JPH0438960A - Artificial blood vessel of polyvinyl alcohol and polyacrylic acid - Google Patents

Artificial blood vessel of polyvinyl alcohol and polyacrylic acid

Info

Publication number
JPH0438960A
JPH0438960A JP2146935A JP14693590A JPH0438960A JP H0438960 A JPH0438960 A JP H0438960A JP 2146935 A JP2146935 A JP 2146935A JP 14693590 A JP14693590 A JP 14693590A JP H0438960 A JPH0438960 A JP H0438960A
Authority
JP
Japan
Prior art keywords
water
gel
polyvinyl alcohol
mechanical strength
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2146935A
Other languages
Japanese (ja)
Inventor
Yoichi Tatara
多々良 陽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2146935A priority Critical patent/JPH0438960A/en
Publication of JPH0438960A publication Critical patent/JPH0438960A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PURPOSE:To obtain a tubular water-absorbable high polymer which has a moderate softness in water with a mechanical strength by performing a dipping forming of a mixed concentrated liquid of a polyvinyl alcohol aqueous solution and a polyacrylate aqueous solution to gelatilize it by esterification. CONSTITUTION:A mixed concentrated liquid of polyvinyl alcohol and polyacrylate is made at a larger rate in wt.% for the former than the latter and a concentrated liquid of the former alone undergoes a dipping molding using a proper core, and further, a heat processing for more than two hours under an air temperature of about 100 deg.C-110 deg.C to esterify. A tubular gel thus obtained becomes a material having a softness, elasticity and a mechanical strength similar to soft rubber in a state of swelling in water. The tubular gel has a shear strength more than 5-100 times as much as the conventional membrane-like gel. When it contains polyacrylate, the gel provides a characteristic as mechanochemical actuator. Being a water absorbing polymer, the gel has a characteristic of absorbing and swelling from a dry condition and also of transmitting various ions in water and an aqueous solution between the inside and outside of the gel membrane, thereby achieving a higher mechanical strength.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、柔軟性・弾性・機械強さを有するゴム様のチ
ューブ状吸水性ポリマーに関し、また、この素材を用い
た人工血管に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rubber-like tubular water-absorbing polymer having flexibility, elasticity, and mechanical strength, and also relates to an artificial blood vessel using this material.

〔従来の技術・発明の課題〕[Conventional technology/problems with inventions]

在来の吸水性高分子ゲルは1粒状(イオン交換樹脂、住
人化学−のスミカゲル、三菱油化−のプラウエツトなど
)、板(膜)状、糸状のいずれかの形状をとり、かつ水
中での機械強度が弱く大荷重で破断しやすいものが多い
、水中でゴムのような高弾性と柔軟性・機械強度を有す
る板・膜状または糸状またはチューブ状の吸水性材料が
見当たらない。
Conventional water-absorbing polymer gels take the form of particles (ion exchange resins, Sumikagel from Sumikagaku, Mitsubishi Yuka, etc.), plate (membrane), or filamentous shapes, and they are resistant to water in water. Many of these materials have low mechanical strength and are easily broken under heavy loads, and there are no plate/membrane-like, thread-like, or tube-like water-absorbing materials that have high elasticity, flexibility, and mechanical strength like rubber in water.

たとえば、天然・合成ゴムは吸水性でなく、上記の粒状
ゲルは板や糸のような均質な固体の形態に成形できず、
またスミカゲルやプラウエツトの場合粒自体が水中でも
ろい、玉子ゴム化成■のアクアケルはゴム様の板である
が吸水に時間を要しゴムとしてややかたすぎる。高分子
電解質ゲル(メカ7″ケミカル・ゲル)の代表例である
ポリアクリル酸を主成分とするポリアクリル酸とポリビ
ニルアルコール系の11*(またはフィラメント)は水
中での機械強さ(最大張力)が従来は100gf前後(
水中での応力=10kgf/ad)で膜の水中厚み0.
1mm前後を考慮すれば実用上強度があるとはい犬ない
For example, natural and synthetic rubbers are not water-absorbing, and the granular gels mentioned above cannot be formed into homogeneous solid forms such as plates or threads.
In addition, in the case of Sumikagel and Purawetsu, the grains themselves are brittle in water, while Tamago Rubber Kasei ■'s Aquakel is a rubber-like plate, but it takes time to absorb water and is a little too hard to be considered rubber. Polyacrylic acid and polyvinyl alcohol based 11* (or filament), which is a typical example of polymer electrolyte gel (mecha 7" chemical gel), has mechanical strength (maximum tension) in water. Conventionally, it was around 100 gf (
Underwater stress = 10kgf/ad), the underwater thickness of the membrane is 0.
Considering the thickness of around 1mm, there is no doubt that it is strong enough for practical use.

