JPH0439206B2 - - Google Patents

Info

Publication number
JPH0439206B2
JPH0439206B2 JP61244029A JP24402986A JPH0439206B2 JP H0439206 B2 JPH0439206 B2 JP H0439206B2 JP 61244029 A JP61244029 A JP 61244029A JP 24402986 A JP24402986 A JP 24402986A JP H0439206 B2 JPH0439206 B2 JP H0439206B2
Authority
JP
Japan
Prior art keywords
alloy
rare earth
magnet
polymer composite
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61244029A
Other languages
Japanese (ja)
Other versions
JPS6399503A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP61244029A priority Critical patent/JPS6399503A/en
Publication of JPS6399503A publication Critical patent/JPS6399503A/en
Publication of JPH0439206B2 publication Critical patent/JPH0439206B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、いわゆるゴム磁石やプラスチツク磁
石を典型とした高分子複合型磁石の製造方法に関
し、特にNd・Fe・B系永久磁石を代表とする希
土類金属(R)と遷移金属(T)とホウ素(B)を主
成分としてなるR2T14B系の希土類磁石粉末と高
分子樹脂とを複合して得られる高分子複合型希土
類磁石の製造方法に関するものである。 〔従来の技術〕 R・Fe・B系磁石の製造方法については、2
つの方法に大別される。ひとつは、溶解している
合金を超急冷させる際に、適度に析出した微細結
晶粒(一般には0.05〜0.1μm程度)を含むよう
に、急冷速度を調整して得られた液体急冷微細結
晶化薄帯を作製した後、これを高分子樹脂等と複
合したり、あるいは高温中で加圧成形して得られ
る液体急冷型磁石である。一方は、溶解して得ら
れた結晶化(結晶粒子は10μm以上)した磁石合
金のインゴツトを微粉砕し、磁場中成形後、焼結
して製造される焼結型磁石である。後者の製法
は、前者に比べ異方性化がはかられるので、高い
磁石特性を得るのに適している。 一方、高分子複合型磁石は、高分子樹脂中に磁
石粉末を分散させたものであり、鋳造磁石や焼結
磁石等には見られない種々の特徴、例えば、弾力
性や加工容易性を備えており、種々の方面に用い
られている。 〔発明が解決しようとする問題点〕 しかしながら、高分子複合型磁石は、磁石粉末
と非磁性の樹脂とで形成されているため、焼結磁
石に比べ、磁石特性が低いという欠点を有してい
る。そのため、通常は磁石粉末を磁界中で配向さ
せる等の異方性化により、高い磁石特性を達成し
ようとしている。しかしながら、これまで得られ
ている微細結晶化したR2・T14・B系液体急冷薄
帯は、結晶の磁化容易方向が無秩序となつている
ため、磁場配向等による異方性化は困難であつ
た。したがつて、高い磁石特性を達成することが
できない欠点がある。 一般に、液体急冷型磁石に用いる合金粉末は、
Ar等の不活性雰囲気中で、高周波等によつて溶
解した合金を、高速回転しているFeやCu製ロー
ルに噴射し、厚さ数十μm程度の薄帯を粉砕して
得ている。このロールの回転数を変化させること
により、溶解した合金の冷却速度が制御できる。
この時、最も高い磁石特性の得られる急冷薄帯は
0.05〜0.1μm程度の微細な結晶粒子からなつてお
り、ロールの周速度は20m/sec程度の極めて制
限された範囲で得られている。この急冷薄帯を目
的に応じて数〜数百μm程度の粒子に粉砕した
後、高分子樹脂と複合化している。このとき、粉
末粒子は多数(数十個以上)の微細結晶粒からな
つており、これら結晶粒子の磁化容易方向はそれ
ぞれ無秩序になつている。したがつて、これ粉末
を磁場中成形等の処理を行なつても、磁石を異方
性化することは困難である。 そこで、本発明者は、上記欠点に鑑み種々実験
を重ねた結果、液体急冷非晶質合金薄帯を熱間ロ
ール圧延しながら結晶化した後、これを粉砕し、
磁場中成形することにより、異方性化が達成さ
れ、高い磁石特性の得られることを発見した。 尚本発明において、液体急冷非晶質薄帯の熱間
ロール圧延温度は、組成によつても異なるが(例
えば合金の融点や、結晶化温度によつても異な
る。)、450℃から1100℃の範囲が望ましい。450℃
以下ではロール圧延時の結晶化速度が著しく減少
するために、磁石の異方性化と磁石の硬質磁気特
性化が不十分となり、高い磁石特性が得られな
い。一方、1100℃以上では、合金の流動性が大き
くなり、ロール圧延による結晶粒の配向効果が著
しく低下するためである。また、850℃以上で熱
間ロール圧延した場合に組成によつてIHCの減少
が顕著となることがある。その場合、熱間ロール
圧延後500℃〜750℃程度の温度で、熱処理すると
高いIHCを有した磁石粉末とすることができる。 熱間ロール圧延による圧縮率 ((圧延前の厚さ)−(圧延後の厚さ)/(圧延前の厚
さ))と磁石特 性との関係は、圧縮率約70%までは磁石特性は著
しく向上するが、それ以上の圧縮率では特性向上
の伸び率が減少する傾向を示す。 〔問題点を解決する手段〕 本発明によれば、Nd、Fe、Bを主成分として
含有するR2T14B系の成分からなる高分子複合型
希土類磁石(ここでRはY及びCe、Pr、Nd、
Gd、Tb、Dy、Ho等の希土類金属、TはAl及び
Cr、Mn、Fe、Co、Ni等の遷移金属をあらわ
す。)の製造方法において、R2T14B系非晶質合金
を、熱間圧延して結晶化合金とした後、該結晶化
合金の粉末に高分子樹脂を混合し、磁界中で成形
することを特徴とする高分子複合型希土類磁石の
製造方法が得られる。 〔実施例〕 本発明に係る実施例について説明する。 実施例 1 純度95wt%のNd(残部はCe、Prを主体とする
他の希土類元素)、フエロボロン(B純分約20wt
%)及び電解鉄を使用し、Ndが28.0wt%、Bが
1.0wt%、残部Feとなるように、Ar雰囲気中で、
高周波加熱により溶解し、合金インゴツトを得
た。 次に、このインゴツトを使用して、Ar雰囲気
中で高周波加熱により再溶解した後、周速度約50
m/secの銅製ロールに噴射し、片ロール法によ
り幅約5mm、厚さ50μmの非晶質合金薄帯を得
た。 次に、この非晶質合金薄帯を700℃で熱間ロー
ル圧延して結晶化させ、5〜50μmの厚さとし
た。この時、析出した結晶の粒子径は0.5μm以下
であつた。各厚みの合金について粗粉砕した後、
ボールミルを用いて、平均粒径約15μmに粉砕し
た。 図に示すとおり、これらの磁石粉末に、エポキ
シ樹脂を2.5vol%混合した後、25KOeの磁界中
3ton/cm2の圧力で成形した。これを110℃で1時
間保持した後、30KOeの磁場を印加して、磁石
特性を測定した。 その結果、非晶質合金薄帯を熱間ロール圧延し
ながら0を超える圧縮比で結晶化することによ
り、磁石特性は著しく向上していることが認めら
れる。 実施例 2 5wt%のCe、15wt%のPr、残部Nd(ただし、
他の希土類元素はNdとして含めた。)からなるセ
リウムジジムに対し、10at%のDyを置換元素と
して添加し、フエロボロン、電解鉄、電解コバル
トを使用し、実施例1と同様にして、R(希土類
元素)が28.5wt%、Bが1.0wt%、Coが7wt%、
残部Feの組成を有するインゴツトを得た後、幅
約5mm、厚さ50μmの非晶質合金薄帯を作製し
た。 次に、この合金薄帯を750℃で熱間ロール圧延
して結晶化し、厚さを約30μm(圧縮率40%)と
した。この時析出した結晶の粒子径は1μm以下
であつた。これを実施例1と同様にして、平均粒
径約10μmに粉砕した。 次に、この磁石粉末にポリエチレンを40vol%
混合した後、約100℃にて、20KOeの磁界を印加
しながら、金型中に射出成形し、高分子複合磁石
を得た。この試料に30KOeの磁場を印加して測
定した磁石特性を、圧延率0%の試料(厚さ50μ
m)と比較して表に示す。その結果、熱間ロール
圧延しながら結晶化することにより、磁石特性は
著しく向上していることが認められる。
[Industrial Field of Application] The present invention relates to a method for manufacturing polymer composite magnets, typically rubber magnets or plastic magnets, and particularly relates to a method for manufacturing polymer composite magnets, typically rubber magnets or plastic magnets. The present invention relates to a method for manufacturing a polymer composite rare earth magnet obtained by combining R 2 T 14 B-based rare earth magnet powder containing transition metal (T) and boron (B) as main components with a polymer resin. [Prior art] Regarding the manufacturing method of R/Fe/B magnets, see 2.
