JPH0438812A - Sample positioning device - Google Patents

Sample positioning device

Info

Publication number
JPH0438812A
JPH0438812A JP2145141A JP14514190A JPH0438812A JP H0438812 A JPH0438812 A JP H0438812A JP 2145141 A JP2145141 A JP 2145141A JP 14514190 A JP14514190 A JP 14514190A JP H0438812 A JPH0438812 A JP H0438812A
Authority
JP
Japan
Prior art keywords
movement stage
axis
coarse movement
stage
coarse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2145141A
Other languages
Japanese (ja)
Other versions
JP2812785B2 (en
Inventor
Toshitaka Kobayashi
敏孝 小林
Masahiro Tsunoda
正弘 角田
Takayasu Furukawa
古川 貴康
Isao Kobayashi
功 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US06/436,721 priority Critical patent/US4492356A/en
Priority to US06/542,991 priority patent/US4575942A/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14514190A priority patent/JP2812785B2/en
Priority to KR1019910008648A priority patent/KR950007196B1/en
Priority to US07/709,317 priority patent/US5142791A/en
Publication of JPH0438812A publication Critical patent/JPH0438812A/en
Application granted granted Critical
Publication of JP2812785B2 publication Critical patent/JP2812785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • B23Q5/34Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission
    • B23Q5/50Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission feeding step-by-step

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Control Of Position Or Direction (AREA)
  • Details Of Measuring And Other Instruments (AREA)

Abstract

PURPOSE:To improve the sample positioning accuracy of the title device even when the size of samples increases by arranging projections for supporting a sample holding table on a rough adjustment stage side in a scattered state in a through space inside a fine adjustment stage so that the projections can be made to function as a rough adjustment stage while the through space is faced to the arrangement of the projections and the base of the rough adjustment stage is positioned below the fine adjustment stage. CONSTITUTION:This sample positioning device is provided with a rough adjustment stage 3 which is movable in two directions of X and Y axes and a fine adjustment stage 4 which is movable in three dimensions of X, Y, and Z axes and the stages 3 and 4 are not mechanically connected with each other so that they can work independently. The stage 3 is constituted of a base 3A which is supported by a rough adjustment driving mechanism 6, etc., and a plurality of projections 3B1...3Bn for supporting a sample holding table 5 arranged on the surface of the base 3A in a scattered state. Through spaces 4A1...4An are formed inside of the stage 3 in corresponding to the projections 3B1...3Bn and the projections 3B1...3Bn are arranged in the spaces 4A1...4An while the base 3A of the stage 3 is positioned below the stage 4. The stages 3 and 4 can hand over the sample holding table 5 to each other when the vertical relation between them is changed by means of a Z-axis deriving mechanism 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば、半導体集積@路の製造に使用される
縮小投影露光装置又は電子線描画装置等の試料の位置決
めに使用される装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an apparatus used for positioning a sample, such as a reduction projection exposure apparatus or an electron beam lithography apparatus used in the manufacture of semiconductor integrated circuits. .

〔従来の技術〕[Conventional technology]

従来より、この種の位置決め装置は、位置決め精度が高
く、且つ位置決めに要する時間ひいては製造に要する時
間が短いことが要求される。そのため、位置決め装置に
は、ステップ移動専用の粗調(粗動)用の駆動機構と、
微調(微動)用の駆動機構を備えたステージが使用され
、粗動駆動機構による粗の位置決めの後に、微動駆動機
構による微小の位置決めを行っている。
Conventionally, this type of positioning device has been required to have high positioning accuracy and to shorten the time required for positioning and, furthermore, the time required for manufacturing. Therefore, the positioning device includes a drive mechanism for coarse adjustment (coarse movement) dedicated to step movement,
A stage equipped with a drive mechanism for fine adjustment (fine movement) is used, and after rough positioning by the coarse movement drive mechanism, fine positioning is performed by the fine movement drive mechanism.

例えば、特開昭53−64478号公報に開示される位
置決め装置では、X軸、Y軸、Z軸等に移動可能な粗動
ステージの上に、X軸、Y軸、Z軸等に移動可能な微動
ステージやその駆動機構等を載置している。
For example, the positioning device disclosed in Japanese Patent Application Laid-Open No. 53-64478 has a coarse movement stage that is movable in the X-axis, Y-axis, Z-axis, etc. The stage is equipped with a fine movement stage and its drive mechanism.

また、最近では、本願呂願人が特願昭63−28768
3号のように、3次元で移動可能な(具体的には、X軸
、Y軸、Z軸の3軸方向に移動可能で、且つX軸・Y軸
平面での微小回転や上下方向の微小傾きの移動も行う)
機能を備えた微動ステージの内側に上下方向の貫通空間
を形成し、この空間にX軸、Y軸、Z軸に移動可能な粗
動ステージを独立させて配置したものを提案している。
In addition, recently, Honganroganjin applied for the patent application No. 63-28768.
As shown in No. 3, it is movable in three dimensions (specifically, it is movable in the three axes of the X, Y, and Z axes, and it is also capable of minute rotations on the X-axis and Y-axis planes, as well as in the vertical direction. (Also performs slight tilt movement)
We have proposed a system in which a vertically penetrating space is formed inside a functional fine movement stage, and coarse movement stages movable in the X, Y, and Z axes are independently arranged in this space.

このうち、後者の場合には、微動ステージとその内側に
配置される粗動ステージとが2軸駆動機構を介して高低
(上下)の位置関係を変えることができ、ステージ上の
試料保持台を持ち替えることができる。そして、試料の
粗位置決めの場合には、粗動ステージの上面を微動ステ
ージの上面よりも高くして、粗動ステージが試料保持台
をチャックを介して吸着保持し、微調整の場合には、逆
に微動ステージの上面を粗動ステージよりも高くして、
微動ステージが試料保持台を保持しつつ、各方向の位置
決めを行っている。
In the latter case, the fine movement stage and the coarse movement stage placed inside it can change the height (up and down) positional relationship via a two-axis drive mechanism, and the sample holding table on the stage can be changed. You can change hands. Then, in the case of coarse positioning of the sample, the top surface of the coarse movement stage is set higher than the top surface of the fine movement stage, and the coarse movement stage suction-holds the sample holder via the chuck, and in the case of fine adjustment, Conversely, by making the top surface of the fine movement stage higher than the coarse movement stage,
The fine movement stage holds the sample holder and positions it in each direction.

この後者の方式は、前者のように粗動ステージ上に微動
ステージを載せておらず、粗動ステージを微動ステージ
と独立させて移動可能にしている。
In this latter method, unlike the former, the fine movement stage is not placed on the coarse movement stage, and the coarse movement stage is movable independently of the fine movement stage.