吸水性ポリマーは、従来単に吸水効果のみ利用されてき
たが、吸水の際のゲル膨潤圧利用、塩・酸・アルカリ水
溶液の選択吸収の際のゲル膨潤・収縮による機械的仕事
利用、さらには2人体内での長期間埋め込み(人工臓器
の素材としての利用)などに応用発展される時、その機
械強度の点で不充分でありさらに強く安定した材料の開
発が必要であった。
Water-absorbing polymers have conventionally been used only for their water-absorbing effect, but they can also be used to utilize gel swelling pressure when absorbing water, to utilize mechanical work through gel swelling and contraction when selectively absorbing salt, acid, and alkaline aqueous solutions. When applied to applications such as long-term implantation in the human body (used as a material for artificial organs), its mechanical strength was insufficient, and it was necessary to develop a stronger and more stable material.

一方2人工臓器、特に人工血管においては、従来。On the other hand, 2 artificial organs, especially artificial blood vessels, are conventional.

ナイロン、テフロン、ダクロンなどのプラスチック樹脂
が主として使用されているが、これらを含めて人工の材
料の今まで確認された全てに血栓が生じる欠点がある。
Plastic resins such as nylon, Teflon, and Dacron are mainly used, but all of the man-made materials identified so far, including these, have the drawback of forming blood clots.

ダクロン製の平織り・メリヤス編みの人工血管と延伸ポ
リ四フッ化エチレン人工血管が現在、大中口径動脈、大
静脈用に臨床使用されているが、将来は、抗血栓材料を
開発して小口径動脈や中小静脈用の人工血管の開発が望
まれている。
Dacron plain weave/stockinette artificial blood vessels and stretched polytetrafluoroethylene artificial blood vessels are currently in clinical use for large and medium caliber arteries and vena cava, but in the future, antithrombotic materials will be developed and small caliber artificial blood vessels will be used. The development of artificial blood vessels for arteries and small and medium veins is desired.

抗血栓材料の開発は9人工心臓ポンプの素材、心臓手術
用カテーテル、点滴用カニユーレなど多くの人工臓器や
医用機器に求められている。
The development of antithrombotic materials is required for many artificial organs and medical devices, including materials for artificial heart pumps, cardiac surgery catheters, and intravenous cannulae.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、素材の開発とその一応用に関する。すなわち
、水または水溶液中で適度の弾性と機械強度を安定して
維持する吸水性高分子ゲルの管(中空の円管、その断面
の可変の場合を含む)の合成と加工法に関する。また、
この素材は抗血栓性を有するので、この円管(チューブ
)の人工血管への応用に関する。
The present invention relates to the development of materials and one application thereof. That is, it relates to a synthesis and processing method for water-absorbing polymer gel tubes (including hollow circular tubes with variable cross-sections) that stably maintain appropriate elasticity and mechanical strength in water or aqueous solutions. Also,
Since this material has antithrombotic properties, the application of this circular tube to artificial blood vessels is concerned.

ポリビニルアルコールとポリアクリル酸の混合濃縮液(
前者の重量比が後者より大とし、前者のみの場合を含む
)を適当な芯を用いてディッピング成形し、100℃か
ら110℃前後の空気温度の下で2時間以上熱処理(エ
ステル化)し7た管状ゲルは水中でのi71!状態にお
いて、軟らかいゴムに類似の柔軟性・弾性・機械強度を
有する素材となる。従来の吸水性ヒドロゲルや吸水性ゲ
ルは、イオン交換樹脂などの粒状のゲルを除いて、水中
での機械強度が劣っており破断しやすかったが2本チュ
ーブ状ゲルは従来の膜状ケルの5倍ないしは10倍以上
の破断強さを有する。ポリアクリル酸を含む場合は、メ
カノケミカル・アクチュエータとしての特性(酸・アル
カリ・塩を選択吸収して膨潤・収縮し1機械仕事を行う
こと〉も有する。吸水性ポリマーであるから、乾燥状態
から吸水し1171mする特性があり、ゲル膜内外を通
じて水や水溶液中の各種イオンを透過する特性もある1
機械強度の点での向上は、工業用・医用への本材料の応
用の実現性を高める。
Mixed concentrate of polyvinyl alcohol and polyacrylic acid (
The weight ratio of the former is larger than the latter, and the former is included) is dip-molded using an appropriate core, and heat-treated (esterified) at an air temperature of about 100°C to 110°C for 2 hours or more. The tubular gel is i71 in water! In this state, it becomes a material with flexibility, elasticity, and mechanical strength similar to soft rubber. Conventional water-absorbing hydrogels and water-absorbing gels, with the exception of granular gels such as ion exchange resins, have poor mechanical strength in water and are prone to breakage. It has a breaking strength of 10 times or more. If it contains polyacrylic acid, it also has properties as a mechanochemical actuator (selectively absorbs acids, alkalis, and salts and swells and contracts to perform mechanical work).Since it is a water-absorbing polymer, it can be used in a dry state. It has the property of absorbing water up to 1171m, and also has the property of permeating various ions in water and aqueous solutions through the inside and outside of the gel membrane1.
The improvement in mechanical strength increases the feasibility of applying this material to industrial and medical uses.