It is broadly divided into two methods. One is liquid quenching fine crystallization, which is obtained by adjusting the quenching rate to contain a moderate amount of precipitated fine crystal grains (generally about 0.05 to 0.1 μm) when super-quenching a molten alloy. This is a liquid quenched magnet obtained by producing a thin ribbon and then compounding it with a polymer resin or the like, or by press-molding it at high temperature. One is a sintered magnet, which is manufactured by finely pulverizing an ingot of a crystallized magnetic alloy (crystal grains are 10 μm or more) obtained by melting, molding in a magnetic field, and then sintering. The latter manufacturing method allows for more anisotropy than the former, and is therefore suitable for obtaining high magnetic properties. On the other hand, polymer composite magnets are made by dispersing magnetic powder in polymer resin, and have various characteristics not found in cast magnets or sintered magnets, such as elasticity and ease of processing. It is used in various fields. [Problems to be solved by the invention] However, since polymer composite magnets are made of magnet powder and non-magnetic resin, they have the disadvantage that their magnetic properties are lower than that of sintered magnets. There is. Therefore, attempts are generally made to achieve high magnetic properties by making the magnetic powder anisotropic, such as by orienting it in a magnetic field. However, in the microcrystalline R 2 / T 14 / B liquid quenched ribbons that have been obtained so far, the direction of easy magnetization of the crystals is disordered, so it is difficult to make them anisotropic by magnetic field orientation, etc. It was hot. Therefore, there is a drawback that high magnetic properties cannot be achieved. In general, the alloy powder used for liquid quenched magnets is
In an inert atmosphere such as Ar, the alloy is melted using high-frequency waves, etc., and is injected onto a roll made of Fe or Cu that rotates at high speed to crush a thin ribbon with a thickness of several tens of micrometers. By changing the rotation speed of this roll, the cooling rate of the molten alloy can be controlled.
At this time, the quenched ribbon with the highest magnetic properties is
It consists of fine crystal grains of about 0.05 to 0.1 μm, and the circumferential speed of the roll can be achieved within a very limited range of about 20 m/sec. This quenched ribbon is pulverized into particles of several to several hundred micrometers depending on the purpose, and then composited with a polymer resin. At this time, the powder particles are composed of a large number (several tens or more) of fine crystal grains, and the directions of easy magnetization of these crystal grains are disordered. Therefore, even if this powder is subjected to treatments such as molding in a magnetic field, it is difficult to make the magnet anisotropic. Therefore, as a result of various experiments in view of the above-mentioned drawbacks, the present inventor crystallized a liquid-quenched amorphous alloy ribbon while hot rolling it, and then pulverized it.
We discovered that by forming in a magnetic field, anisotropy can be achieved and high magnetic properties can be obtained. In the present invention, the hot rolling temperature of the liquid-quenched amorphous ribbon varies depending on the composition (for example, it also varies depending on the melting point and crystallization temperature of the alloy), but ranges from 450°C to 1100°C. A range of is desirable. 450℃