従って、粗動ステージ移動の負担が軽く、駆動機構の起
動電流や駆動電流を小さくできる。そのため、電力消費
の節約のほか、発熱量を抑えて位置決めに用いるレーザ
測長の誤差原因(発熱による空気のゆらぎ)の解消等を
図り得るが、次のような改善すべき点があった。
Therefore, the burden of coarse movement stage movement is light, and the starting current and drive current of the drive mechanism can be reduced. Therefore, in addition to saving power consumption, it is possible to reduce the amount of heat generated and eliminate the cause of errors in laser length measurement used for positioning (air fluctuations due to heat generation), but there are the following points that should be improved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

近年、試料1例えばウェハは8インチと大径化になる傾
向があり、それに伴い試料保持台も大型化し、試料の露
光範囲も広がるため、保持台の移動範囲が広がることに
なる。
In recent years, the diameter of the sample 1, for example, a wafer, has tended to increase to 8 inches, and as a result, the sample holding table has also increased in size, and the exposure range of the sample has expanded, resulting in a wider movement range of the holding table.

このような実情において、後者の装置を用いてウェハの
位置決めを行う場合には、ます粗動ステージが試料保持
台をステップ移動させ(粗の位置決め)、その後で微動
ステージが試料保持台を持ち替えて微小の位置決めを行
うが、この時粗動ステージは初期の基準の位rに戻され
た状態にある。
Under these circumstances, when positioning the wafer using the latter device, the coarse movement stage moves the sample holder in steps (coarse positioning), and then the fine movement stage changes the sample holder. Fine positioning is performed, but at this time the coarse movement stage is returned to the initial reference position r.

そして1以上の位置決め動作を繰り返して、ステップ単
位に試料の露光や電子描画が行われる。
Then, one or more positioning operations are repeated to perform exposure and electronic drawing of the sample step by step.

このような装置を用いた場合、粗動ステージがステップ
移動するたびに、粗動ステージと試料保持台の位置関係
が変化する。そのため、粗動ステージが試料保持台の必
ずしも中央或いはその付近をチャックするとは限らず、
試料保持台の端を片持ち状態でチャックすることもあっ
た。
When such an apparatus is used, the positional relationship between the coarse movement stage and the sample holder changes every time the coarse movement stage moves step by step. Therefore, the coarse movement stage does not necessarily chuck the center of the sample holder or its vicinity;
Sometimes the end of the sample holder was chucked in a cantilevered state.

従って、試料保持台が大型化すると、これを保持する粗
動ステージが試料保持台を端の位置でチャックした時に
、試料保持台の自重により粗動ステージ或いはその支持
機構がたわんでしまい、位置決めに悪影響を及ぼす。
Therefore, as the sample holder becomes larger, when the coarse movement stage that holds it chucks the sample holder at the end position, the coarse movement stage or its support mechanism will bend due to the sample holder's own weight, making positioning difficult. Adversely affect.

また、ウェハひいては試料保持台の大型化は、粗動ステ
ージのチャック機構の大型化を招く。チャック機構とし
て、大型電磁チャックを使用した場合には、駆動電流に
よる発熱量が増大し、その熱が試料保持台に伝導して熱
膨張することにより、位置決めに悪影響を及ぼす、さら
に、発熱によりレーザ測長器の光路上の空気のゆらぎが
正確な位置測定を妨げるおそれもあった。
In addition, increasing the size of the wafer and thus the sample holder results in an increase in the size of the chuck mechanism of the coarse movement stage. When a large electromagnetic chuck is used as the chuck mechanism, the amount of heat generated by the drive current increases, and the heat is conducted to the sample holder and thermally expands, which adversely affects positioning. There was also a risk that air fluctuations on the optical path of the length measuring device would interfere with accurate position measurement.

その他、粗動ステージが試料保持台を中心から偏った位
置で1箇所だけを支持する場合には、粗動ステージをX
軸、Y軸に直進させる場合に、その支持点を中心に粗動
ステージに回動力が作用することもあった。
In addition, when the coarse movement stage supports only one part of the sample holder at a position offset from the center, move the coarse movement stage to
When moving straight on the axis or the Y axis, rotational force sometimes acts on the coarse movement stage around its support point.

本発明は1以上の点に鑑みてなされたもので、その主た
る目的とするところは、試料の大型化に伴う前述した如
き諸問題を解決して、位置決め精度の向上を図り得る装
置を提供することにある。
The present invention has been made in view of one or more points, and its main purpose is to provide an apparatus that can improve positioning accuracy by solving the above-mentioned problems associated with increasing sample size. There is a particular thing.

さらに、その他の目的は、上記主たる目的を達成できる
ほかに、粗動のX、Y軸駆動機構が作動した時の振動が
フレーム、微動用の駆動機構(例えば圧電アクチュエー
タ)を介して微動テーブルに伝わるといった事態(この
ような事態は振動が終わるまで位置決めの整定時間がか
かる原因となる)をなくシ1位置決め作業ひいては試料
処理時間の短縮を図り得る位置決め装置を提供すること
にある。
Furthermore, in addition to achieving the above-mentioned main purpose, vibrations generated when the coarse movement X and Y axis drive mechanisms are activated are transmitted to the fine movement table via the frame and the fine movement drive mechanism (for example, a piezoelectric actuator). To provide a positioning device capable of eliminating the situation of transmission (such a situation causes a long settling time for positioning until the vibration ends), and shortening the positioning work and ultimately the sample processing time.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記主たる目的を達成するために、次のよう
な課題解決手段(これを第1の課題解決手段とする)を
提案する。なお、内容の理解を容易にするため、第1図
の実施例の符号を引用して説明する。
In order to achieve the above-mentioned main object, the present invention proposes the following problem-solving means (this will be referred to as the first problem-solving means). In order to facilitate understanding of the content, the description will be made by quoting the reference numerals of the embodiment shown in FIG.

第1の課題解決手段は、少なくともX軸、Y軸の2次元
で移動可能な粗動ステージ3と、3次元で移動可能な微
動ステージ4とを備え、基本的には、この粗動ステージ
3と微動ステージ4とを機械的なつながりを持たせない
で、独立させる。
The first problem solving means includes a coarse movement stage 3 that is movable in at least two dimensions of the X axis and Y axis, and a fine movement stage 4 that is movable in three dimensions. and a fine movement stage 4 are made independent without being mechanically connected.