本材料は、ポリビニルアルコール、ポリアクリル酸とも
食品添加物であって人体に無害であり、上述のように水
やイオンの吸収性・透過性があり、ゴムに近い機械伸度
があり、さらに抗血栓性が動物実験により確認できたの
で、その医用への応用の一つとして、抗血栓効果のある
人工血管となりうる0本発明は本チューブの人工血管へ
の応用である。
Both polyvinyl alcohol and polyacrylic acid are food additives and are harmless to the human body.As mentioned above, this material has water and ion absorption and permeability, mechanical elongation close to that of rubber, and resistance. Since the thrombogenicity was confirmed through animal experiments, one of its medical applications is that it can be used as an artificial blood vessel with an antithrombotic effect.The present invention is an application of this tube to an artificial blood vessel.

〔実施例〕〔Example〕

(1)材料の合成・成形 ポリアクリル酸(市販品)を重量濃度5%の希釈水溶液
とする。また、ポリビニルアルコール(市販品、粉末)
を蒸留水に溶かし、5%水溶液とする。
(1) Synthesis and molding of materials Polyacrylic acid (commercially available) was prepared as a diluted aqueous solution with a weight concentration of 5%. Also, polyvinyl alcohol (commercial product, powder)
Dissolve in distilled water to make a 5% aqueous solution.

この場合、上澄み液を士数回捨てて純度をあげ。In this case, discard the supernatant liquid several times to improve purity.

100度C近い沸騰を透明になるまで繰り返せばポリビ
ニルアルコールの均質な水溶液ができる。二種の高分子
溶液をボリビ;、ルアルコールの重量比が大きい比率で
(PAA: PVA重量%−1:5以上]:10ないし
はi:20)、攪拌器で長時間(5−15時間)点滴し
ながら混合する。混合液(5%濃度が実施上最適であっ
た)を乾燥器内で35℃から40℃で長時間濃縮させ(
約3−4週間)(濃縮器を用いれば時間短縮可能)、約
70%濃度とする。
A homogeneous aqueous solution of polyvinyl alcohol can be obtained by repeating boiling at nearly 100 degrees Celsius until it becomes transparent. The two types of polymer solutions were stirred in a stirrer for a long time (5-15 hours) at a high weight ratio of alcohol (PAA: PVA weight % - 1:5 or more):10 or i:20. Mix while dripping. The mixed solution (5% concentration was optimal in practice) was concentrated in a dryer at 35 to 40 °C for a long time (
(about 3-4 weeks) (time can be shortened by using a concentrator), to a concentration of about 70%.

この濃縮過程において減圧器中で減圧し濃縮液中の気泡
など液中の空気を除去する。また、液表面にできた膜は
除去する。また、ポリビニルアルコールのみ(5%濃度
)の濃縮液(約70%濃度)も有効である。実施経験上
、70%より低濃度(50%など)ではディッピングの
回数が多くなり材料強度が低下し、より高濃度ではディ
ッピングが不可能になる。
In this concentration process, the pressure is reduced in a pressure reducer to remove air in the concentrated liquid, such as air bubbles. Also, remove the film formed on the liquid surface. A concentrated solution (approximately 70% concentration) of only polyvinyl alcohol (5% concentration) is also effective. From practical experience, when the concentration is lower than 70% (such as 50%), the number of dipping increases and the material strength decreases, and when the concentration is higher, dipping becomes impossible.

この濃縮液を細長いガラス管(試験管)に移し。Transfer this concentrated solution to a long thin glass tube (test tube).

