施例の
工程断面図で、第4図(a)〜(b)は本発明の方法に
係る他の実施例の工程断面図である。3(a) to 3(e) are process sectional views of one embodiment of the method of the present invention, and FIGS. 4(a) to 4(b) are process sectional views of another embodiment of the method of the present invention. It is a diagram.
全図を通じ同一対象物は同一符合で示す。Identical objects are indicated by the same reference numerals throughout the figures.
第3図(a)参照
本発明の方法を適用して、例えば、半導体基板面に接続
する第2層配線と、第1層配線に接続する第2層配線を
有する多層配線構造の半導体装置を形成するに際しては
、例えば、第1、第2の不純物拡散領域12A 、12
Bが形成されたSi基板11上に、化学気相成長(CV
D)法により厚さ5000人程度0二酸化シリコン(S
iO□)下層絶縁膜13を形成し、次いで通常のフォト
リソグラフィによりこのSiO□下層絶縁膜13に例え
ば第2の不純物拡散領域12Bを表出するコンタクトホ
ール14を形成し、厚さ3000人程度0ポリSi層の
気相成長、このポリSi層への不純物の導入、パターニ
ングを行って、前記コンタクトホール14を介し第1の
不純物拡散領域12B上からSiO2下層絶縁膜13に
導出されたポリSi下層配線15を形成し、次いで熱酸
化によりこのポリSi下層配線15の表面に厚さ500
人程0の熱酸化Si0□膜16を形成した後、この下層
配線15形成面上にプラスマCVD法により厚さ500
0人程度0二VD−3iO□層間絶縁膜17を形成する
。Refer to FIG. 3(a) By applying the method of the present invention, for example, a semiconductor device having a multilayer wiring structure having a second layer wiring connected to the semiconductor substrate surface and a second layer wiring connected to the first layer wiring is manufactured. When forming, for example, the first and second impurity diffusion regions 12A, 12
On the Si substrate 11 on which B is formed, chemical vapor deposition (CV
D) Silicon dioxide (S) with a thickness of about 5000
An iO□) lower layer insulating film 13 is formed, and then a contact hole 14 exposing, for example, the second impurity diffusion region 12B is formed in this SiO□ lower layer insulating film 13 by ordinary photolithography, and the thickness is about 3000 mm. By performing vapor phase growth of a poly-Si layer, introducing impurities into this poly-Si layer, and patterning, the poly-Si lower layer is led out from above the first impurity diffusion region 12B to the SiO2 lower layer insulating film 13 through the contact hole 14. Wiring 15 is formed, and then thermal oxidation is applied to the surface of poly-Si lower layer wiring 15 to a thickness of 500 mm.
After forming a thermally oxidized Si0□ film 16 with a thickness of 0, a thickness of 500
The interlayer insulating film 17 is formed by about 02VD-3iO□.
第3図(b)参照
次いて上記基板上に、ポリSi下層配線15に対する浅
いコンタクトホールを形成する部分に、コンタクトホー
ルの上部開口径の1/2程度の例えば0.5μm程度の
径のエツチング窓19を有する第1のレジスト膜18を
形成し、弗素系のガスによるリアクティブイオンエツチ
ング(RIE )処理により、前記エツチング窓19に
整合してCVD−3iO□層間絶縁膜17と熱酸化Si
O2膜16を貫通し、ポリSi下層配線15面を表出す
る0、5μm程度の径のテーパ部用開孔20を形成する
。Refer to FIG. 3(b) Next, on the substrate, a portion where a shallow contact hole for the poly-Si lower layer wiring 15 is to be formed is etched to a diameter of about 1/2 of the upper opening diameter of the contact hole, for example, about 0.5 μm. A first resist film 18 having a window 19 is formed, and a CVD-3iO□ interlayer insulating film 17 and thermally oxidized Si are etched in alignment with the etching window 19 by reactive ion etching (RIE) using fluorine gas.
A tapered opening 20 having a diameter of about 0.5 μm is formed to penetrate the O 2 film 16 and expose the surface of the poly-Si lower layer wiring 15 .
