JPH0438816B2 - - Google Patents

Info

Publication number
JPH0438816B2
JPH0438816B2 JP12913984A JP12913984A JPH0438816B2 JP H0438816 B2 JPH0438816 B2 JP H0438816B2 JP 12913984 A JP12913984 A JP 12913984A JP 12913984 A JP12913984 A JP 12913984A JP H0438816 B2 JPH0438816 B2 JP H0438816B2
Authority
JP
Japan
Prior art keywords
lance
oxygen gas
pulverized coal
carbon
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12913984A
Other languages
Japanese (ja)
Other versions
JPS619512A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59129139A priority Critical patent/JPS619512A/en
Publication of JPS619512A publication Critical patent/JPS619512A/en
Publication of JPH0438816B2 publication Critical patent/JPH0438816B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/32Blowing from above
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 溶鉄の転炉製鋼法における吹錬能力の向上に関
連してこの明細書に述べる技術内容は、熱源を外
部から供給するに当つて、効率的な熱の供給を行
うことについての開発成果を提案するところにあ
る。
[Detailed Description of the Invention] [Technical Field] The technical content described in this specification in connection with improving the blowing capacity in the converter steel manufacturing process for molten iron is to provide efficient heat when the heat source is supplied from the outside. The aim is to propose development results related to the supply of

〔背景技術〕 通常の転炉吹錬では、炉体からの熱損失を補償
して溶鉄の温度を、1600℃以上といつた高温まで
上昇させる熱源は、溶鉄中のCやSiなどの酸化反
応熱を利用している。
[Background technology] In normal converter blowing, the heat source that compensates for heat loss from the furnace body and raises the temperature of molten iron to a high temperature of 1,600°C or higher is the oxidation reaction of C and Si in the molten iron. It uses heat.

通常の吹錬ではこれらの化学的な反応熱で十分
であるが大量にスクラツプを添加したり、またマ
ンガン鉱石や鉄鉱石を添加して炉内での還元を図
る場合には、熱源が不足する。
The heat of these chemical reactions is sufficient for normal blowing, but when adding a large amount of scrap, or adding manganese ore or iron ore for reduction in the furnace, the heat source becomes insufficient. .

さらに、最近工業化されつつある溶銑予備処理
工程を通過した溶銑を用いる吹錬の場合には、溶
銑予備処理によつて溶銑の温度が低下しているこ
とや、Siなどの本来は転炉での熱源となる成分が
予備処理ですでに除去されていることなどのた
め、転炉吹錬時の熱源が不足する傾向にある。
Furthermore, in the case of blowing using hot metal that has passed through the hot metal pretreatment process, which has recently been industrialized, the temperature of the hot metal is lowered by the hot metal pretreatment, and Si and other substances are Because the components that serve as the heat source have already been removed in the preliminary treatment, the heat source during converter blowing tends to be insufficient.

〔従来技術と問題点〕[Conventional technology and problems]

このような転炉内での熱源不足を補う方法とし
て、Si源あるいはC源を炉内に添加して、反応熱
を増大する方法がある。
As a method of compensating for the lack of heat source in the converter, there is a method of increasing the heat of reaction by adding a Si source or a C source into the furnace.

まずSi源としては、一般にFe−Si合金が用い
られるが比較的高価であるために、経済的な方法
ではない。一方C源としてコークスあるは石炭が
おもに用いられ、これらは比較的安価であるため
に、工業的に広く採用された。
First, as a Si source, an Fe-Si alloy is generally used, but it is relatively expensive, so this is not an economical method. On the other hand, coke or coal is mainly used as a C source, and since these are relatively inexpensive, they have been widely adopted industrially.

なかでも微粉炭を転炉の炉底の羽口を通じて鋼
浴中に吹込む方法は西独国にて実用化されてい
る。(例えば特開昭54−1220号公報参照)しかし、
この方法では、石炭あるいはコークス中に含有さ
れているいおう(通常0.5%程度)が、溶鉄中に
移行し、製品のいおう濃度が上昇して鋼材の品質
の低下をまねくといつた問題があつた。
Among these methods, a method in which pulverized coal is injected into a steel bath through the tuyere at the bottom of a converter has been put to practical use in West Germany. (For example, see JP-A-54-1220) However,
This method had the problem that the sulfur (usually about 0.5%) contained in the coal or coke migrated into the molten iron, increasing the sulfur concentration in the product and causing a decline in the quality of the steel. .