外径1−10mm、長さ50 100mmのテフロン・
チューブ(またはテフロン棒)をほぼ鉛直に濃縮液に差
し込み(ディッピングし)、室内で吊るして表面乾燥さ
せ、チューブ(芯)を上下反転させて再びディッピング
する。これを1回として2−5回所定の厚みが得られる
まで繰り返す(2−3回が適当である)、なお、ガラス
棒のような表面が滑らかな物は芯として不適当であり、
ディッピング回数が多いと表面に凹凸ができることがあ
る。
Teflon with outer diameter 1-10mm and length 50-100mm.
Insert the tube (or Teflon rod) almost vertically into the concentrate (dip), hang it indoors to dry the surface, turn the tube (core) upside down, and dip again. Repeat this 2-5 times until the desired thickness is obtained (2-3 times is appropriate). Note that objects with smooth surfaces such as glass rods are not suitable as cores.
If the number of times of dipping is large, unevenness may be formed on the surface.

ディッピング終了後、芯(テフロン・チューブなど)付
きのまま、乾燥機内に吊るし、80℃で30分から1時
間、つぎに100−110℃で2時間から20時間位ま
でエステル化(熱処理)する、このエステル化によって
、ゲル化する0通常は110℃で3時間でゲル化するが
、後述する溶出試験合格には長時間の熱処理が必要とな
る。
After dipping, the core (Teflon tube, etc.) is hung in a dryer and esterified (heat treated) at 80°C for 30 minutes to 1 hour, then at 100-110°C for 2 to 20 hours. Gelation occurs due to esterification. Usually gelation occurs at 110° C. in 3 hours, but a long heat treatment is required to pass the elution test described below.

(2) 引張試験 熱処理終了したサンプルを水に漬けると9表面のゲルが
膨潤して芯がとれ、中空のチューブ状のゲルができる。
(2) Tensile test When the heat-treated sample is soaked in water, the gel on the surface swells and the core is removed, forming a hollow tube-shaped gel.

一端を固定し他端に荷重を吊るし、水中での荷重と伸び
の関係をチューブが破断するまで行う、実験の結果、膨
潤時のサンプル断面積2.6平方m mから4.5平方
mmの、ポリアクリル酸(FAA):ポリビニルアルコ
ール(PVA)=1:10から1:20.およびPVA
のみのサンプルについては、1kgf以上の荷重にたえ
られ破断しなかった。縦弾性係数(ヤング率)は、低荷
重域で約26kgf/ci=26ON/cn!、高荷重
域で約8 kg f/cd=8 ON/cdであった。
As a result of an experiment, one end was fixed and a load was suspended from the other end, and the relationship between the load and elongation in water was investigated until the tube broke. , polyacrylic acid (FAA): polyvinyl alcohol (PVA) = 1:10 to 1:20. and PVA
As for the sample, it could withstand a load of 1 kgf or more without breaking. The longitudinal elastic modulus (Young's modulus) is approximately 26 kgf/ci = 26 ON/cn in the low load range! , approximately 8 kg f/cd = 8 ON/cd in the high load range.

この値は、天然ゴムのヤング率100N/(nと同じオ
ーダーであり、ゴムと類似の柔軟性と機械強度を有する
と判断できる。
This value is on the same order as the Young's modulus of natural rubber, 100 N/(n, and can be judged to have flexibility and mechanical strength similar to rubber.

本チューブの水中でのクリープ試験によれば。According to the underwater creep test of this tube.

PAA:PVA=1 : 10,80℃1時間、100
℃3時間のエステル化、最大荷重1kgf以上のサンプ
ルの荷重500gfでのクリープは10%程度あり、約
30分後に一定値に収束しており、材料として、定負荷
の下で安定している。
PAA:PVA=1: 10, 80℃ 1 hour, 100
When subjected to esterification for 3 hours at °C and a sample with a maximum load of 1 kgf or more, the creep at a load of 500 gf was about 10%, and it converged to a constant value after about 30 minutes, indicating that the material is stable under a constant load.