そして、粗動ステージ3は、粗動駆動機構6等により支
持される基台3A、この基台3Aの上面に分散された状
態で複数配設された試料台支持用の突起3B、・・3B
n等よりなり、一方、微動ステージ4内側には貫通空間
4A(実施例では1貫通空間4Aを4A、・・・4An
に分散させている)を形成して5貫通空間4Aを粗動ス
テージ3側の突起3B、−3Bnの配置に対応させ、粗
動ステージ3の基台3Aを微動ステージ4の下側に位置
させつつ、粗動ステージ3側の突起3Bよ・・・3Bn
を微動ステージ4内側の貫通空間4Aに分散配置するこ
とで、これらの複数の突起3B、・・・3Bnが粗動ス
テージ3として機能する構成としてなる。
The coarse movement stage 3 includes a base 3A supported by a coarse movement drive mechanism 6, etc., and a plurality of protrusions 3B for supporting the sample stage arranged in a dispersed manner on the upper surface of the base 3A.
On the other hand, the inside of the fine movement stage 4 has a through space 4A (in the embodiment, one through space 4A is 4A, . . . 4An).
5 through space 4A is made to correspond to the arrangement of protrusions 3B and -3Bn on the coarse movement stage 3 side, and the base 3A of the coarse movement stage 3 is positioned below the fine movement stage 4. Meanwhile, the protrusion 3B on the coarse movement stage 3 side...3Bn
By arranging these protrusions 3B, .

すなわち、粗動ステージ3と微動ステージ4とは、いず
れかのZ軸駆動機構14を介して粗動ステージ3.微動
ステージ4同士の高低の位置関係を変えることで、試料
保持台5の持ち替え可能とするが、この場合、粗動ステ
ージ3側は突起3B・・・3Bnがこの役割をなす。
That is, the coarse movement stage 3 and the fine movement stage 4 are connected to each other via one of the Z-axis drive mechanisms 14. By changing the height positional relationship between the fine movement stages 4, it is possible to change the holding of the sample holding table 5. In this case, the protrusions 3B...3Bn on the coarse movement stage 3 side play this role.

また、第2の課題解決手段は、上記第1の課題解決手段
を前提として、粗動ステージ3のX軸。
Further, the second problem-solving means is based on the first problem-solving means described above, and is based on the X-axis of the coarse movement stage 3.

Y軸の粗動駆動機構6,7(第2図に示す)等を微動ス
テージ4を支持しているフレーム1より分離して配置し
、この粗動駆動機構と粗動ステージ3とを連結部材1o
を介して連結する。
The Y-axis coarse movement drive mechanisms 6, 7 (shown in FIG. 2), etc. are arranged separately from the frame 1 supporting the fine movement stage 4, and the coarse movement drive mechanism and the coarse movement stage 3 are connected by a connecting member. 1o
Connect via.

さらに第2の課題解決手段の応用としては、粗動ステー
ジ3がX軸、Y軸の他にZ軸の粗動駆動機構により支持
される場合には、前記X軸、Y軸組動駆動機構6,7と
粗動ステージ3とを可撓性を有する弾性部材10により
連結してなる。
Furthermore, as an application of the second problem-solving means, when the coarse movement stage 3 is supported by a Z-axis coarse movement drive mechanism in addition to the X-axis and Y-axis, the X-axis and Y-axis combined drive mechanism 6, 7 and the coarse movement stage 3 are connected by a flexible elastic member 10.

〔作用〕[Effect]

第1の課題解決手段の作用・・・このような構成よりな
れば、z@駒助動機構14より、微動ステージ4と粗動
ステージ3とを相対的に上下動させれば5 (イ)粗動
ステージ3側の突起3B1〜3Bnの上面を微動ステー
ジ4の上面よりも高くしたリ、(ロ)その逆に微動ステ
ージ4の上面を粗動ステージ3側の突起3B、〜3Bn
の上面よりも高くすることができる。
Effect of the first problem-solving means...With such a configuration, if the fine movement stage 4 and the coarse movement stage 3 are relatively moved up and down by the z@piece assistance movement mechanism 14, 5 (a) (b) The upper surface of the projections 3B1 to 3Bn on the coarse movement stage 3 side is made higher than the upper surface of the fine movement stage 4.
can be higher than the top surface of the

そして、試料の位置を粗調整する場合には、前記(イ)
の動作を行って、突起3B1〜aBn上に試料保持台5
を載せて、保持させる。その後、粗動ステージ3のY軸
、Y軸等の粗動機構6,7により粗動ステージ3ひいて
は試料保持台5をステップ移動させる。このようにして
、試料16の粗の位置決めがなされる。
When roughly adjusting the position of the sample,
The sample holding table 5 is placed on the protrusions 3B1 to aBn.
Place and hold. Thereafter, the coarse movement stage 3 and, in turn, the sample holding table 5 are moved in steps by coarse movement mechanisms 6 and 7 such as the Y-axis and the Y-axis of the coarse movement stage 3. In this way, the sample 16 is roughly positioned.

この後、(ロ)の動作が選択され、試料保持台5は微動
ステージ4側に持ち替えられた後、微動駆動機構12.
13 (第2図に示す)、14を介して必要な微動調整
(例えば、試料保持台5のΔX、ΔY、ΔZ方向の微動
や、Y軸・Y軸平面の回転角△θ、上下方向の傾き角Δ
λ等の調整)がなされ、試料16の微小な位置決めがな
される。
After that, the operation (b) is selected, and the sample holding table 5 is transferred to the fine movement stage 4 side, and then the fine movement drive mechanism 12.
13 (shown in Figure 2) and 14 to make necessary fine movement adjustments (for example, fine movement of the sample holding table 5 in the ΔX, ΔY, and ΔZ directions, the rotation angle △θ of the Y-axis/Y-axis plane, and the vertical direction). Tilt angle Δ
λ, etc.), and the sample 16 is minutely positioned.

この時、粗動ステージ3側は、基準位置に戻される。At this time, the coarse movement stage 3 side is returned to the reference position.

以上の動作を繰り返していくことで、試料保持台5と粗
動ステージ3との相対位置が変化する。
By repeating the above operations, the relative position between the sample holding table 5 and the coarse movement stage 3 changes.

このような試料保持台5と粗動ステージ3との相対位置
が変化した場合でも、本課題解決手段では、試料保持台
5を粗動ステージ3の基台3Aに分散配設された複数の
突起3B、〜3Bnで保持するので、従来のように試料
保持台5の端を片持ちするといった事態を回避できる。
Even when such a relative position between the sample holding table 5 and the coarse movement stage 3 changes, the present problem solving means can move the sample holding table 5 to a plurality of protrusions distributed on the base 3A of the coarse movement stage 3. Since it is held at 3B and 3Bn, it is possible to avoid a situation where the end of the sample holding table 5 is cantilevered as in the conventional case.

従って、試料保持台5等のオーバフ1ングによる撓みの
発生を防止する。
Therefore, the sample holding table 5 and the like are prevented from being bent due to overflapping.