In the following, the crystallization rate during roll rolling is significantly reduced, so that the anisotropy of the magnet and the hard magnetic properties of the magnet are insufficient, and high magnetic properties cannot be obtained. On the other hand, if the temperature is 1100°C or higher, the fluidity of the alloy increases, and the effect of crystal grain orientation due to roll rolling is significantly reduced. Furthermore, when hot roll rolling is performed at 850°C or higher, the decrease in I H C may become significant depending on the composition. In that case, heat treatment at a temperature of about 500° C. to 750° C. after hot rolling can produce a magnet powder with a high I H C. The relationship between the compression ratio ((thickness before rolling) - (thickness after rolling) / (thickness before rolling)) due to hot roll rolling and the magnetic properties is that up to a compression ratio of about 70%, the magnetic properties are However, at higher compression ratios, the elongation rate of property improvement tends to decrease. [Means for solving the problem] According to the present invention, a polymer composite rare earth magnet consisting of R 2 T 14 B-based components containing Nd, Fe, and B as main components (where R is Y, Ce, Pr, Nd,
Rare earth metals such as Gd, Tb, Dy, Ho, T is Al and
Represents transition metals such as Cr, Mn, Fe, Co, and Ni. ), the R 2 T 14 B-based amorphous alloy is hot-rolled into a crystallized alloy, and then a polymer resin is mixed with the powder of the crystallized alloy, and the mixture is molded in a magnetic field. A method for manufacturing a polymer composite rare earth magnet is obtained. [Example] An example according to the present invention will be described. Example 1 Nd with a purity of 95wt% (the remainder is other rare earth elements mainly consisting of Ce and Pr), ferroboron (purity of B approximately 20wt%)
%) and electrolytic iron, Nd is 28.0wt%, B is
In an Ar atmosphere, the balance was 1.0wt% Fe.
It was melted by high frequency heating to obtain an alloy ingot. Next, using this ingot, after remelting it by high frequency heating in an Ar atmosphere, the circumferential speed was approximately 50.
m/sec to a copper roll to obtain an amorphous alloy ribbon with a width of about 5 mm and a thickness of 50 μm by the single roll method. Next, this amorphous alloy ribbon was hot rolled at 700° C. to crystallize it to a thickness of 5 to 50 μm. At this time, the particle size of the precipitated crystals was 0.5 μm or less. After coarsely pulverizing the alloy of each thickness,
It was ground to an average particle size of about 15 μm using a ball mill. As shown in the figure, after mixing 2.5 vol% of epoxy resin with these magnet powders, they were mixed in a magnetic field of 25 KOe.
It was molded at a pressure of 3 tons/cm 2 . After holding this at 110° C. for 1 hour, a magnetic field of 30 KOe was applied to measure the magnetic properties. As a result, it was found that the magnetic properties were significantly improved by crystallizing the amorphous alloy ribbon at a compression ratio exceeding 0 while hot rolling it. Example 2 5wt% Ce, 15wt% Pr, balance Nd (however,
Other rare earth elements were included as Nd. ), 10 at% Dy was added as a substitution element, ferroboron, electrolytic iron, and electrolytic cobalt were used, and in the same manner as in Example 1, R (rare earth element) was 28.5 wt% and B was 28.5 wt%. 1.0wt%, Co 7wt%,
After obtaining an ingot having a composition of balance Fe, an amorphous alloy ribbon having a width of about 5 mm and a thickness of 50 μm was produced. Next, this alloy ribbon was hot-rolled at 750° C. to crystallize it to a thickness of about 30 μm (compressibility: 40%). The particle size of the crystals precipitated at this time was 1 μm or less. This was pulverized in the same manner as in Example 1 to an average particle size of about 10 μm. Next, add 40vol% polyethylene to this magnet powder.
After mixing, the mixture was injection molded into a mold at about 100° C. while applying a magnetic field of 20 KOe to obtain a polymer composite magnet. The magnetic properties measured by applying a magnetic field of 30KOe to this sample were compared to a sample with a rolling reduction of 0% (thickness 50μ
A comparison with m) is shown in the table. As a result, it was found that the magnetic properties were significantly improved by crystallization during hot rolling.