(3) 抗血栓性試験 本チューブの一本(PAA : PVA= 1 : 1
0゜内径2 m m )を9人工血管として、大の右側
頚静脈内に挿入し縫合糸で固定しく浜松医大の原田教授
と静岡大学電子科学研究科の木村元彦助手の協力を得て
)、−週間後に生存大から抽出したところ、縫合糸周辺
に一部血栓があったが、チューブには血栓はみとめられ
なかった。縫合糸による血流の乱れがあったと思われる
部分以外は血栓は生じてなく2本材料は抗血栓篩がある
と判断できる。(今後、さらに比較実験する必要がある
が、上記医師も有望と認めている)。
(3) Antithrombotic test tube (PAA:PVA=1:1)
With the cooperation of Professor Harada of Hamamatsu Medical University and Assistant Professor Motohiko Kimura of the Graduate School of Electronic Science, Shizuoka University), 9 artificial blood vessels (0° internal diameter 2 mm) were inserted into the right jugular vein of the patient and fixed with sutures. When the surviving specimen was extracted after - weeks, there was some thrombus around the suture, but no thrombus was found in the tube. No thrombus was formed except for the area where the blood flow was thought to have been disturbed by the suture, and it can be concluded that the two materials have an anti-thrombotic sieve. (Further comparative experiments are needed in the future, but the above doctor agrees that it is promising.)

(4) 溶出試験 厚生省基準による人体内埋め込み用材料の溶出試験(サ
ンプル0.1gを100ccの蒸留水中に浸し50℃ま
たは70℃で24時間放置後の溶出液10cc中の過マ
ンガン酸カリ消′gl量が1.0cc以下を合格基準と
するもの)を日本シセーウソド社の協力により行った結
果、110℃3時間エステル化の本チューブの場合、過
マンガン酸カリ消費量が11 14ccであったが、1
10℃15時間以上の本チューブの場合の過マンガン酸
カリ消費量は。
(4) Elution test Elution test for materials to be implanted in the human body according to the standards of the Ministry of Health and Welfare (0.1 g of sample was immersed in 100 cc of distilled water, left at 50°C or 70°C for 24 hours, and potassium permanganate in 10 cc of the eluate was quenched. As a result of conducting a test with the cooperation of Nippon Shisei Usodo Co., Ltd., the consumption of potassium permanganate was 11 to 14 cc in the case of this tube, which was esterified for 3 hours at 110°C. ,1
What is the amount of potassium permanganate consumed when using this tube at 10°C for 15 hours or more?

0.1−0.2ccとなった。長時間100ないし11
0℃での熱処理と、その途中で50−70℃での水洗を
数回挟む(各回、数時間その温度の水に漬け、水を取り
替える)ことによって、溶出量を基準以下に改善できる
。このような長時間熱処理によって本チューブの水中で
の機械強度はやや低下する傾があり、実験例では破断荷
重1100kgf以上(エステル化3時間)が900g
f (同15時間)となったが、この程度なら機械強度
は実用上充分である。
It became 0.1-0.2cc. long time 100 to 11
By heat treatment at 0°C and washing with water at 50-70°C several times in between (soaking in water at that temperature for several hours each time and replacing the water), the amount of elution can be improved to below the standard. Due to such long-term heat treatment, the mechanical strength of this tube in water tends to decrease slightly, and in the experimental example, the breaking load of 1100 kgf or more (esterification for 3 hours) was 900 g.
f (15 hours), but this level of mechanical strength is sufficient for practical use.

〔発明の特長〕[Features of the invention]

本チューブは、その濃縮液の粘着性と水分除去の遅いこ
となどから押出成形しにくいのが多量生産に向かず難点
である。一方、ディッピング成形によって、芯の長軸方
向に沿って高分子鎖が配向し、これが機械強度の向上に
寄与すると考えられる。デインピング成形は多量生産に
向かないが、アイスボンボンのゴム袋の製造例のように
多数の芯を同時に液浸する方法により生産効率を高めら
れる。
This tube is difficult to extrude because of the stickiness of the concentrated liquid and the slow removal of water, making it unsuitable for mass production. On the other hand, by dipping molding, the polymer chains are oriented along the long axis direction of the core, which is thought to contribute to improving mechanical strength. Although deimping molding is not suitable for mass production, production efficiency can be improved by simultaneously immersing multiple cores in liquid, as in the production of rubber bags for ice bonbons.

吸水性ポリマーのゲル化は従来上として冷凍法によって
行われているが2本実施例によれば、冷凍法は数日を要
し、かつゲル化が不十分であった。
Gelation of a water-absorbing polymer has conventionally been carried out by a freezing method, but according to the two examples, the freezing method required several days and gelation was insufficient.

濃縮液をディッピング成形しエステル化法にょるゲル化
が本発明の特徴である。
A feature of the present invention is dipping molding of a concentrated liquid and gelation using an esterification method.