第3図fc)参照
次いで上記レジスト膜18をマスクにし、希弗酸による
ウェットエツチング(wet)により前記テーパ部用開
孔20の側面を再度エツチングし、所定の1μm程度の
開口径を有する深さ5500λ程度の浅いコンタクトホ
ール21Bを形成する。なおこの際、エツチングレート
の遅い熱酸化SiO□膜16は殆どエツチングされず、
テーパ部用開口20が図のようにテーパ状に形成される
のみで底部の開口径は元のまま維持された状態で残留す
る。Refer to FIG. 3fc) Next, using the resist film 18 as a mask, the side surface of the tapered hole 20 is etched again by wet etching with dilute hydrofluoric acid to a predetermined depth having an opening diameter of about 1 μm. A shallow contact hole 21B of about 5500λ is formed. At this time, the thermally oxidized SiO□ film 16, which has a slow etching rate, is hardly etched.
The opening 20 for the tapered portion is only formed into a tapered shape as shown in the figure, and the opening diameter at the bottom remains unchanged.
第3図(d)参照
次いで第1のレジスト膜18を除去した後、この基板上
に、深いコンタクトホールを形成する場所に径1μm程
度のエツチング用開孔23を有する第2のレジスト膜2
2を形成し、このレジスト膜22をマスクにしてRIE
処理を行い、CVD−3i02層間絶縁膜17とその下
部の熱酸化SiO□膜16を除去し、第1の不純物拡散
領域12Aを表出する径1μm程度、深さ100001
程度の深いコンタクトホール21Aを形成する。Refer to FIG. 3(d) Next, after removing the first resist film 18, a second resist film 2 is formed on the substrate, which has an etching opening 23 with a diameter of about 1 μm at a location where a deep contact hole is to be formed.
2 and RIE using this resist film 22 as a mask.
The CVD-3i02 interlayer insulating film 17 and the thermally oxidized SiO□ film 16 below it are removed to expose the first impurity diffusion region 12A with a diameter of about 1 μm and a depth of 100001 μm.
A contact hole 21A with a certain depth is formed.
第3図(e)参照
次いで、シランの還元による通常のWの選択気相成長方
法、例えば6弗化タングステン(WFa) :モノシラ
ン(SiHa):水素(H2)= 7 : 4.9
: 1000[SCCM)の組成を有する成長ガスの0
.2 Torr程度圧力を有する雰囲気中で、250〜
300℃程度で行われるWの選択気相成長を2分間行っ
た。そしてこの気相成長により、深さ1oooo人程度
の深いコンタクトホール21A内には厚さ3600人程
度0W埋込み層24Aが深さ5500人程度0浅いコン
タクトホール21B内には厚さ2000人程度0W埋込
み層24Bが堆積され、埋込み層24A及び24Bの上
面からコンタクトホール周囲のCVD−3iO□層間絶
縁膜17上面までの段差は、深いコンタクトホール17
A部で約6400人、浅いコンタクトホール17B部で
約3500人となった。この結果、成長レートのばらつ
きにより浅いコンタクトホール部で埋込み層がオーバフ
ローするのを避けるため従来方法で浅いコンタクトホー
ル2IB内に上記実施例と同様に2000人の厚さのW
層を埋込んだ際に、同様の厚さのW層が埋込まれる深い
コンタクトホール21Bの埋込み層上部に形成される8
000人の段差に比べてその段差が1600人即ち20
%程度軽減され、浅いコンタクトホールと深いコンタク
トホールの上記段差の差は、従来方法に比べ約35%程
度縮小された。Refer to FIG. 3(e) Next, a conventional selective vapor phase growth method of W by reduction of silane is used, for example, tungsten hexafluoride (WFa):monosilane (SiHa):hydrogen (H2)=7:4.9
: 0 of the growth gas with a composition of 1000[SCCM]
.. In an atmosphere with a pressure of about 2 Torr, 250~
Selective vapor phase growth of W was performed at about 300° C. for 2 minutes. Through this vapor phase growth, a 0W buried layer 24A with a thickness of about 3,600 layers is buried in the deep contact hole 21A with a depth of about 100 layers, and a 0W layer 24A with a thickness of about 2,000 layers is buried in the shallow contact hole 21B with a depth of about 5,500 layers. The layer 24B is deposited, and the step from the top surface of the buried layers 24A and 24B to the top surface of the CVD-3iO□ interlayer insulating film 17 around the contact hole is a deep contact hole 17.