そのため、コークスや石炭を添加する場合に
は、転炉内でのスラグによる脱硫を向上するため
に副原料であるCaOを多量に使用するとか又は、
転炉出鋼後の取鍋にて脱硫処理をするとかの必要
を伴う不利があつた。
Therefore, when adding coke or coal, a large amount of CaO, which is an auxiliary raw material, is used to improve desulfurization by slag in the converter, or
There was a disadvantage in that it was necessary to desulfurize the ladle after tapping the steel in the converter.

〔発明の目的〕[Purpose of the invention]

溶鉄のいおう濃度の上昇を防止しつつ安価な石
炭やコークスを製鋼用転炉の熱源として用い、そ
の精錬能力を熱的に向上し、スクラツプなどの固
体材料の大量添加や、鉄鉱石やMn鉱石などの炉
内還元を有利に可能ならしめることが、この発明
の目的である。
While preventing the increase in sulfur concentration in molten iron, inexpensive coal and coke can be used as a heat source for steelmaking converters, and the refining capacity can be thermally improved. It is an object of the present invention to advantageously enable in-furnace reduction of .

〔発明の構成〕[Structure of the invention]

この発明は溶鉄の転炉製鋼に際して外部から熱
源を供給し、転炉の吹錬能力を向上する方法にお
いて、炉上から炭素含有物質の粉体又は液体と酸
素ガスを、ランスを通じて噴出し炉内の溶鉄浴面
上に火炎として吹き付けることを特徴とする製鋼
炉への熱源の供給方法及び、ランスから噴出させ
る酸素ガスの噴流と、炭素含有物質の噴流とが、
ランス出口の近傍で実質的に混合されるように、
酸素ガスと炭素含有物質を供給する製鋼炉への熱
源の供給方法である。
This invention is a method for improving the blowing capacity of a converter by supplying a heat source from the outside when manufacturing molten iron in a converter. A method for supplying a heat source to a steelmaking furnace characterized by spraying the heat source as a flame onto the surface of a molten iron bath, a jet of oxygen gas spouted from a lance, and a jet of carbon-containing material,
so that they are substantially mixed near the lance exit;
This is a method of supplying a heat source to a steelmaking furnace that supplies oxygen gas and carbon-containing substances.

ここに炭素含有物質は炭素やコークスなどの粉
体又は灯油などの液体を用いることができ、これ
らは酸素ガスを用いて溶鉄浴面上で燃焼させて高
温火炎を作り、その熱を溶鉄浴に伝えるものであ
る。
Here, the carbon-containing substance can be a powder such as carbon or coke, or a liquid such as kerosene, which is burned on the surface of the molten iron bath using oxygen gas to create a high-temperature flame, and the heat is transferred to the molten iron bath. It is something to convey.

第1図はこの発明の実施態様を例示し、図中1
は転炉、2はランス、3は溶鉄浴、そして4は火
炎、5は微粉炭搬送装置、6は微粉炭である。
FIG. 1 illustrates an embodiment of the invention, in which 1
2 is a converter, 2 is a lance, 3 is a molten iron bath, 4 is a flame, 5 is a pulverized coal conveying device, and 6 is pulverized coal.

通常の上底吹き転炉1における加炭操業とし
て、微粉体搬送装置5からN2ガスを搬送ガスと
して微粉炭6をとくにランス2に導き、もちろん
ランス6にはこれと同時に酸素ガスを導く。
In a normal carburization operation in the top-bottom blowing converter 1, the pulverized coal 6 is introduced into the lance 2 from the pulverized powder conveying device 5 using N2 gas as a carrier gas, and of course oxygen gas is introduced into the lance 6 at the same time.

かくして、ランス先端から微粉炭と酸素ガスを
高速で噴出させ、噴出流を作るがこれらの両噴出
流が、ランス先端から比較的近い位置で相互に衝
突、混合するランス構造とし、溶鉄浴3の浴面上
で、高温の火炎4を作るのである。
In this way, the pulverized coal and oxygen gas are ejected from the tip of the lance at high speed to create a jet stream, but the lance structure is such that both of these jet streams collide and mix with each other at a position relatively close to the lance tip. A high-temperature flame 4 is created on the bath surface.