また9食品添加物である2人体に無害な、かつ水および
水中のイオンを吸収・透過する吸水性高分子を人工血管
に応用する点に特徴がある。在来の人工血管のように糸
を編んで多孔性を持たせる必要がなく、均質な膜(チュ
ーブ)壁を通じて水・イオンの出入りが可能になる。し
かも、抗血栓性と適度の機械強度が期待でき、従来不可
能であった中小口径の静脈にも応用できる人工血管とな
る可能性のある発明である。
Another feature of this invention is that it uses a water-absorbing polymer, which is a food additive, and which is harmless to the human body and absorbs and permeates water and ions in water, to be applied to artificial blood vessels. Unlike conventional artificial blood vessels, there is no need to create porosity by weaving threads, and water and ions can enter and exit through the homogeneous membrane (tube) wall. Moreover, it is expected to have antithrombotic properties and appropriate mechanical strength, and this invention has the potential to become an artificial blood vessel that can be applied to veins of medium and small diameters, which was previously impossible.

4 図面の説明 本発明の図および図説明は省略する。4 Explanation of drawings Figures and illustrations of the present invention will be omitted.

手続補正書(方式) %式% 1、 事件の表示  平成2年 特許H第146935
号2、 発明の名称  ポリビニルアルコールとポリア
クリル酸管人工血管3、 補正をする者 事件との関係 特許出願人 5゜ 補正の対象と内容 1、適正な願書 ハ、特許出願人の住所を正確に記載したもの。
Procedural amendment (method) % formula % 1, Indication of case 1990 Patent H No. 146935
No. 2. Title of the invention Polyvinyl alcohol and polyacrylic acid tube artificial blood vessel 3. Relationship with the case of the person making the amendment Patent applicant 5. Subject and content of the amendment 1. Proper application form, Accurate address of the patent applicant What is written.

二、特許出願人の氏名を記載したもの。2. The name of the patent applicant.

ボ、特許出願人の記名のあとに朱肉を用いて鮮明に捺印
したもの41、明細書の下記事項の不備を補正する旨を
記載した書面。
(b) A document clearly stamped using vermilion ink after the name of the patent applicant41, and a document stating that the following deficiencies in the specification will be corrected.

4、図面の簡単な説明の欄 (注)削除すること。4. Column for brief explanation of drawings (Note) Please delete.

ゲル化が本発明の特徴である。Gelation is a feature of the invention.

また1食品添加物である1人体に無害な、がっ水および
水中のイオンを吸収・透過する吸水性高分子を人工血管
に応用する点に特徴がある。在来の人工血管のように糸
を編んで多孔性を持たせる必要がなく 、 均質f:M
 (チューブ)壁を通じて水・イオンの出入りが可能に
なる、しかも、抗血栓性と適度の機械強度が期待でき、
従来不可能であった中小口径の静脈にも応用できる人工
血管となる可能性のある発明である。
Another feature is the application of water-absorbing polymers, which are food additives and are harmless to the human body, and which absorb and permeate water and ions in water, to artificial blood vessels. Unlike conventional artificial blood vessels, there is no need to knit threads to create porosity, and the result is a homogeneous f:M
(Tube) allows water and ions to enter and exit through the wall, and is expected to have antithrombotic properties and moderate mechanical strength.
This invention has the potential to become an artificial blood vessel that can be applied to small and medium-sized veins, which was previously impossible.

Claims (1)

【特許請求の範囲】 1 ポリビニルアルコール水溶液とポリアクリル酸水溶
液(またはポリメタアクリル酸水溶液)を前者の方が高
い重量比で混合した濃縮液、またはポリビニルアルコー
ルのみの濃縮液を、芯を用いてディッピング成形し、1
00度C前後で2時間以上熱処理(エステル化)してゲ
ル化した、水中での適度の柔軟性と機械強度のあるチュ
ーブ状吸水性高分子 2 上記チューブを動脈または静脈血管の一部の代用と
して用いる抗血栓性を特徴とし水透過性を有する人工血
[Claims] 1. A concentrated solution obtained by mixing a polyvinyl alcohol aqueous solution and a polyacrylic acid aqueous solution (or a polymethacrylic acid aqueous solution) at a higher weight ratio, or a concentrated solution of only polyvinyl alcohol, using a wick. Dip and mold, 1
Tubular water-absorbing polymer with moderate flexibility and mechanical strength in water, gelled by heat treatment (esterification) at around 00 degrees Celsius for 2 hours or more 2. The above tube can be used as a substitute for a part of an artery or a venous blood vessel. Artificial blood vessels with water permeability and antithrombotic properties used as
JP2146935A 1990-06-04 1990-06-04 Artificial blood vessel of polyvinyl alcohol and polyacrylic acid Pending JPH0438960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2146935A JPH0438960A (en) 1990-06-04 1990-06-04 Artificial blood vessel of polyvinyl alcohol and polyacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2146935A JPH0438960A (en) 1990-06-04 1990-06-04 Artificial blood vessel of polyvinyl alcohol and polyacrylic acid