Approximately 6,400 people attended the A section, and approximately 3,500 people attended the shallow contact hole 17B section. As a result, in order to avoid overflow of the buried layer in the shallow contact hole portion due to variations in the growth rate, the conventional method was used to fill the shallow contact hole 2IB with a 2,000-layer thick W layer as in the above embodiment.
8 formed above the buried layer in the deep contact hole 21B in which a W layer of similar thickness is buried when the layer is buried.
Compared to the step difference of 000 people, the step difference is 1600 people, or 20
%, and the difference in the step between the shallow contact hole and the deep contact hole was reduced by about 35% compared to the conventional method.
なお、上記実施例の方法においては、浅いコンタクトホ
ール21Bの底部に形成されるテーパ部の開口径を更に
小さくして、浅いコンタクトホールと深いコンタクトホ
ール内の見掛は上の埋込み層の堆積速度の差を大きくす
ることにより、前記深いコンタクトホール21A部にお
ける段差軽減の効果をより一層高めることができる。In addition, in the method of the above embodiment, the opening diameter of the tapered portion formed at the bottom of the shallow contact hole 21B is further reduced, so that the apparent deposition rate of the upper buried layer in the shallow contact hole and the deep contact hole is reduced. By increasing the difference, the effect of reducing the step difference in the deep contact hole 21A portion can be further enhanced.
第4図(a)参照
また、本発明に係る他の方法においては、例えば第1、
第2のの不純物拡散領域12A 、 12Bを有するS
i基板ll上のSiO□下層絶縁膜13に形成した例え
ば第2の不純物拡散領域12Bを表出するコンタクトホ
ール14上に、例えば厚さ2000人程度0WS12下
層配線25を形成し、この下層配線形成面上に厚さ50
00人程度0CVD−3iO□層間絶縁膜17を形成し
、次いで上記CVD−3i02層間絶縁膜17を貫いて
WSi、下層配線25を表出する深さ5000人程度0
Cいコンタクトホール26Bと、CVD−3iO□層間
絶縁膜17及び5in2下層絶縁膜13を貫いて第1の
不純物拡散領域12Aを表出する深さ10000人程度
の深いコンタクトホール26Aを同時に形成する。Refer to FIG. 4(a) Furthermore, in another method according to the present invention, for example, the first
S having second impurity diffusion regions 12A and 12B
A 0WS12 lower layer wiring 25 having a thickness of, for example, about 2000 layers is formed on the contact hole 14 that exposes, for example, the second impurity diffusion region 12B formed in the SiO□ lower layer insulating film 13 on the i-substrate ll, and this lower layer wiring is formed. Thickness 50 on the surface
A CVD-3iO□ interlayer insulating film 17 is formed, and then the CVD-3i02 interlayer insulating film 17 is penetrated to expose the WSi and lower wiring 25 to a depth of about 5000.
A contact hole 26B having a depth of about 10,000 mm and a deep contact hole 26A penetrating the CVD-3iO□ interlayer insulating film 17 and the 5in2 lower layer insulating film 13 to expose the first impurity diffusion region 12A are simultaneously formed.