このようにして形成された火炎4を溶鉄浴面に
衝突させて、火炎4の熱を溶鉄に伝えるわけであ
る。
The flame 4 thus formed collides with the surface of the molten iron bath, and the heat of the flame 4 is transferred to the molten iron.

上記ランス構造の一例を先端部断面と端面で第
2図a,bに示すが、ランス中心部からN2ガス
で搬送された微粉炭が噴出され、その外周部の円
環部から酸素ガスがリング状に噴出されるように
する。図中7は微粉炭6の流路、また8は酸素ガ
スの供給用流路である。酸素ガスのノズルセンタ
に対する噴出角度θは図のような中心向きの20〜
70度程度とし、ランスから噴出された酸素ガスは
ランス出口の近くで微粉炭噴流と混合される構造
である。
An example of the above-mentioned lance structure is shown in Fig. 2a and b in the cross section of the tip and the end face.Pulverized coal transported by N2 gas is ejected from the center of the lance, and oxygen gas is ejected from the annular part on the outer periphery. Make it squirt out in a ring shape. In the figure, 7 is a flow path for the pulverized coal 6, and 8 is a flow path for supplying oxygen gas. The ejection angle θ of oxygen gas with respect to the nozzle center is 20~20 towards the center as shown in the figure.
The temperature is approximately 70 degrees, and the oxygen gas ejected from the lance is mixed with the pulverized coal jet near the lance outlet.

以上の構成において、使用する酸素ガス流量に
つき、必ずしも微粉炭を完全燃焼させるに必要な
量と、とくに一致させる必要はない。
In the above configuration, the flow rate of oxygen gas used does not necessarily have to match the amount required to completely burn the pulverized coal.

ここに酸素量が不足の場合には、完全なCO2
H2Oになるまでの完全燃焼は生じないにしても、
微粉炭がCOに至る燃焼によつて溶銑浴3の加熱
に供され、残りのエネルギーは、転炉の未燃焼排
ガス回収装置で回収される。また1部の微粉炭は
未燃焼のまま、溶銑浴に衝突し、浴中に吸収され
る。この炭素は炉底からの酸素ガスによつてCO
ガスとなつて脱炭される。また、酸素量が過剰の
場合には、完全なCO2、H2Oまでの燃焼が生じ
て、さらに余剰のO2ガスは溶鉄に達し、溶鉄の
脱炭反応などの通常の吹錬反応に利用され得るの
は明らかである。
If there is insufficient oxygen here, complete CO 2 ,
Even if complete combustion to H 2 O does not occur,
The pulverized coal is used to heat the hot metal bath 3 by combustion leading to CO, and the remaining energy is recovered by the unburned exhaust gas recovery device of the converter. Further, a part of the pulverized coal collides with the hot metal bath without being burnt and is absorbed into the bath. This carbon is converted into CO2 by oxygen gas from the bottom of the furnace.
It becomes gas and is decarburized. In addition, if the amount of oxygen is excessive, complete combustion will occur to produce CO 2 and H 2 O, and the excess O 2 gas will reach the molten iron, causing normal blowing reactions such as decarburization of molten iron. It is clear that it can be used.

この発明の最大の特徴は、上記のように微粉炭
の全部、あるいは大部分が、浴面上で燃焼される
ために、微粉炭中のいおうは溶鉄中に移行するこ
となく、ガス相に移行して排ガス回収系に捕捉さ
れるところにある。
The greatest feature of this invention is that, as mentioned above, all or most of the pulverized coal is burned on the bath surface, so the sulfur in the pulverized coal does not transfer to the molten iron, but instead transfers to the gas phase. and is captured in the exhaust gas recovery system.

このために、熱源として多量の微粉炭を使用し
ても、製品のいおう濃度の上昇の心配がない。
Therefore, even if a large amount of pulverized coal is used as a heat source, there is no need to worry about an increase in the sulfur concentration of the product.