〔発明の効果〕〔Effect of the invention〕

以上の説明のとおり、本発明によれば、
R2T14B系成分からなる非晶質合金薄帯を圧縮率
0以上に熱間圧延を施すことにより、合金薄帯の
厚みを小さくしつつ合金薄帯を結晶化し、その
後、結晶化した合金薄帯を微粉砕して磁石粉末に
し、得られた磁石粉末に高分子樹脂を混合し、こ
れを磁場中成形することにより、異方性が高く磁
石特性の良好な高分子複合型希土類磁石を提供す
ることができる。
As explained above, according to the present invention,
R 2 T 14 By hot rolling an amorphous alloy ribbon consisting of B-based components to a compression ratio of 0 or more, the alloy ribbon is crystallized while reducing its thickness, and then crystallized. A polymer composite rare earth magnet with high anisotropy and good magnetic properties is created by finely pulverizing the alloy ribbon into magnet powder, mixing polymer resin with the resulting magnet powder, and molding it in a magnetic field. can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1における熱間ロール圧延時の
非晶質合金薄帯の圧延率と高分子複合磁石との特
性((BH)nax、Br、IHC)の関係を示す相関図で
ある。
Figure 1 is a correlation diagram showing the relationship between the rolling rate of the amorphous alloy ribbon during hot rolling and the properties ((BH) nax , Br, IHC ) of the polymer composite magnet in Example 1. be.