第4図(b)参照
次いで前記実施例と同様の、例えばWFs : SiH
4: H2= 7 : 4.9 : 1000 [S
CCM)の組成を有する成長ガスの0.2 Torr程
度圧力を有する雰囲気中で、250〜300℃程度で行
われるWの選択気相成長を3分間行った。この結果、浅
いコンタクトホール26B内には厚さ3700人程度0
W埋込み層24Bが形成され、深いコンタクトホール2
6A内には厚さ5000人程度0C埋込み層24Aが形
成され、従来の方法で成長速度のばらつきによる浅いコ
ンタクトホールからの埋込み層のオーバフローをな(す
ことを考慮して浅いコンタクトホール26B内に370
0人程度戻限込み層を充填した際、同時に同様の厚さの
埋込み層が充填される深いコンタクトホールの埋込み層
上部に形成される段差6300人に比べて、その段差を
130OA、即ち20%程度減少させることができ、浅
いコンタクトホールと深いコンタクトホールの上記段差
の差も、従来方法に比べ約25%程度縮小された。Refer to FIG. 4(b). Then, similar to the above example, for example, WFs:SiH
4: H2= 7: 4.9: 1000 [S
Selective vapor phase growth of W was carried out for 3 minutes at a temperature of about 250 to 300° C. in an atmosphere of a growth gas having a composition of CCM) at a pressure of about 0.2 Torr. As a result, the thickness of the shallow contact hole 26B is approximately 3,700 mm.
A W buried layer 24B is formed and a deep contact hole 2 is formed.
An 0C buried layer 24A with a thickness of about 5,000 layers is formed in the shallow contact hole 26B in consideration of overflow of the buried layer from the shallow contact hole due to variations in growth rate using the conventional method. 370
When filling the buried layer with a return limit of about 0 people, compared to the 6,300 level difference formed on the buried layer of a deep contact hole that is filled with a buried layer of the same thickness at the same time, the level difference is 130OA, that is, 20%. The step difference between the shallow contact hole and the deep contact hole was also reduced by about 25% compared to the conventional method.
なお本発明の方法は、上記実施例に限らず、埋込み層に
銅、W以外の高融点金属、高融点金属のシリサイドを用
いても同様の効果が得られる。Note that the method of the present invention is not limited to the above-mentioned embodiments, and similar effects can be obtained even when a high-melting point metal other than copper or W, or a silicide of a high-melting point metal is used in the buried layer.
以上説明したように本発明によれば、同一基板上に形成
されている浅いコンタクトホールと深いコンタクトホー
ル内に、選択気相成長により導電体層を同時に埋込んだ
後に、浅いコンタクトホール上部に形成される段差と深
いコンタクトホール上部に形成される段差の差を従来に
比べ縮小し、大差ない微小段差に形成できる。As explained above, according to the present invention, a conductive layer is simultaneously buried in a shallow contact hole and a deep contact hole formed on the same substrate by selective vapor phase growth, and then a conductive layer is formed above the shallow contact hole. The difference between the step formed above the deep contact hole and the step formed above the deep contact hole can be reduced compared to the conventional method, and can be formed into a minute step with no significant difference.
従って本発明は、深さの異なるコンタクトホールを有す
る多層配線構造の半導体装置等の製造において、配線の
段切れによる歩留りや信頼性の低下を防止する効果を有
する。Therefore, the present invention has the effect of preventing a decrease in yield and reliability due to disconnection of wiring in manufacturing a semiconductor device or the like having a multilayer wiring structure having contact holes of different depths.