一方において前述の過剰の酸素ガスを使用する
と、微粉炭はCO2とH2Oまで完全に燃焼されるの
で石炭の発熱量を最大限に利用することが可能で
ある。なんとなれば、従来の方法では炭素含有物
質は炭素として溶鉄中に一度溶解し、これが脱炭
反応でCOガスとなる反応熱のみを利用するので、
CO2までの完全燃焼が困難であつたからである。
On the other hand, when using the above-mentioned excess oxygen gas, the pulverized coal is completely combusted to CO 2 and H 2 O, so it is possible to utilize the calorific value of the coal to the maximum. This is because in the conventional method, carbon-containing substances are once dissolved in molten iron as carbon, and only the heat of reaction is used to turn this into CO gas through a decarburization reaction.
This is because complete combustion up to CO 2 was difficult.

以上の理由により炭素含有物質は石炭やコーク
スの様な固体物質以外に灯油等の炭化水素系液体
でもよい。
For the above reasons, the carbon-containing substance may be a hydrocarbon liquid such as kerosene in addition to a solid substance such as coal or coke.

以下実施例について比較例と対比し説明を進め
る。
Examples will be explained below in comparison with comparative examples.

〔実施例〕〔Example〕

炉底に4本の底吹き酸素ガス用の羽口を有する
5トン転炉を用い、計18チヤージにわたつて次の
実験を行つた。
The following experiment was conducted over a total of 18 charges using a 5-ton converter having four tuyeres for bottom-blown oxygen gas at the bottom of the furnace.

実験条件は、1230〜1260℃でC=4.1〜4.3%、
Si=0.21〜0.35%、Mn=0.28〜0.35%、S=0.010
〜0.015%(平均0.014%)の予備脱硫処理した溶
銑約4tonを転炉に装入し、これに先立ち、約2ton
のスクラツプの前装入を行つたものである。
The experimental conditions were 1230-1260℃, C=4.1-4.3%,
Si=0.21~0.35%, Mn=0.28~0.35%, S=0.010
Approximately 4 tons of hot metal that has been pre-desulfurized at ~0.015% (0.014% on average) is charged into the converter.
The scrap was pre-charged.

炉底から15Nm3/minの速度で酸素ガスを吹き
込み吹錬を開始し、この吹錬開始と同時に、造滓
材としてCaOを120〜200Kg添加し、また、第1
図、2図に示す装置を用いて、微粉炭と酸素ガス
を上吹ランスから吹込んだ。
Blowing was started by blowing oxygen gas from the bottom of the furnace at a rate of 15 Nm 3 /min, and at the same time as this blowing was started, 120 to 200 kg of CaO was added as a slag material.
Using the apparatus shown in Figures 2 and 2, pulverized coal and oxygen gas were blown in from the top blowing lance.

この微粉炭の組成は、C/74.3%、H/4.6%、
O/6.9%、S/1.3%、SiO2/6.9%そして
Al2O3/2.1%であり、流量は5〜10Kg/minと
し、また、上吹ランスからの酸素ガス流量は、9
〜19Nm3/minにおいて微粉炭の完全燃焼に必要
な流量にほぼ一致させ、微粉炭の使用量は1チヤ
ージ当り210〜230Kgであつた。
The composition of this pulverized coal is C/74.3%, H/4.6%,
O/6.9%, S/1.3%, SiO 2 /6.9% and
Al 2 O 3 /2.1%, the flow rate was 5 to 10 kg/min, and the oxygen gas flow rate from the top blowing lance was 9.
The flow rate was approximately equal to that required for complete combustion of pulverized coal at ~19 Nm 3 /min, and the amount of pulverized coal used was 210 to 230 kg per charge.

以上の条件で約25分間の吹錬後に溶鋼を取鍋に
出鋼した。
After blowing for about 25 minutes under the above conditions, the molten steel was tapped into a ladle.

吹止めの鋼浴温度は1640〜1710℃の範囲であ
り、炭素濃度は0.05〜0.38%でありまた、この時
のS濃度は0.018〜0.017%(平均0.015%)で溶鉄
のS濃度に対し平均で0.001%の上昇に止まつた。
The steel bath temperature for blowstopping is in the range of 1640 to 1710℃, the carbon concentration is 0.05 to 0.38%, and the S concentration at this time is 0.018 to 0.017% (average 0.015%), which is on average higher than the S concentration of molten iron. The increase stopped at 0.001%.