Claims (1)

【特許請求の範囲】[Claims] 1 Nd、Fe、Bを主成分として含有する
R2T14B系の成分からなる高分子複合型希土類磁
石(ここでRはY及びCe、Pr、Nd、Gd、Tb、
Dy、Ho等の希土類金属、TはAl及びCr、Mn、
Fe、Co、Ni等の遷移金属をあらわす。)の製造
方法において、R2T14B系非晶質合金を、熱間圧
延して結晶化合金とした後、該結晶化合金の粉末
に高分子樹脂を混合し、磁界中で成形することを
特徴とする高分子複合型希土類磁石の製造方法。
1 Contains Nd, Fe, and B as main components
R 2 T 14 A polymer composite rare earth magnet consisting of B-based components (where R is Y, Ce, Pr, Nd, Gd, Tb,
Rare earth metals such as Dy and Ho, T is Al and Cr, Mn,
Represents transition metals such as Fe, Co, and Ni. ), the R 2 T 14 B-based amorphous alloy is hot-rolled into a crystallized alloy, and then a polymer resin is mixed with the powder of the crystallized alloy, and the mixture is molded in a magnetic field. A method for manufacturing a polymer composite rare earth magnet characterized by:
JP61244029A 1986-10-16 1986-10-16 Manufacture of polymeric composite rare earth magnet Granted JPS6399503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61244029A JPS6399503A (en) 1986-10-16 1986-10-16 Manufacture of polymeric composite rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61244029A JPS6399503A (en) 1986-10-16 1986-10-16 Manufacture of polymeric composite rare earth magnet

Publications (2)

Publication Number Publication Date
JPS6399503A JPS6399503A (en) 1988-04-30
JPH0439206B2 true JPH0439206B2 (en) 1992-06-26

Family

ID=17112650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61244029A Granted JPS6399503A (en) 1986-10-16 1986-10-16 Manufacture of polymeric composite rare earth magnet

Country Status (1)

Country Link
JP (1) JPS6399503A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5383615A (en) * 1989-10-03 1995-01-24 The Australian National University Ball milling apparatus

Also Published As

Publication number Publication date
JPS6399503A (en) 1988-04-30

Similar Documents

Publication Publication Date Title
US5125988A (en) Rare earth-iron system permanent magnet and process for producing the same
EP0284033B1 (en) A method for producing a rare earth metal-iron-boron anisotropic bonded magnet from rapidly-quenched rare earth metal-iron-boron alloy ribbon-like flakes
JPH01704A (en) Rare earth-iron permanent magnet
EP0924717B1 (en) Rare earth-iron-boron permanent magnet and method for the preparation thereof
JPH0257662A (en) Rapidly cooled thin strip alloy for bond magnet
US5213631A (en) Rare earth-iron system permanent magnet and process for producing the same
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
JP3304175B2 (en) Rare earth quenched powder manufacturing method, rare earth quenched powder, bonded magnet manufacturing method, and bonded magnet
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
JPH0353505A (en) Bonded magnet and magnetization thereof
JPS6318602A (en) Manufacture of permanent magnet of rare earth-iron system
JPH0439206B2 (en)
JPS6373502A (en) Manufacture of rare earth magnet
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPH023206A (en) Rare earth-iron system permanent magnet
JPH10270224A (en) Manufacture of anisotropic magnet powder and anisotropic bonded magnet
JPS63115307A (en) Manufacture of rare-earth magnet
JP3180269B2 (en) Manufacturing method of rare earth-transition metal-boron bonded magnet
JPH01255620A (en) Production of permanent magnet material and bonded magnet
JP3427765B2 (en) Rare earth-Fe-Co-B based magnet powder, method for producing the same, and bonded magnet using the powder
JP2660917B2 (en) Rare earth magnet manufacturing method
JP3125226B2 (en) Manufacturing method of rare earth metal-transition metal-boron based anisotropic sintered magnet
JPH0845719A (en) Quenched thin band for bond magnet, particles for bond magnet, bond magnet and manufacture thereof
JPH02118054A (en) Permanent magnet material
JPH01119001A (en) Manufacture of permanent magnetic powder containing rare earth element