第1図(a)〜(d)は本発明の原理説明用工程断面図
、第2図は下地導電性基体がSi及びWSi2の場合の
Wの成長時間と埋込み厚さの関係図、第3図(a)〜f
e)は本発明の方法に係る一実施例の工程断面図、
第4図(al〜(b)は本発明の方法に係る他の実施例
の工程断面図である。
図において、
■は下地導電性基体、
2は絶縁膜、
3Aは深いコンタクトホール、
3Bは浅いコンタクトホール、
4は導電体層、
5はテーパ部、
104は成長核、
D3A 、D3Bはコンタクトホールの上部開口径、D
IA 、D+aは下地導電性基体の表出径、j A+及
びt 81は堆積厚さ
を示す。
(イ)
(ワ)
A発明α佇工甲説−用Q’1吋市図
第図画 図(その2)
(イ)
(イ) (クジ2
ト令B月n)ンf里颯撫札日月用エネy−丁tiμつ第
1 図(その1)
− Xa、 Q Fs’l (rn ; n)
T道連1り・h1休hS1及び”WSizの4合ηWめ
成長J晴間と埋υ厚ざの関1千p第 2 図
$全問n方法に係5−fだイク抄り視餅面図画
図(その1)
Aイjl17月のカダi(:4至ラー突屓亘イクjf)
ニオ7断tfllla勇
刀昭の2)
4イi明の、方六七l′、−4未ライ色の物像1のニオ
1坪σσD図第
図1(a) to 1(d) are process cross-sectional views for explaining the principle of the present invention, FIG. 2 is a relationship between the growth time of W and the embedding thickness when the underlying conductive substrate is Si and WSi2, and FIG. Figures (a) to f
e) is a process cross-sectional view of one embodiment according to the method of the present invention, and FIGS. Conductive base, 2 is an insulating film, 3A is a deep contact hole, 3B is a shallow contact hole, 4 is a conductive layer, 5 is a tapered part, 104 is a growth nucleus, D3A and D3B are upper opening diameters of the contact hole, D
IA and D+a are the exposed diameters of the underlying conductive substrate, and j A+ and t 81 are the deposition thicknesses. (B) (W) A Invention α 佇KO Theory - Use Q'1 Ichizu Diagram (Part 2) (B) (B) (Lottery 2
Figure 1 (Part 1) - Xa, Q Fs'l (rn; n)
T road series 1, h1 rest hS1 and "WSiz's 4th ηW growth J Haruma and buried υ thickness Zano Seki 1,000 p. Drawing diagram (Part 1)
Nio 7 cut tfllla Yutoaki's 2) 4 Ii light, direction 67 l', -4 unlight colored object image 1 Nio 1 tsubo σσD diagram
Claims (4)
より該コンタクトホール底部の下地導電性基体に接する
導電体層を埋込むに際して、 該コンタクトホール底部の下地導電性基体の表出面積と
該コンタクトホールの開口面積との比率を相対的に変化
させることによって、該コンタクトホール内への該導電
体層の埋込み速度を制御する工程を含むことを特徴とす
る半導体装置の製造方法。(1) When embedding a conductive layer in contact with the underlying conductive substrate at the bottom of the contact hole by selective vapor deposition only in the contact hole, the exposed area of the underlying conductive substrate at the bottom of the contact hole and the contact 1. A method of manufacturing a semiconductor device, comprising the step of controlling the filling speed of the conductor layer into the contact hole by relatively changing the ratio of the hole to the opening area.
より該コンタクトホール底部の下地導電性基体に接する
導電体層を埋込むに際して、 該コンタクトホールの底部に表出する下地導電性基体の
材質を変えることによって、該コンタクトホール内への
該導電体層の埋込み速度を制御する工程を含むことを特
徴とする半導体装置の製造方法。(2) When embedding a conductive layer in contact with the underlying conductive substrate at the bottom of the contact hole by selective vapor growth only in the contact hole, the material of the underlying conductive substrate exposed at the bottom of the contact hole is 1. A method of manufacturing a semiconductor device, comprising the step of controlling the filling speed of the conductor layer into the contact hole by changing the filling speed of the conductor layer into the contact hole.
数のコンタクトホール内に、選択気相成長手段により該
コンタクトホール底部の下地導電性基体に接する導電体
層を同時に埋込んで、該コンタクトホール部の該絶縁膜
上面に対する段差を軽減する工程を有する半導体装置の
製造方法において、該深さの異なる複数のコンタクトホ
ールを形成するに際して、 浅いコンタクトホールにおける上部開口面積に対する底
部の下地導電性基体表出面積の比率を、深いコンタクト
ホールにおける前記比率より小さく形成する工程を含む
ことを特徴とする半導体装置の製造方法。(3) simultaneously embedding a conductor layer in contact with the underlying conductive substrate at the bottom of the contact hole by selective vapor deposition into a plurality of contact holes of different depths formed in an insulating film on the same substrate; In a method for manufacturing a semiconductor device including a step of reducing a step difference between the contact hole portion and the upper surface of the insulating film, when forming the plurality of contact holes having different depths, 1. A method of manufacturing a semiconductor device, comprising the step of forming a ratio of exposed area of a transparent substrate to be smaller than the ratio of a deep contact hole.