〔比較例〕[Comparative example]

計5チヤージの実験を行つたがその実験条件
は、以下の点を除いて、実施例と同一である。
A total of 5 charge experiments were conducted, and the experimental conditions were the same as in the examples except for the following points.

すなわち微粉炭吹込み用ランスの使用を取り止
め、、従来法によつて、10〜80mm径のコークス塊
を吹錬中に炉上から断続的に投入し、上吹ランス
から微粉炭の噴射はせずに、15Nm3/minの酸素
ガスを浴面上に吹き付けた。
In other words, the use of the lance for pulverized coal injection was discontinued, and the conventional method was to intermittently inject coke lumps with a diameter of 10 to 80 mm from above the furnace during blowing, and to inject pulverized coal from the top blowing lance. Oxygen gas was blown onto the bath surface at a rate of 15 Nm 3 /min.

この実験に使用したコークス塊の組成はC/
82.9%、灰分/17.1%、P/0.16%、S/0.47%、
H2O/0.27%であり1チヤージ当り700〜1100Kg
を用いた。
The composition of the coke lump used in this experiment was C/
82.9%, ash/17.1%, P/0.16%, S/0.47%,
H 2 O / 0.27% and 700 to 1100 kg per charge
was used.

吹錬時間は平均32分間であつた。 The average blowing time was 32 minutes.

比較例でのS濃度は、0.05〜0.07%上昇し、吹
止め時の平均S濃度は0.061%となつた。
The S concentration in the comparative example increased by 0.05 to 0.07%, and the average S concentration at the time of blow-off was 0.061%.

この場合コークス中のS分は90%以上が溶鋼中
に入つたこととなる。
In this case, more than 90% of the S content in the coke has entered the molten steel.

以上のように実施例と比較例とでは、S濃度の
増加挙動が著しく異なり、製品溶鋼におけるS濃
度上昇抑制の点でこの発明は優れた方法であると
言える。
As described above, the behavior of increase in S concentration is significantly different between the example and the comparative example, and it can be said that the present invention is an excellent method in terms of suppressing the increase in S concentration in product molten steel.

さらに実施例では、添加した微粉炭中のCがほ
ぼ100%の割合いでCO2まで燃焼され、加炭材の
熱利用が有効になされている。比較例ではCも大
部分がCOまでの燃焼であり、CO2までの燃焼は
少量であり、熱の利用が不十分のままである。こ
の結果、同一条件にもかかわらず発明例では、石
炭の使用量が210〜230Kgと少量ですみ、一方、比
較例では700〜1100Kgのコークスが必要であつて
この発明によつてより有利に炭素含有物質の有効
利用が図れる。
Furthermore, in the example, almost 100% of the C in the added pulverized coal is burned to CO2 , and the heat of the recarburizer is effectively utilized. In the comparative example, most of the C was combusted to CO, and only a small amount was combusted to CO2 , so the heat utilization remained insufficient. As a result, despite the same conditions, the amount of coal used in the invention example is as small as 210 to 230 kg, whereas in the comparative example, 700 to 1100 kg of coke is required, and this invention provides a more advantageous carbon Effective use of contained substances can be achieved.

以上、微粉炭の使用を主体としてこの発明を説
明したがこの発明は加炭材として微粉炭に限定さ
れるものでなく、コークス粉や木炭粉などはもち
ろん、灯油などのような炭素含有物質の粉体又は
液体であれば特に限定されるものではない。
Although this invention has been explained above mainly using pulverized coal, this invention is not limited to pulverized coal as a carburizing material, and can be used not only with coke powder and charcoal powder, but also with carbon-containing substances such as kerosene. There is no particular limitation as long as it is powder or liquid.

〔発明の効果〕〔Effect of the invention〕

この発明によれば炭素含有物質と酸素とをとく
に、ランスを通じて噴出し炉内の溶鉄面上に火炎
として吹付けるので、炭素含有物質に由来した溶
鋼のS濃度上昇の有効な抑制の下に吹錬対象に対
する適切な熱源付与を実現できる。
According to this invention, carbon-containing substances and oxygen are sprayed as a flame onto the surface of molten steel in a blow-out furnace through a lance, so that the S concentration in the molten steel derived from carbon-containing substances is effectively suppressed. It is possible to provide an appropriate heat source to the training target.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施要領説明図、 第2図はランス構造の一例を示す(ランス先
端)断面図と端面図である。
FIG. 1 is an explanatory diagram of the implementation procedure of the present invention, and FIG. 2 is a cross-sectional view and an end view of an example of the lance structure (lance tip).

Claims (1)

【特許請求の範囲】 1 溶鉄の転炉製鋼に際して外部から熱源を供給
し、転炉の吹錬能力を向上する方法において、炉
上から炭素含有物質の粉体又は液体と酸素ガス
を、ランスを通じて噴出し炉内の溶鉄浴面上に火
炎として吹き付けることを特徴とする製鋼炉への
熱源の供給方法。 2 特許請求の範囲第1項において、ランスから
噴出させる酸素ガスの噴流と、炭素含有物質の噴
流とが、ランス出口の近傍で実質的に混合される
ように、酸素ガスと炭素含有物質を供給する製鋼
炉への熱源の供給方法。
[Claims] 1. A method for improving the blowing capacity of a converter by supplying a heat source from the outside during the steelmaking of molten iron in a converter, in which powder or liquid of carbon-containing material and oxygen gas are supplied from above the furnace through a lance. A method for supplying a heat source to a steelmaking furnace, characterized by spraying a flame onto the surface of a molten iron bath in a blowout furnace. 2. In claim 1, the oxygen gas and the carbon-containing substance are supplied so that the jet of oxygen gas and the jet of the carbon-containing substance ejected from the lance are substantially mixed near the lance outlet. A method of supplying a heat source to a steelmaking furnace.
JP59129139A 1984-06-25 1984-06-25 Method for supplying heat source to steelmaking converter Granted JPS619512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59129139A JPS619512A (en) 1984-06-25 1984-06-25 Method for supplying heat source to steelmaking converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59129139A JPS619512A (en) 1984-06-25 1984-06-25 Method for supplying heat source to steelmaking converter

Publications (2)

Publication Number Publication Date
JPS619512A JPS619512A (en) 1986-01-17
JPH0438816B2 true JPH0438816B2 (en) 1992-06-25

Family

ID=15002081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59129139A Granted JPS619512A (en) 1984-06-25 1984-06-25 Method for supplying heat source to steelmaking converter

Country Status (1)

Country Link
JP (1) JPS619512A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250404A (en) * 1985-08-30 1987-03-05 Kawasaki Steel Corp Melting method for scrap iron

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169510A (en) * 1984-02-15 1985-09-03 Nippon Steel Corp Steel making method involving addition of carbonizing agent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169510A (en) * 1984-02-15 1985-09-03 Nippon Steel Corp Steel making method involving addition of carbonizing agent

Also Published As

Publication number Publication date
JPS619512A (en) 1986-01-17

Similar Documents

Publication Publication Date Title
CA1123608A (en) Process for the production of steel from pig iron and scrap
RU2090622C1 (en) Method of producing iron from iron-containing materials in converter
JP2735774B2 (en) How to enhance reactions in metallurgical reactors
WO2010072043A1 (en) Smelting vessel, steel making plant and steel production method
JPS63195209A (en) Steel making method
JPH0438816B2 (en)
JPH07316618A (en) Method for pre-refining smelting reduction molten iron
JPH01195225A (en) Method for melting iron manufacturing raw material
JP4513340B2 (en) Hot metal dephosphorization method
JPH0433844B2 (en)
JPS6167708A (en) Refining method of iron alloy
JPS61227119A (en) Manufacture of steel in converter using cold material containing iron as principal starting material
JP2596003B2 (en) Smelting reduction method
JPS61284512A (en) Production of high-chromium steel using chromium ore
JP6327298B2 (en) Hot metal refining method
JPS6247417A (en) Melt refining method for scrap
JPS5937324B2 (en) Method for promoting dephosphorization in bottom-blown converter refining
JPS59159963A (en) Production of high chromium molten metal
JP2023147218A (en) Dephosphorization method of molten iron
RU2323980C2 (en) Method of steel smelting
JPH0437137B2 (en)
JPS60215706A (en) Pretreating method of molten iron
JPS62188710A (en) Melt reduction steel making method
JP2005048238A (en) Method for dephosphorizing molten iron
JPS61139614A (en) Manufacture of steel

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term