Publications (1)

Publication Number Publication Date
JPH0438960A true JPH0438960A (en) 1992-02-10

Family

ID=15418899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2146935A Pending JPH0438960A (en) 1990-06-04 1990-06-04 Artificial blood vessel of polyvinyl alcohol and polyacrylic acid

Country Status (1)

Country Link
JP (1) JPH0438960A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266615A (en) * 1995-03-31 1996-10-15 Agency Of Ind Science & Technol Cell nonadhesive/nonproliferation medical supplies
JP2010018678A (en) * 2008-07-09 2010-01-28 Olympus Corp Thermoreversible crosslinkable resin composition and soft tubular structural body using the composition
JP2010525154A (en) * 2007-04-24 2010-07-22 ザ・ジェネラル・ホスピタル・コーポレイション PVA-PAA hydrogel
US8211125B2 (en) 2008-08-15 2012-07-03 Ethicon Endo-Surgery, Inc. Sterile appliance delivery device for endoscopic procedures
US8241204B2 (en) 2008-08-29 2012-08-14 Ethicon Endo-Surgery, Inc. Articulating end cap
US8252057B2 (en) 2009-01-30 2012-08-28 Ethicon Endo-Surgery, Inc. Surgical access device
US8262655B2 (en) 2007-11-21 2012-09-11 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8262680B2 (en) 2008-03-10 2012-09-11 Ethicon Endo-Surgery, Inc. Anastomotic device
US8262563B2 (en) 2008-07-14 2012-09-11 Ethicon Endo-Surgery, Inc. Endoscopic translumenal articulatable steerable overtube
US8337394B2 (en) 2008-10-01 2012-12-25 Ethicon Endo-Surgery, Inc. Overtube with expandable tip
US8353487B2 (en) 2009-12-17 2013-01-15 Ethicon Endo-Surgery, Inc. User interface support devices for endoscopic surgical instruments
US8361112B2 (en) 2008-06-27 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical suture arrangement
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US8409200B2 (en) 2008-09-03 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8425505B2 (en) 2007-02-15 2013-04-23 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US9788885B2 (en) 2012-08-15 2017-10-17 Ethicon Endo-Surgery, Inc. Electrosurgical system energy source
US9788888B2 (en) 2012-07-03 2017-10-17 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US9883910B2 (en) 2011-03-17 2018-02-06 Eticon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
US10092291B2 (en) 2011-01-25 2018-10-09 Ethicon Endo-Surgery, Inc. Surgical instrument with selectively rigidizable features
US10098691B2 (en) 2009-12-18 2018-10-16 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
US10105141B2 (en) 2008-07-14 2018-10-23 Ethicon Endo-Surgery, Inc. Tissue apposition clip application methods
US10206709B2 (en) 2012-05-14 2019-02-19 Ethicon Llc Apparatus for introducing an object into a patient
US10258406B2 (en) 2011-02-28 2019-04-16 Ethicon Llc Electrical ablation devices and methods
US10314603B2 (en) 2008-11-25 2019-06-11 Ethicon Llc Rotational coupling device for surgical instrument with flexible actuators
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US10492880B2 (en) 2012-07-30 2019-12-03 Ethicon Llc Needle probe guide
US10779882B2 (en) 2009-10-28 2020-09-22 Ethicon Endo-Surgery, Inc. Electrical ablation devices