また、粗動ステージ3を複数の突起3B工〜3Bnで複
数支持するので、粗動ステージ3をY軸。
Moreover, since the coarse movement stage 3 is supported by a plurality of protrusions 3B to 3Bn, the coarse movement stage 3 is aligned with the Y axis.

Y軸に直進させた場合に、粗動ステージに回動力が生じ
るのをなくすことができる。
It is possible to eliminate rotational force generated in the coarse movement stage when it moves straight on the Y axis.

さらに、粗動ステージ3が試料保持台5をチャックにて
吸着保持する場合には、チャックの突起3B、〜3Bn
ごとに分散配置できる。
Furthermore, when the coarse movement stage 3 suction-holds the sample holding table 5 with a chuck, the protrusions 3B, ~3Bn of the chuck
It can be distributed and arranged separately.

そのため、チャックとして例えば電磁チャックのような
ものを使用する場合でも、各電磁チャックを小型にする
ことができ、チャック機構の発熱量を抑制し、試料保持
台5の熱膨張による変形を防ぎ、かつ発熱による空気ゆ
らぎをなくしてレーザ測長の誤差をなくす。
Therefore, even if an electromagnetic chuck is used as the chuck, each electromagnetic chuck can be made smaller, the amount of heat generated by the chuck mechanism can be suppressed, and deformation of the sample holder 5 due to thermal expansion can be prevented. Eliminate errors in laser length measurement by eliminating air fluctuations caused by heat generation.

従って、以上の各作用により高精度の位置決めを行い得
る。
Therefore, highly accurate positioning can be performed by the above-mentioned actions.

第2の課題解決手段の作用・・本課題解決手段では、粗
動ステージ3のY軸、Y軸等の駆動機416゜7をフレ
ーム1より分離して配置するので、粗動ステージ3の移
動中でも、その駆動機構からの振動が試料保持台5に伝
わらないため、粗動後にすぐ微動ステージによる微小の
位置決めを可能とし。
Operation of the second problem-solving means: In this problem-solving means, the Y-axis of the coarse movement stage 3, the Y-axis drive machine 416°7, etc. are arranged separately from the frame 1, so the movement of the coarse movement stage 3 is In particular, since vibrations from the drive mechanism are not transmitted to the sample holding table 5, minute positioning using the fine movement stage is possible immediately after coarse movement.

位置決めの整定時間を短縮することができる。The settling time for positioning can be shortened.

また、第2の課題解決手段において、Y軸、Y軸粗動翻
動機構6,7と粗動ステージ3とを可撓性を有する弾性
部材10により連結した場合には、粗動ステージ3がZ
軸方向に移動した場合でも、その移動を弾性部材10の
弾性変形を介して吸収できるので、粗動ステージと粗動
調整に支障をきたすことはない。
In addition, in the second problem solving means, when the Y-axis, Y-axis coarse motion translation mechanisms 6 and 7 and the coarse motion stage 3 are connected by a flexible elastic member 10, the coarse motion stage 3 is
Even if it moves in the axial direction, the movement can be absorbed through the elastic deformation of the elastic member 10, so that it does not interfere with the coarse movement stage and coarse movement adjustment.

〔実施例〕〔Example〕

本発明の一実施例を図面に基づき説明する。 An embodiment of the present invention will be described based on the drawings.

第1図は本実施例に係る試料位置決め装置の縦断面図、
第2図はその一部省路上面図である。
FIG. 1 is a longitudinal cross-sectional view of the sample positioning device according to this embodiment,
Figure 2 is a partially simplified top view.

これらの図において、1は装置のフレームで、フレーム
1の内側空間2に粗動ステージ3及び微動ステージ4が
配置される。
In these figures, 1 is a frame of the apparatus, and a coarse movement stage 3 and a fine movement stage 4 are arranged in an inner space 2 of the frame 1.

粗動ステージ3は、方形状の基台3Aと、その上面に分
散して複数配設された突起3B、・・3Bnとで構成さ
れる。実施例では、突起3Bは、第2図に示すように3
B、〜3B、の計8個としである。なお、第2図では、
後述する試料保持台5を省略して作図しである。第2図
に示すように粗動ステージ3は、その基台3Aの一辺が
X軸粗動翻動機構6と、他辺がY@粗動機構7とそれぞ
れ可襖性の弾性部材10を介して連結され、これらの連
結部材10及び基台3Aの下に配置した図示していない
Z細粗動駆動機構を介して支持される。
The coarse movement stage 3 is composed of a rectangular base 3A and a plurality of protrusions 3B, . . . 3Bn distributed on the upper surface thereof. In the embodiment, the protrusion 3B is 3B as shown in FIG.
There are a total of 8 pieces, B and 3B. In addition, in Figure 2,
The diagram is drawn without a sample holding table 5, which will be described later. As shown in FIG. 2, the coarse movement stage 3 has an X-axis coarse movement mechanism 6 on one side of its base 3A, and a Y@coarse movement mechanism 7 on the other side through flexible elastic members 10. They are connected and supported via a Z fine/coarse movement drive mechanism (not shown) disposed below these connecting members 10 and the base 3A.

なお、この粗動ステージ3側のZ細粗動駆動機構は、試
料16を他の搬送機構(図示せず)等と受は渡しする場
合に用いる。
The Z fine coarse movement drive mechanism on the side of the coarse movement stage 3 is used when transferring the sample 16 to and from another transport mechanism (not shown).

本実施例のX軸粗動駆動機構6及びY軸粗動駆動機構7
は、スクリューロッド8.サーボモータ9等のねじ送り
機構よりなり、フレーム1とは分離して配置しである。
X-axis coarse movement drive mechanism 6 and Y-axis coarse movement drive mechanism 7 of this embodiment
is screw rod8. It consists of a screw feeding mechanism such as a servo motor 9, and is arranged separately from the frame 1.

粗動ステージ3は±25mのストローク可動ができ、±
2μmの停止精度を持っている。そして、スクリューロ
ッド8がフレーム1を貫通し、ロッド先端8と粗動ステ
ージ3とが前述したごとく可撓性の連結部材1oを介し
て連結される。突起3B、〜3B、の上面には、それぞ
れの電磁チャック11が配設される。
Coarse movement stage 3 can move a stroke of ±25m,
It has a stopping accuracy of 2μm. Then, the screw rod 8 passes through the frame 1, and the rod tip 8 and the coarse movement stage 3 are connected via the flexible connecting member 1o as described above. An electromagnetic chuck 11 is provided on the upper surface of each of the protrusions 3B, -3B.