数のコンタクトホール内に、選択気相成長手段により該
コンタクトホール底部の下地導電性基体に接する導電体
層を同時に埋込んで、該コンタクトホール部の該絶縁膜
上面に対する段差を軽減する工程を有する半導体装置の
製造方法において、浅いコンタクトホールの下部に配設
される下地導電性基体の少なくとも該コンタクトホール
の底部に表出する領域を、深いコンタクトホールの底部
に表出する下地導電性基体面よりも選択気相成長におけ
る成長核形成速度の遅い導電性材料により形成する工程
を含むことを特徴とする半導体装置の製造方法。(4) simultaneously embedding a conductive layer in contact with the underlying conductive substrate at the bottom of the contact hole by selective vapor deposition into a plurality of contact holes of different depths formed in an insulating film on the same substrate; In a method of manufacturing a semiconductor device, which includes a step of reducing a step difference between the contact hole portion and the upper surface of the insulating film, a region of a base conductive substrate disposed below a shallow contact hole that is exposed at least at the bottom of the contact hole; A method for manufacturing a semiconductor device, comprising the step of forming the conductive material using a conductive material that has a slower growth nucleation rate during selective vapor growth than the underlying conductive substrate surface exposed at the bottom of the deep contact hole.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2106047A JP2782912B2 (en) | 1990-04-20 | 1990-04-20 | Method for manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2106047A JP2782912B2 (en) | 1990-04-20 | 1990-04-20 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH043934A true JPH043934A (en) | 1992-01-08 |
JP2782912B2 JP2782912B2 (en) | 1998-08-06 |
Family
ID=14423721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2106047A Expired - Lifetime JP2782912B2 (en) | 1990-04-20 | 1990-04-20 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2782912B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01184849A (en) * | 1988-01-14 | 1989-07-24 | Agency Of Ind Science & Technol | Manufacture of multilayer interconnection |
-
1990
- 1990-04-20 JP JP2106047A patent/JP2782912B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01184849A (en) * | 1988-01-14 | 1989-07-24 | Agency Of Ind Science & Technol | Manufacture of multilayer interconnection |
Also Published As
Publication number | Publication date |
---|---|
JP2782912B2 (en) | 1998-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5066612A (en) | Method of forming wiring of a semiconductor device | |
JPH09139429A (en) | Manufacture of semiconductor device | |
JPS595629A (en) | Double layer surface stabilizing method | |
JPH04277623A (en) | Manufacture of semiconductor device | |
KR100331906B1 (en) | Method for manufacturing a semiconductor device | |
JPH043934A (en) | Manufacture of semiconductor device | |
JPH05849B2 (en) | ||
JPS6362107B2 (en) | ||
JPH043455A (en) | Soi transistor laminated semiconductor device and manufacture thereof | |
JPS6334954A (en) | Semiconductor device and manufacture thereof | |
JPH10256187A (en) | Semiconductor device and fabrication thereof | |
JPH01214137A (en) | Manufacture of integrated circuit | |
JPH04296041A (en) | Semiconductor device and manufacture thereof | |
JP2586705B2 (en) | Semiconductor device and manufacturing method thereof | |
US5783499A (en) | Method for the fabrication of a semiconductor device | |
JPH06268077A (en) | Manufacture of semiconductor device | |
JPH04127425A (en) | Manufacture of semiconductor integrated circuit | |
JPH0529478A (en) | Manufacture of semiconductor device | |
JPS62205647A (en) | Method of selectively depositing conductor material | |
JPH02151034A (en) | Manufacture of semiconductor device | |
JPH10233452A (en) | Method for forming metal plug and metal wiring | |
JP2998444B2 (en) | Method for manufacturing semiconductor integrated circuit device | |
JPH03280545A (en) | Wiring forming method of semiconductor device | |
JPH04211148A (en) | Manufacture of semiconductor device | |
JPH0244142B2 (en) | HANDOTAISOCHINOSEIZOHOHO |