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266615A (en) * 1995-03-31 1996-10-15 Agency Of Ind Science & Technol Cell nonadhesive/nonproliferation medical supplies
US8425505B2 (en) 2007-02-15 2013-04-23 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US10478248B2 (en) 2007-02-15 2019-11-19 Ethicon Llc Electroporation ablation apparatus, system, and method
JP2010525154A (en) * 2007-04-24 2010-07-22 ザ・ジェネラル・ホスピタル・コーポレイション PVA-PAA hydrogel
US8262655B2 (en) 2007-11-21 2012-09-11 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8262680B2 (en) 2008-03-10 2012-09-11 Ethicon Endo-Surgery, Inc. Anastomotic device
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US8361112B2 (en) 2008-06-27 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical suture arrangement
JP2010018678A (en) * 2008-07-09 2010-01-28 Olympus Corp Thermoreversible crosslinkable resin composition and soft tubular structural body using the composition
US11399834B2 (en) 2008-07-14 2022-08-02 Cilag Gmbh International Tissue apposition clip application methods
US10105141B2 (en) 2008-07-14 2018-10-23 Ethicon Endo-Surgery, Inc. Tissue apposition clip application methods
US8262563B2 (en) 2008-07-14 2012-09-11 Ethicon Endo-Surgery, Inc. Endoscopic translumenal articulatable steerable overtube
US8211125B2 (en) 2008-08-15 2012-07-03 Ethicon Endo-Surgery, Inc. Sterile appliance delivery device for endoscopic procedures
US8241204B2 (en) 2008-08-29 2012-08-14 Ethicon Endo-Surgery, Inc. Articulating end cap
US8409200B2 (en) 2008-09-03 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8337394B2 (en) 2008-10-01 2012-12-25 Ethicon Endo-Surgery, Inc. Overtube with expandable tip
US10314603B2 (en) 2008-11-25 2019-06-11 Ethicon Llc Rotational coupling device for surgical instrument with flexible actuators
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US10004558B2 (en) 2009-01-12 2018-06-26 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8252057B2 (en) 2009-01-30 2012-08-28 Ethicon Endo-Surgery, Inc. Surgical access device
US10779882B2 (en) 2009-10-28 2020-09-22 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8353487B2 (en) 2009-12-17 2013-01-15 Ethicon Endo-Surgery, Inc. User interface support devices for endoscopic surgical instruments
US10098691B2 (en) 2009-12-18 2018-10-16 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US10092291B2 (en) 2011-01-25 2018-10-09 Ethicon Endo-Surgery, Inc. Surgical instrument with selectively rigidizable features
US10258406B2 (en) 2011-02-28 2019-04-16 Ethicon Llc Electrical ablation devices and methods
US9883910B2 (en) 2011-03-17 2018-02-06 Eticon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
US10206709B2 (en) 2012-05-14 2019-02-19 Ethicon Llc Apparatus for introducing an object into a patient
US11284918B2 (en) 2012-05-14 2022-03-29 Cilag GmbH Inlernational Apparatus for introducing a steerable camera assembly into a patient
US9788888B2 (en) 2012-07-03 2017-10-17 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US10492880B2 (en) 2012-07-30 2019-12-03 Ethicon Llc Needle probe guide
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US10342598B2 (en) 2012-08-15 2019-07-09 Ethicon Llc Electrosurgical system for delivering a biphasic waveform
US9788885B2 (en) 2012-08-15 2017-10-17 Ethicon Endo-Surgery, Inc. Electrosurgical system energy source
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
US11484191B2 (en) 2013-02-27 2022-11-01 Cilag Gmbh International System for performing a minimally invasive surgical procedure

Similar Documents

Publication Publication Date Title
JPH0438960A (en) Artificial blood vessel of polyvinyl alcohol and polyacrylic acid
US9186436B2 (en) Poly(vinyl alcohol)-bacterial cellulose nanocomposite
US9096744B2 (en) Anisotropic hydrogels
JP3506718B2 (en) Poly (vinyl alcohol) cryogel
US4808353A (en) Process for preparing an artificial biological membrane
US4822361A (en) Tubular prosthesis having a composite structure
US20190039269A1 (en) Method for preparing double-network hydrogel tube with complex structure
CN104610494B (en) Preparation method of artificial tube
JPH0798057B2 (en) Biocompatible elastomeric article and method of making the same
EP4079838A1 (en) Cell culture scaffold and preparation method therefor
JPS61234864A (en) Molded article and its production
CN112043876B (en) Reproducible and repairable vascular stent covering film and preparation method thereof
CN112043875B (en) Intravascular stent covering membrane for in-situ intimal regeneration and preparation method thereof
JP2507885B2 (en) Silk fibroin hydrogel
KR20120087049A (en) Hydrophilic group attached artificial blood vessel
WO2012029887A1 (en) Cylindrical structure and production method thereof
CN111068113B (en) Nanofiber coating artificial blood vessel, and preparation method and preparation device of coating
BRPI0618570A2 (en) process for producing a hollow profile based on a gelatin-containing cross-linked material as well as hollow profile implants
CN109880140B (en) Alkali-shrinkable bacteria nano cellulose tube and preparation method and application thereof
KR102168815B1 (en) Tube type hydro gel and preparation method thereof
JPS5861744A (en) Implant material for repairing living body
JP2018143767A (en) Collagen-titanium complex
JPS58215424A (en) Hydrogel composite
JPH0732798B2 (en) Composite structure tubular organ prosthesis
JPH06285150A (en) Artificial blood vessel