微動ステージ4は、粗動ステージ3よりも面積を大きく
した方形状を呈し、その内側に上下方向を貫通させた複
数の穴部(空間)4Aが配設される。穴部4Aは、粗動
ステージ側の突起3B1〜3B、に対応させて、穴部4
A工〜4A、の計8個とし、これらの穴部を分散配置し
である。
The fine movement stage 4 has a rectangular shape with a larger area than the coarse movement stage 3, and a plurality of holes (spaces) 4A are provided inside the fine movement stage 4, passing through the fine movement stage 4 in the vertical direction. The hole portion 4A corresponds to the projections 3B1 to 3B on the coarse movement stage side.
There are a total of 8 holes, A to 4A, and these holes are distributed.

そして、この微動ステージ4の下方に粗動ステージ3の
基台3Aが位置し、突起3B1〜3B、が穴部4A1〜
4A、にそれぞれ嵌装しである。
The base 3A of the coarse movement stage 3 is located below this fine movement stage 4, and the protrusions 3B1 to 3B are connected to the holes 4A1 to 3B.
4A, respectively.

微動ステージ4は、X@微微動助動機構12Y軸微動駆
動機構13及びZ細微動駈動機構14により支持される
。これらのX軸、Y軸、Z軸のそれぞれの微動駆動機構
は、例えば圧電素子のアクチュエータにより構成される
。これらの圧電素子は、80μmの変位が可能で、この
うちZ軸微動駆動機構14は、3個用いて微動ステージ
4を3点支持し、それぞれのZ軸微動駆動機構の変位量
を異なるようにすれば、微動ステージ4の上下方向の傾
きΔλの制御も可能である。また、X軸。
The fine movement stage 4 is supported by an X@fine fine movement assist mechanism 12, a Y axis fine movement drive mechanism 13, and a Z fine movement cantering mechanism 14. Each of the fine movement drive mechanisms for the X, Y, and Z axes is configured by, for example, a piezoelectric actuator. These piezoelectric elements are capable of displacement of 80 μm, and among these, three Z-axis fine movement drive mechanisms 14 are used to support the fine movement stage 4 at three points, and the displacement amount of each Z-axis fine movement drive mechanism is set to be different. Then, it is also possible to control the vertical inclination Δλ of the fine movement stage 4. Also, the X axis.

Y軸双方の微動駆動機構12.13を協働させることで
、X軸・Y軸平面に微小回転△θを得ることも可能であ
る。ここでは、圧電素子アクチュエータ12,13.1
4により、△X、ΔY微動は±0.02μm、ΔZ微動
は±O,1μm、△θ微動は±0.02μm/20mm
、Δλ傾き(チルト)は±0.1μm / 20 m 
mの各精度を保って位置決めを行う。
By cooperating the fine movement drive mechanisms 12 and 13 on both the Y-axis, it is also possible to obtain a minute rotation Δθ on the X-axis and Y-axis planes. Here, piezoelectric element actuators 12, 13.1
4, △X, ΔY fine movement is ±0.02 μm, ΔZ fine movement is ±0,1 μm, △θ fine movement is ±0.02 μm/20 mm.
, Δλ inclination (tilt) is ±0.1 μm / 20 m
Positioning is performed while maintaining each accuracy of m.

このようなステージ3,4の組込みにより、これらのス
テージ同士は互いに独立に移動可能である。具体的には
、粗動ステージ3と微動ステージ4とは、突起3Bと穴
部4Aとの間に空間を確保することで、それぞれがX軸
、Y軸の2方向に移動可能で、また、Z軸方向の移動が
可能である。
By incorporating the stages 3 and 4 in this manner, these stages can be moved independently of each other. Specifically, the coarse movement stage 3 and the fine movement stage 4 are movable in two directions, the X axis and the Y axis, by securing a space between the protrusion 3B and the hole 4A, and Movement in the Z-axis direction is possible.

微動ステージ4の上面にも、複数の電磁チャック13が
分散して配置される。なお、電磁チャック13は、省略
しても良い、その理由は、微動ステージ4は、サブミク
ロン単位で微小移動するため、このくらいの移動では、
試料保持台5はチャックしなくとも、外部からの大きな
衝撃がない限り固定状態を充分に保ち得るためである。
Also on the upper surface of the fine movement stage 4, a plurality of electromagnetic chucks 13 are arranged in a distributed manner. Note that the electromagnetic chuck 13 may be omitted because the fine movement stage 4 moves minutely in submicron units.
This is because the sample holding table 5 can sufficiently maintain a fixed state without being chucked unless there is a large impact from the outside.

粗動ステージ3及び微動ステージ4の上方には、試料保
持台5が配置される。試料保持台5は、その上面に試料
16を真空吸着する真空吸着台15と、レーザ測長用ミ
ラー17とを搭載しである。
A sample holding table 5 is arranged above the coarse movement stage 3 and the fine movement stage 4. The sample holding table 5 is equipped with a vacuum suction table 15 for vacuum suctioning the sample 16 on its upper surface, and a mirror 17 for laser length measurement.

次に本実施例の動作を説明する。Next, the operation of this embodiment will be explained.

試料16の位置決めを行う場合には、予め3本の2@微
動靜動機構14により、微動ステージ4を粗動ステージ
3の突起3Bより10μm低い位置まで下げる。この状
態では、粗動ステージ3の突起3Bが試料保持台5を支
持し、電磁チャック11を作動させて試料保持台5を突
起3B上で吸着保持する。この場合、試料保持台5は、
その大きさの関係で、必ずしも全部の突起3B1〜3B
nにより支持されるものではなく、最低3箇所の突起上
の電磁チャックにより吸着保持(チャック)される。
When positioning the sample 16, the fine movement stage 4 is lowered to a position 10 μm lower than the protrusion 3B of the coarse movement stage 3 using the three 2@fine movement mechanisms 14 in advance. In this state, the protrusion 3B of the coarse movement stage 3 supports the sample holder 5, and the electromagnetic chuck 11 is operated to attract and hold the sample holder 5 on the protrusion 3B. In this case, the sample holding table 5 is
Due to their size, not all protrusions 3B1 to 3B
It is not supported by n, but is held (chucked) by electromagnetic chucks on at least three protrusions.

その後、X軸粗動駆動機構6及びY軸粗動註動機構7を
介して試料保持台5をX軸、Y軸方向にステップ送りす
る。
Thereafter, the sample holding table 5 is step-fed in the X-axis and Y-axis directions via the X-axis coarse movement drive mechanism 6 and the Y-axis coarse movement adjustment mechanism 7.

なお、本実施例では、粗動ステージ3が試料保持台5を
ステップ移動15mmさせ、これを1.40m5以内で
可動させるので、試料保持台5には0゜4Gの加速度が
かかる。その加速度に対してずれないだけの電磁チャッ
ク1】−の吸着力は、チャック材質を520Cにし、化
学ニッケルメッキを10〜20μmを施し、コイルに0
.1〜0.2A(従来の大型電磁チャックの場合は、は
7LA)の電流を流すことにより得られる。この電流値
であると、コイルの温度変化は0.5℃以下に抑えるこ
とが可能である。
In this embodiment, since the coarse movement stage 3 moves the sample holding table 5 in steps of 15 mm and moving it within 1.40 m5, an acceleration of 0°4G is applied to the sample holding table 5. The adsorption force of the electromagnetic chuck 1]-, which does not shift against the acceleration, is achieved by using a chuck material of 520C, chemical nickel plating of 10 to 20 μm, and a coil of 0.
.. This can be obtained by passing a current of 1 to 0.2 A (7 LA in the case of a conventional large electromagnetic chuck). With this current value, the temperature change in the coil can be suppressed to 0.5° C. or less.

以上の粗動調整後に、3本のZ軸圧電素子アクチュエー
タ14を伸ばし、微動ステージ4を粗動テーブル3の突
起3B上面よりも10μm高い位置まで上げる。この時
、粗動ステージ3側の電磁チャック11のスイッチを切
り、微動ステージ4側の電磁チャック13のスイッチを
入れる。このようにして、試料保持台5は、微動ステー
ジ4側に持ち替えられ、微動ステージ4によって吸着保
持される。この時、粗動ステージ3は元の基準位置に戻
される。
After the above coarse movement adjustment, the three Z-axis piezoelectric element actuators 14 are extended and the fine movement stage 4 is raised to a position 10 μm higher than the upper surface of the projection 3B of the coarse movement table 3. At this time, the electromagnetic chuck 11 on the coarse movement stage 3 side is turned off, and the electromagnetic chuck 13 on the fine movement stage 4 side is turned on. In this way, the sample holding table 5 is transferred to the fine movement stage 4 side and held by the fine movement stage 4 by suction. At this time, the coarse movement stage 3 is returned to the original reference position.

その後、X軸、Y軸、Z軸周の圧電素子アクチュエータ
12,13.14等を用いて試料保持台5ひいては試料
16の微小な位置決め(ΔX、ΔY、ΔZの各方向の位
置決め、Δθの微小回転。
Thereafter, the piezoelectric element actuators 12, 13, 14, etc. around the X-axis, Y-axis, and Z-axis are used to perform minute positioning of the sample holding table 5 and eventually the sample 16 (positioning in each direction of ΔX, ΔY, and ΔZ, minute positioning of Δθ rotate.

Δλの傾き調整)がなされる。(inclination adjustment of Δλ) is performed.

以上の粗動位置決め、微動位置決めを繰り返して、単位
ステップあたりの試料16の露光又は電子描画が次々と
実行される。この場合、粗動ステージ3と試料保持台5
の相対位置がステップ送りのたびに変化していくので、
試料保持台5を支持する突起3Bも代わっていく。
By repeating the coarse positioning and fine positioning described above, exposure or electronic drawing of the sample 16 per unit step is performed one after another. In this case, the coarse movement stage 3 and the sample holding table 5
Since the relative position of changes with each step feed,
The protrusion 3B that supports the sample holding table 5 also changes.

しかして、本実施例によれば、次のような効果を奏し得
る。
According to this embodiment, the following effects can be achieved.

■まず、粗動ステージ3は微動ステージ4と独立させて
駆動可能なので、粗動ステージ3の駆動力の負担を軽く
する。
First, since the coarse movement stage 3 can be driven independently of the fine movement stage 4, the burden of driving force on the coarse movement stage 3 is reduced.

■また。試料保持台5と粗動ステージ3との相対位置が
変化した場合でも、試料保持台5を粗動ステージ3の突
起3B1〜3Bnのうち最低3箇所の突起により吸着保
持するので、従来のような片持ちを回避できる。従って
、試料保持台5等のオーバハングによる撓みの発生を防
止する。
■Also. Even if the relative position between the sample holding table 5 and the coarse movement stage 3 changes, the sample holding table 5 is held by suction by at least three of the projections 3B1 to 3Bn of the coarse movement stage 3, so it is not possible to use the conventional method. Cantilever can be avoided. Therefore, the occurrence of deflection due to overhang of the sample holding table 5 etc. is prevented.

また、試料保持台5を粗動ステージ3の突起3B□〜3
Bnのうち最低3箇所の突起により吸着保持するので、
粗動ステージ3をX軸、Y軸に直進させた場合に、粗動
ステージに回動力が働くのをなくすことができる。
In addition, the sample holding table 5 is attached to the protrusions 3B□ to 3 of the coarse movement stage 3.
Since the Bn is adsorbed and held by at least three protrusions,
When the coarse movement stage 3 is moved straight along the X and Y axes, rotational force acting on the coarse movement stage can be eliminated.

さらに、粗動ステージ3側の電磁チャック11を分散さ
せるので、各電磁チャック11を小型とし、電磁チャッ
ク11の発熱量を抑制し、試料保持台5の熱膨張による
変形を防ぎ、かつ発熱にょる空気ゆらぎをなくしてレー
ザ測長の誤差をなくす。従って1以上の各作用により高
精度の位置決めを行い得る。
Furthermore, since the electromagnetic chucks 11 on the coarse movement stage 3 side are dispersed, each electromagnetic chuck 11 is made small, the amount of heat generated by the electromagnetic chuck 11 is suppressed, and deformation of the sample holder 5 due to thermal expansion is prevented. Eliminate errors in laser length measurement by eliminating air fluctuations. Therefore, highly accurate positioning can be performed by each of one or more actions.

■粗動ステージ3のX軸、Y軸等の駆動機構6゜7をフ
レーム1より分離して配置するので、粗動ステージ3が
移動中でも、その駆動機構からの振動が試料保持台5に
伝わらないため、粗動後の微動位置決め調整に入る場合
の位置決め整定時間を短縮することができる。具体的に
、本実施例では。
■Since the drive mechanisms 6°7 for the X-axis, Y-axis, etc. of the coarse movement stage 3 are arranged separately from the frame 1, vibrations from the drive mechanisms are not transmitted to the sample holder 5 even when the coarse movement stage 3 is moving. Therefore, the positioning settling time when entering fine positioning adjustment after coarse movement can be shortened. Specifically, in this example.

単位ステップあたりの位置決めに要する時間を、ステッ
プ移動15mmの粗動と、その後の微動を含めても、0
.4秒以下にすることができる。
Even if the time required for positioning per unit step includes coarse movement of 15 mm step movement and subsequent fine movement, it is 0.
.. The time can be reduced to 4 seconds or less.

なお、実施例では、突起3B1〜3Bnを嵌装する微動
ステージ4側の貫通空間4Aを穴部4A〜4Anで構成
するが、穴部4Aの一部を切欠き溝に代えてもよく、ま
た、微動ステージ4側に突起3B1〜3Bnをまとめて
収容できる一つの穴部としてもよい。
In the embodiment, the through space 4A on the fine movement stage 4 side into which the protrusions 3B1 to 3Bn are fitted is constituted by the holes 4A to 4An, but some of the holes 4A may be replaced with notched grooves, or , it is also possible to form one hole on the fine movement stage 4 side that can accommodate the protrusions 3B1 to 3Bn all together.

〔発明の効果〕〔Effect of the invention〕

以上のように、第1の課題解決手段では、微動ステージ
の内側に粗動ステージを独立させて配置した方式の位置
決め装置であっても、粗動ステージは複数の突起により
試料保持台を保持するので、試料保持台等のオーバハン
グによる撓みをなくシ。
As described above, in the first problem solving means, even if the positioning device is a system in which a coarse movement stage is arranged independently inside a fine movement stage, the coarse movement stage holds the sample holder with a plurality of protrusions. This eliminates bending caused by overhanging the sample holding table, etc.

かつ粗動ステージのX軸、Y軸等の安定した移動動作を
保証し、また、電磁チャック機構を使用した場合には、
その発熱量を抑制するので、試料保持台が大型化しても
、極めて高精度の試料の位置決めを行うことができる。
It also guarantees stable movement of the coarse movement stage in the X-axis, Y-axis, etc., and when using an electromagnetic chuck mechanism,
Since the amount of heat generated is suppressed, the sample can be positioned with extremely high precision even if the sample holding table becomes large.

さらに第2の課題解決手段によれば、粗動テーブルのX
軸、Y@1lfl動機構が駆動中でも、その振動が試料
保持台に伝わらないため、その後に行われる微動位置決
めの整定時間が短くなり、位置決め全体の作業ひいては
試料処理時間の短縮を図ることができる。
Furthermore, according to the second problem solving means,
Even when the axis and Y@1fl movement mechanisms are in operation, their vibrations are not transmitted to the sample holder, so the settling time for subsequent fine positioning is shortened, and the overall positioning work and sample processing time can be shortened. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例たる試料位置決め装置の縦
断面図、第2図は、上記実施例の一部省路上面図である
。 l・・・フレーム、3・・・粗動ステージ、3A・・・
基台、3 B (3]3.〜3I3n) ・突起、 ・・微動ステー ジ、 4 A (4A1〜4 A n )−H通空間(
穴部)、第 図 5・・・試料保持台、 6・・・X軸粗動靜動機構。 7・・・Y 軸粗動翻動機構、 10・・・連結部材、 ・・X細微 動訃動機構、 ・・YM微微動創動機構 14・・ 、4.、□8)延トミ4くニー、・ 1 ・フレーム、3・・粗動ステージ、3A・・・基台
、 3 B (3B+−3BI+)・・突起、4・微動
ステージ、4A(4A+〜4A、、1・貫通空間(穴部
)、5・試料保持台、6 ・X細粗動駆動機構。 7・Y細粗動駆動機構、10−・連結部材、12・・・
X軸微動駆動機構、13・・Y軸微動駆動機構、14 
Z細微動駆動W&慣、16・・・試料。
FIG. 1 is a longitudinal cross-sectional view of a sample positioning device according to an embodiment of the present invention, and FIG. 2 is a partially omitted top view of the above embodiment. l...Frame, 3...Coarse movement stage, 3A...
Base, 3 B (3] 3. to 3I3n) ・Protrusion, ... Fine movement stage, 4 A (4A1 to 4 A n )-H passage space (
(hole), Fig. 5... Sample holding table, 6... X-axis coarse movement and quiet movement mechanism. 7...Y-axis coarse movement mechanism, 10...Connecting member,...X fine movement mechanism,...YM fine movement mechanism 14..., 4. , □8) Extending 4 knees, 1 Frame, 3 Coarse movement stage, 3A Base, 3 B (3B+-3BI+) Protrusion, 4 Fine movement stage, 4A (4A+~4A ,, 1. Penetration space (hole), 5. Sample holding table, 6.
X-axis fine movement drive mechanism, 13...Y-axis fine movement drive mechanism, 14
Z fine movement drive W & customization, 16...sample.

Claims (1)

【特許請求の範囲】 1、少なくともX軸、Y軸の2次元で移動可能な粗動ス
テージと、3次元で移動可能な微動ステージとを備え、
該微動ステージの内側に形成した上下方向の貫通空間に
前記粗動ステージを独立させて配置し、前記粗動ステー
ジ、微動ステージの高低の位置関係をZ軸駆動機構を介
して変えて、試料保持台を前記粗動ステージと前記微動
ステージとで持ち替え可能にしてなる試料位置決め装置
において、 前記粗動ステージは、粗動駆動機構により支持される基
台、該基台の上面に分散された状態で複数配設された試
料台支持用の突起等よりなり、一方、前記微動ステージ
内側の貫通空間を前記粗動ステージ側の突起の配置に対
応させ、前記粗動ステージの基台を前記微動ステージの
下側へ位置させつつ、前記突起を前記微動ステージ内側
の貫通空間に分散配置することで、これらの複数の突起
が粗動ステージとして機能する構成としてなることを特
徴とする試料位置決め装置。 2、第1請求項において、前記微動ステージの内側に形
成した貫通空間は、該微動ステージに分散して配設した
複数個の穴又は切欠き状の溝よりなる試料位置決め装置
。 3、第1請求項又は第2請求項において、前記粗動ステ
ージの各突起上面及び前記微動ステージの上面には、試
料台を制御信号により吸着するチャック機構を配設して
なる試料位置決め装置。 4、第1請求項ないし第3請求項のいずれか1項におい
て、前記粗動ステージの駆動機構のうちX軸、Y軸粗動
駆動機構は、前記微動ステージを支持しているフレーム
より分離して配置され、このX軸、Y軸粗動駆動機構と
前記粗動ステージとを連結部材を介して連結してなる試
料位置決め装置。 5、第1請求項ないし第4請求項のいずれか1項におい
て、前記粗動ステージは、X軸、Y軸、Z軸のそれぞれ
の粗動駆動機構を介して支持され、このうち、X軸、Y
軸の粗動駆動機構は、前記微動ステージを支持している
フレームより分離して配置され、このX軸、Y軸粗動駆
動機構と前記粗動ステージとが可撓性を有する弾性部材
を介して連結される試料位置決め装置。 6、第1請求項ないし第5請求項のいずれか1項におい
て、前記微動ステージはX軸、Y軸、Z軸の微動駆動機
構を備え、且つ前記X軸、Y軸の協働作用によりX軸・
Y軸平面を微動回転し、また、前記Z軸微動駆動機構は
、3個用いて前記微動ステージを3点支持し、各Z軸微
動駆動機構の微動量を異ならせて前記微動ステージの傾
き制御を可能にしてなる試料位置決め装置。
[Claims] 1. A coarse movement stage movable in at least two dimensions of the X-axis and Y-axis, and a fine movement stage movable in three dimensions;
The coarse movement stage is independently arranged in a vertically penetrating space formed inside the fine movement stage, and the height positional relationship of the coarse movement stage and the fine movement stage is changed via a Z-axis drive mechanism to hold the sample. In the sample positioning device in which the stage can be switched between the coarse movement stage and the fine movement stage, the coarse movement stage includes a base supported by a coarse movement drive mechanism, and a state in which the coarse movement stage is distributed on the upper surface of the base. The through space inside the fine movement stage corresponds to the arrangement of the projections on the coarse movement stage side, and the base of the coarse movement stage is connected to the base of the fine movement stage. A sample positioning device characterized in that the plurality of protrusions function as a coarse movement stage by distributing the protrusions in a penetrating space inside the fine movement stage while positioning the protrusions downward. 2. The sample positioning device according to claim 1, wherein the through space formed inside the fine movement stage comprises a plurality of holes or notch-shaped grooves distributed in the fine movement stage. 3. The sample positioning device according to claim 1 or 2, wherein a chuck mechanism is provided on the upper surface of each protrusion of the coarse movement stage and on the upper surface of the fine movement stage to attract the sample stage in response to a control signal. 4. In any one of claims 1 to 3, the X-axis and Y-axis coarse movement drive mechanisms of the drive mechanism of the coarse movement stage are separated from a frame supporting the fine movement stage. A sample positioning device in which the X-axis and Y-axis coarse movement drive mechanisms and the coarse movement stage are connected via a connecting member. 5. In any one of claims 1 to 4, the coarse movement stage is supported via coarse movement drive mechanisms for each of the X-axis, Y-axis, and Z-axis, and among these, the coarse movement stage is ,Y
The shaft coarse movement drive mechanism is arranged separately from the frame supporting the fine movement stage, and the X-axis, Y-axis coarse movement drive mechanism and the coarse movement stage are connected to each other via a flexible elastic member. sample positioning device connected to the 6. In any one of claims 1 to 5, the fine movement stage is provided with fine movement drive mechanisms for X, Y, and Z axes, and the X and Y axes cooperate to move the shaft·
The Y-axis plane is finely rotated, and three Z-axis fine movement drive mechanisms are used to support the fine movement stage at three points, and the fine movement amount of each Z-axis fine movement drive mechanism is varied to control the inclination of the fine movement stage. A sample positioning device that makes this possible.
JP14514190A 1982-02-26 1990-06-02 Sample positioning device Expired - Fee Related JP2812785B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US06/436,721 US4492356A (en) 1982-02-26 1982-10-26 Precision parallel translation system
US06/542,991 US4575942A (en) 1982-10-18 1983-10-18 Ultra-precision two-dimensional moving apparatus
JP14514190A JP2812785B2 (en) 1990-06-02 1990-06-02 Sample positioning device
KR1019910008648A KR950007196B1 (en) 1990-06-02 1991-05-27 Apparatus for positioning sample
US07/709,317 US5142791A (en) 1982-02-26 1991-06-03 Apparatus for positioning sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14514190A JP2812785B2 (en) 1990-06-02 1990-06-02 Sample positioning device

Publications (2)

Publication Number Publication Date
JPH0438812A true JPH0438812A (en) 1992-02-10
JP2812785B2 JP2812785B2 (en) 1998-10-22

Family

ID=15378366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14514190A Expired - Fee Related JP2812785B2 (en) 1982-02-26 1990-06-02 Sample positioning device

Country Status (2)

Country Link
JP (1) JP2812785B2 (en)
KR (1) KR950007196B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060118A (en) * 2010-09-07 2012-03-22 Nikon Corp Mobile device, object processing device, exposure device, and manufacturing methods for flat panel display, and device manufacturing method
JP2012189393A (en) * 2011-03-09 2012-10-04 Ulvac Japan Ltd Stage system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060118A (en) * 2010-09-07 2012-03-22 Nikon Corp Mobile device, object processing device, exposure device, and manufacturing methods for flat panel display, and device manufacturing method
JP2016157131A (en) * 2010-09-07 2016-09-01 株式会社ニコン Moving body device, object processing device, exposure device, flat panel display production method, and device production method
JP2012189393A (en) * 2011-03-09 2012-10-04 Ulvac Japan Ltd Stage system

Also Published As

Publication number Publication date
JP2812785B2 (en) 1998-10-22
KR920001673A (en) 1992-01-30
KR950007196B1 (en) 1995-07-03

Similar Documents

Publication Publication Date Title
US5717482A (en) Stage apparatus and method of mounting a substrate on a substrate holding surface of a substrate chuck in which a substrate is mounted in a Z-axis direction
US4525852A (en) Alignment apparatus
KR101129119B1 (en) Apparatus for manipulation of an optical element
US4667415A (en) Microlithographic reticle positioning system
US5142791A (en) Apparatus for positioning sample
US5760564A (en) Dual guide beam stage mechanism with yaw control
JP3266515B2 (en) Exposure apparatus, device manufacturing method, and stage apparatus
US7515359B2 (en) Support device for positioning an optical element
JP3325077B2 (en) Electromagnetic alignment device
US8390789B2 (en) Z-stage with dynamically driven stage mirror and chuck assembly
US7242537B2 (en) Holding and positioning apparatus for an optical element
JPS62276612A (en) Positioning apparatus
JPWO2009031654A1 (en) Drive control method, drive control apparatus, stage control method, stage control apparatus, exposure method, exposure apparatus, and measurement apparatus
KR20030026842A (en) Mask holding apparatus, mask holding method, and exposure apparatus
JPH0438812A (en) Sample positioning device
JP4059479B2 (en) Micro displacement device
JPH0434166B2 (en)
JP2001135561A (en) Stage system, aligner and method of fabrication for device
JP4489639B2 (en) Z-axis adjustment mechanism and fine movement stage device
JPH04317Y2 (en)
JP2007019429A (en) Stage equipment
JP3086006B2 (en) Positioning stage device
JP2000009867A (en) Stage moving device
JPH0536582A (en) Positioning stage apparatus
JP3937292B2 (en) Rotation holding device, position adjustment device, proximity exposure device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070807

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090807

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees