JPH0438792B2 - - Google Patents

Info

Publication number
JPH0438792B2
JPH0438792B2 JP2073532A JP7353290A JPH0438792B2 JP H0438792 B2 JPH0438792 B2 JP H0438792B2 JP 2073532 A JP2073532 A JP 2073532A JP 7353290 A JP7353290 A JP 7353290A JP H0438792 B2 JPH0438792 B2 JP H0438792B2
Authority
JP
Japan
Prior art keywords
sliding
carbon black
resin
fluororesin
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2073532A
Other languages
Japanese (ja)
Other versions
JPH0395296A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7353290A priority Critical patent/JPH0395296A/en
Publication of JPH0395296A publication Critical patent/JPH0395296A/en
Publication of JPH0438792B2 publication Critical patent/JPH0438792B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は導電性摺動樹脂材料に関するものであ
り、さらに詳しく述べるならば、VTRのカセツ
トリール、複写器の紙送り回転部材、その他の事
務機あるいは電子機器の部品等に適用できる、摺
動特性と導電性とを付与した樹脂材料に関する。 〔従来の技術〕 近年VTRの需要が急速に伸びて来ているが、
カセツトリールはテープ走行時の摩擦や剥離によ
つて静電気を生じる傾向があるので帯電防止樹脂
をカセツトリールに用い、カセツトリールの帯電
が画像に悪影響を及ぼすことを防止したことが
VTRの品質向上に貢献し且つその普及に大きく
寄与している。またVTRのリール台はプーリー
と一体化され、そしてベルト駆動されるが、ベル
トとリールの摩擦によつてリール台が帯電し、そ
して電荷がリール台からICに放電してVTRの故
障の原因となるという問題も帯電防止樹脂により
解決されつつある。 さらに静電複写機などの紙送りローラーを軸支
する軸受は、最近プラスチツク軸受が使用されつ
つあるが、紙に帯電した静電気により、コピーム
ラ、軸と紙の付着による送りの不正確、軸からの
放電という問題がある。帯電防止機構を設けたり
ローラーに付着した紙を剥離するため剥離機構を
設けると機構が複雑となり、複写機の信頼性低下
を招くおそれがあるとともに、重量増、コスト増
を招く。 プラスチツクのような高分子材料は通常1014
Ω・cm以上の体積抵抗率を有しており、摩擦など
により容易に帯電現象を生じる。このような帯電
によつて高分子材料は埃を吸着したり、あるいは
電撃シヨツクを受ける場合があり、必要に応じて
この対策としてプラスチツクに帯電防止剤を練込
んだ材料が供給されている。しかしながら、前述
のVTRのリール台などの材料は単なる帯電防止
では満足出来ず、更に抵抗値の低い導電性が要求
され、電荷を積極的にアースに逃がすことが画像
品質の一層の向上のために要請されている。ま
た、米国ではマイコン、VTRの電子機器に電波
障害をなくする目的で電波封じ込めの規制があ
り、このためには電子機器のハウジングに使用す
るプラスチツク材料に導電性の付与が必要となつ
て来ている。プラスチツクに導電性をもたせる方
法として、(1)導電性カーボンの添加、(2)金属粉
末、繊維の添加、(3)カーボン繊維の添加、又は(4)
成形品表面のメタライジングが行われている。(4)
のメタライジングは、電子機器又はICなどのハ
ウジングに適用可能であるが、回転、摺動などの
運動を伴う部材には適用不可能である。(2)及び(3)
の金属粉末・繊維又はカーボン繊維の添加は、例
えば摺動部材に適用された場合は、相手材を疵つ
けるという問題がある。さらに、例えばカーボン
繊維添加プラスチツクを摺動部材として使用した
際に摩擦係数が使用時間とともに増加するという
欠点がある。(1)の導電性カーボンの添加は、炭素
材料の中で固有体積抵抗が低いカーボンブラツク
(非晶質炭素)をプラスチツクに添加する方法で
ある。そしてこの方法により、ポリアセタール樹
脂に8〜15重量%のカーボンブラツクを添加する
ことによつて、102〜103Ω・cm程度の固有体積抵
抗とした導電性樹脂材料が得られる。しかしなが
ら、この導電性樹脂材料は導電性を有するもの
の、摺動特性がカーボンブラツク無添加のものと
比較して劣る。特に、上記導電性樹脂材料を軸受
として使用するのには不適当である。 〔発明が解決しようとする課題〕 上述のように、従来より樹脂材料に導電性を付
与する提案が為されているが、摺動性は考慮の外
にあつた。 そこで本発明では導電性と摺動特性の両方を兼
備した樹脂材料を提供することを目的とする。 〔課題を決するための手段〕 上記した目的は、本発明によれば、2〜30重量
%のカーボンブラツク、0.1〜30重量%の繊維状
分散フツ素樹脂、0.1〜10重量%の潤滑油、、そし
て残余の熱可塑性樹脂からなることを特徴とする
導電性摺動樹脂材料によつて達成することができ
る。 本発明の摺動材料において、基材となる樹脂材
料は、熱可塑性を有する材料である。この基材の
必須成分であるフツ素樹脂は詳しくは後述する様
に摺動特性を向上させる効果もつ成分である。フ
ツ素樹脂以外の基材成分としては、ポリフエニレ
ンオキシド、ポリブチレンフタレート、ポリアミ
ド(例えば商品名ナイロン)、ポリカーボネート
及びポリアセタールが好ましく、ポリアセタール
が特に好ましい。ポリアセタールとしては、コポ
リマータイプとホモポリマータイプのうち前者が
好ましい。 フツ素樹脂は、フアインパウダと称せられる押
出成形用PTFE粉末であつてよく、これを他の成
分とともに十分混練することによつて、これらの
粉末が繊維状に分散する。全体を100重量%とし
た場合、繊維状分散フツ素樹脂の割合は0.1〜30
重量%が好ましい。0.2〜10重量%がより好まし
い。この割合が0.1重量%未満であると、繊維状
フツ素樹脂の効果が十分でなく、一方30重量%を
越えると樹脂の成形が困難になる。 基材中に分散している繊維状分散フツ素樹脂の
太さは、一般に、0.1〜10μm程度である。 本発明に係る導電性摺動樹脂材料におけるフツ
素樹脂成分の特徴は、繊維状分散フツ素樹脂が摺
動部表面に露出していることによつて相手材との
摩擦係数を低下させ、またフツ素樹脂が上記樹脂
材料内部にも繊維状に立体的に分散して存在して
いるために基材を補強し、特に固形添加物が存在
するとそれを抱持し、その脱落を防止する等によ
り優れた耐摩耗性が得られることにある。 第2図は本発明の樹脂材料を厚さ5mmの板材と
し、これを折曲げて破断し、その一部に電極を蒸
着して測定した電子顕微鏡写真(倍率150倍)で
ある。この図面において、マトリツクス(基材)
はポリアセタール樹脂である。この図面よりフツ
素樹脂が繊維の形状を呈することに明らかであろ
う。 本発明の摺動材料の一成分であるカーボンブラ
ツクは導電性を付与する成分である。カーボンブ
ラツクの添加量の上限は、樹脂への混錬添加上限
量と一致する。しかしながら、特に所望の特性に
よつて次の範囲を選択することが好ましい。すな
わち、本発明の摺動材料の特性として高い電気伝
導度を特に望む場合は、カーボンブラツクの添加
量は2〜30重量%がよく、良好な摺動特性を望む
場合は3〜10重量%がよく、両特性が良好なもの
を望む場合は7〜10重量%がよい。カーボンブラ
ツクの種類としては特に制限はないが、アセチレ
ンブラツク(アセチレンを無定形に炭化したも
の)が好ましく、あるいは10Å以下の超微粒カー
ボンブラツク(例えば特殊フアーネスタイプのカ
ーボンブラツクとしてケツチエンブラツクの商品
名で市販されている)ものが特に好ましい。 次に、本発明の摺動材料成分の相互作用につい
て説明する。 第1図は、JISK6911の樹脂の体積抵抗測定法
に準拠して求めたデータを実線によつて、4%ポ
リテトラフルオロエチレン、カーボンブラツク
(横軸に示すCB添加量)、残部ポリアセタール樹
脂よりなる摺動材の固有体積抵抗率(ρ)を示す
グラフである。第1図の点線は、ポリテトラフル
オロエチレンを含まないカーボンブラツク添加ポ
リアセタール樹脂(従来技術)の固有体積抵抗率
(ρ)を示すグラフである。第1図より、ポリテ
トラフルオロエチレンは導電性を若干低下させる
ことが分かる。本来ポリテトラフルオロエチレン
は絶縁性であるから、この絶縁性成分の添加によ
つて、添加量に応じて、導電性は低下すると考え
られる。一方、カーボンブラツクの添加量に応じ
て、本発明の摺動材料も従来技術の材料も同じ傾
向で、固有体積抵抗率(ρ)が低下していること
が第1図より分かるから、ポリテトラフルオロエ
チレンはカーボンブラツクの本来の導電性付与効
果を奪うものではないと認められる。 カーボンブラツクは摩擦係数を高め、負荷能力
を低下させ、また摩耗量を多くするなど、熱可塑
性樹脂の摺動特性を劣化させる成分であるが、カ
ーボンブラツクが繊維状に分散するフツ素樹脂と
共存すると、摺動特性はカーボンブラツク添加よ
りも向上する。 したがつて、本発明の摺動材料において、各成
分の添加量を適切に選択することによつて、従来
の導電性樹脂材料と同等以上の導電性を有し且つ
従来の導電性樹脂には見られない潤滑性、低摩擦
性、負荷能力及びこれらの性質の安定性を有する
摺動材料が提供される。なお負荷能力が低下する
と摺動材料は相手材から受ける荷重によつて低荷
重下で破壊し、あるいは破壊に至らないまでも疲
労が起こり易くなつて、摺動特性が不良となる。 次表は、2種のポリテトラフルオロエチレンに
よる摩擦係数低下効果の差を示す表である。
[Industrial Application Field] The present invention relates to a conductive sliding resin material, and more specifically, it can be used for VTR cassette reels, copy machine paper feeding rotating members, other office machines or electronic equipment parts, etc. The present invention relates to a resin material that has sliding properties and conductivity that can be applied to. [Conventional technology] Demand for VTRs has been increasing rapidly in recent years.
Since cassette reels tend to generate static electricity due to friction and peeling when the tape runs, it is possible to use antistatic resin in the cassette reel to prevent the electrification of the cassette reel from adversely affecting images.
It has contributed greatly to improving the quality of VTRs and to their widespread use. In addition, the reel stand of a VTR is integrated with a pulley and driven by a belt, but the friction between the belt and the reel causes the reel stand to become electrically charged, and the charge is discharged from the reel stand to the IC, causing VTR failure. This problem is also being solved by antistatic resins. Furthermore, plastic bearings have recently been used to support paper feed rollers in electrostatic copying machines, etc., but static electricity charged on the paper can cause uneven copying, inaccurate feeding due to adhesion of the paper to the shaft, and problems with the shaft. There is a problem with discharge. Providing an antistatic mechanism or a peeling mechanism for peeling off the paper attached to the rollers would complicate the mechanism, potentially reducing the reliability of the copying machine, and increasing weight and cost. Polymeric materials such as plastics are typically 10 14
It has a volume resistivity of Ω・cm or more, and is easily charged by friction. Due to such electrification, polymeric materials may attract dust or be subjected to electric shocks, and as a countermeasure to this, materials in which antistatic agents are mixed into plastic are supplied as necessary. However, materials such as the VTR reel stand mentioned above are not satisfied with simply preventing static electricity; they also require conductivity with a low resistance value, and in order to further improve image quality, it is necessary to actively dissipate the charge to the ground. It is requested. Additionally, in the United States, there are regulations regarding radio wave containment in order to eliminate radio wave interference in electronic devices such as microcomputers and VCRs, and for this purpose, it has become necessary to impart conductivity to the plastic materials used in the housings of electronic devices. There is. Methods for making plastic conductive include (1) addition of conductive carbon, (2) addition of metal powder or fiber, (3) addition of carbon fiber, or (4)
The surface of the molded product is metallized. (Four)
Metallizing can be applied to housings such as electronic devices or ICs, but it cannot be applied to members that involve movement such as rotation or sliding. (2) and (3)
When the addition of metal powder, fiber or carbon fiber is applied to a sliding member, for example, there is a problem in that it damages the mating material. Furthermore, when carbon fiber-added plastics are used as sliding members, for example, there is the disadvantage that the coefficient of friction increases with time of use. Addition of conductive carbon (1) is a method of adding carbon black (amorphous carbon), which has the lowest specific volume resistance among carbon materials, to plastic. By this method, a conductive resin material having a specific volume resistivity of about 10 2 to 10 3 Ω·cm can be obtained by adding 8 to 15% by weight of carbon black to the polyacetal resin. However, although this conductive resin material has conductivity, its sliding properties are inferior to those without carbon black added thereto. In particular, the conductive resin material described above is unsuitable for use as a bearing. [Problems to be Solved by the Invention] As mentioned above, proposals have been made to impart conductivity to resin materials, but sliding properties have not been taken into consideration. Therefore, an object of the present invention is to provide a resin material that has both electrical conductivity and sliding properties. [Means for Solving the Problem] According to the present invention, the above-mentioned object is achieved by: 2 to 30% by weight of carbon black, 0.1 to 30% by weight of fibrous dispersed fluororesin, 0.1 to 10% by weight of lubricating oil, , and a residual thermoplastic resin. In the sliding material of the present invention, the resin material serving as the base material is a thermoplastic material. The fluororesin, which is an essential component of this base material, is a component that has the effect of improving sliding properties, as will be described in detail later. As base material components other than fluororesin, polyphenylene oxide, polybutylene phthalate, polyamide (for example, trade name nylon), polycarbonate, and polyacetal are preferable, and polyacetal is particularly preferable. Among the copolymer type and homopolymer type, the former is preferred as the polyacetal. The fluororesin may be a PTFE powder for extrusion molding called fine powder, and by thoroughly kneading this with other components, these powders are dispersed in the form of fibers. When the total weight is 100%, the proportion of fibrous dispersed fluororesin is 0.1 to 30
Weight percent is preferred. More preferably 0.2 to 10% by weight. If this proportion is less than 0.1% by weight, the effect of the fibrous fluororesin will not be sufficient, while if it exceeds 30% by weight, molding of the resin will become difficult. The thickness of the fibrous dispersed fluororesin dispersed in the base material is generally about 0.1 to 10 μm. The characteristics of the fluororesin component in the conductive sliding resin material according to the present invention are that the fibrous dispersed fluororesin is exposed on the surface of the sliding part, thereby reducing the coefficient of friction with the mating material; Since the fluororesin exists in the resin material as a three-dimensionally dispersed fiber, it reinforces the base material, and especially if solid additives are present, they hold them and prevent them from falling off. This means that superior wear resistance can be obtained. FIG. 2 is an electron micrograph (magnification: 150 times) obtained by bending and breaking a 5 mm thick plate made of the resin material of the present invention, and depositing an electrode on a part of the plate. In this drawing, the matrix (base material)
is polyacetal resin. It is clear from this drawing that the fluororesin takes the form of fibers. Carbon black, which is one component of the sliding material of the present invention, is a component that imparts electrical conductivity. The upper limit of the amount of carbon black added coincides with the upper limit of the amount added to the resin by kneading. However, it is preferable to select the following range depending on particularly desired characteristics. That is, if high electrical conductivity is particularly desired as a characteristic of the sliding material of the present invention, the amount of carbon black added is preferably 2 to 30% by weight, and if good sliding properties are desired, the amount of carbon black added is 3 to 10% by weight. If you want something with good both properties, it is best to use 7 to 10% by weight. There are no particular restrictions on the type of carbon black, but acetylene black (amorphous carbonized acetylene) is preferred, or ultrafine carbon black with a particle size of 10 Å or less (for example, a special furnace type carbon black such as Ketsutien Black) is preferred. Particularly preferred are those commercially available under the name ). Next, the interaction of the sliding material components of the present invention will be explained. Figure 1 shows data obtained in accordance with JISK6911 volume resistance measurement method for resins, and the solid line indicates that the resin is made of 4% polytetrafluoroethylene, carbon black (the amount of CB added on the horizontal axis), and the remainder is polyacetal resin. It is a graph showing the specific volume resistivity (ρ) of a sliding material. The dotted line in FIG. 1 is a graph showing the specific volume resistivity (ρ) of a carbon black added polyacetal resin (prior art) that does not contain polytetrafluoroethylene. From FIG. 1, it can be seen that polytetrafluoroethylene slightly lowers the conductivity. Since polytetrafluoroethylene is originally insulating, it is thought that addition of this insulating component reduces conductivity depending on the amount added. On the other hand, it can be seen from Figure 1 that the sliding material of the present invention and the material of the prior art have the same tendency, and the specific volume resistivity (ρ) decreases depending on the amount of carbon black added. It is recognized that fluoroethylene does not take away the original conductivity imparting effect of carbon black. Carbon black is a component that degrades the sliding properties of thermoplastic resin by increasing the coefficient of friction, reducing load capacity, and increasing the amount of wear.However, carbon black coexists with fluororesin, which is dispersed in the form of fibers. As a result, the sliding properties are improved more than when carbon black is added. Therefore, by appropriately selecting the amount of each component added, the sliding material of the present invention can have conductivity that is equal to or higher than that of conventional conductive resin materials, and is superior to conventional conductive resins. A sliding material is provided that has unprecedented lubricity, low friction, load capacity and stability of these properties. Note that if the load capacity decreases, the sliding material will break under low load due to the load received from the mating material, or even if it does not lead to breakage, fatigue will easily occur, resulting in poor sliding characteristics. The following table shows the difference in friction coefficient reduction effect between two types of polytetrafluoroethylene.

〔実施例〕〔Example〕

以下、本発明の実施例を第2〜4表により説明
する。 第2〜4表において、CBはカーボンブラツク
(商品名ケツチエンブラツク)、Grは規格G117の
人造グラフアイト、OILは合成潤滑油
(SHC630)、4Fは繊維化できるポリテトラフルオ
ロエチレン(商品名ポリフロンM12)でありGr
等の残部はPOMで示したコポリマータイプのポ
リアセタールである。尚実施例で使用した4Fは
十分混練されると熱可塑性の基材樹脂例えばポリ
アセタール中で繊維状を呈す。 第2〜4表中、「導電性」は体積抵抗率(ρ−
単位Ω・cmを示す。) 「摩耗」は、滑り距離10Km、最初の10分間は
2.5Kg、以降は10Kg(一定)の荷重、摺動速度0.2
m/sec、相手材SUJ2(焼入)、ドライ潤滑、スラ
スト型摩擦摩耗試験機の条件で混定した摩耗量
(単位mg)を示す。 「μ」は摩擦係数、「荷重」は前述の荷重条件
で測定した負荷能力(単位Kg)を示す。 負荷能力測定条件: (イ) 試験機:スラスト型摩耗摩擦試験機 (ロ) 摺動速度:0.2m/sec (ハ) 荷重:5Kg/hrで段階的に増加 (ニ) 相手材:SUJ−2(焼入) (ホ) 潤滑:ドライ条件 (ヘ) 荷重印加法:スラスト荷重
Examples of the present invention will be described below with reference to Tables 2 to 4. In Tables 2 to 4, CB is carbon black (product name: KETSUCHEN BLACK), Gr is standard G117 artificial graphite, OIL is synthetic lubricating oil (SHC630), and 4F is polytetrafluoroethylene that can be made into fibers (product name: Polyflon). M12) and Gr
The remainder is a copolymer type polyacetal shown as POM. When the 4F used in the examples is sufficiently kneaded, it becomes fibrous in a thermoplastic base resin such as polyacetal. In Tables 2 to 4, "conductivity" refers to volume resistivity (ρ-
The unit is Ω・cm. ) "Wear" is a sliding distance of 10 km, and the first 10 minutes are
2.5Kg, thereafter 10Kg (constant) load, sliding speed 0.2
m/sec, mating material SUJ2 (quenched), dry lubrication, and the amount of wear (unit: mg) mixed with the conditions of the thrust type friction and wear tester. "μ" indicates the friction coefficient, and "load" indicates the load capacity (unit: Kg) measured under the above-mentioned load conditions. Load capacity measurement conditions: (a) Testing machine: Thrust type wear and friction tester (b) Sliding speed: 0.2m/sec (c) Load: Increase stepwise at 5Kg/hr (d) Compatible material: SUJ-2 (Quenching) (E) Lubrication: Dry condition (F) Load application method: Thrust load

【表】【table】

【表】 得られた。
[Table] Obtained.

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

(イ) 本発明の摺動材料は単に帯電防止機能だけで
なく導電性能をもつから、通電又は接地される
電気部品として使用され、帯電に起因する弊
害、例えばVTRの画像残音又は複写器の紙付
着などを徹底的に防止できる。また、ICのパ
ツケージとして使用し、ICパツケージを接地
電位とすることもできる。 (ロ) 本発明の摺動材料の摩擦特性は極めて良好で
あり且つ長い時間にわたつて安定しているか
ら、回転、摺動部を伴う電気部品の信頼性が高
められる。 (ハ) 本発明の摺動材料は耐摩耗性に優れているか
ら、これを回転・摺動を伴う電気部品に付用す
ると、部品交換が少なくなり、またメンテナン
スフリーも期待される。 (ニ) 負荷能力に優れた性質及び上記(イ)の効果を利
用して、通電が必要な小型軽量軸受装置に本発
明の摺動材料を使用することができる。 (ホ) 本発明の摺動材料はスラスト荷重下で高い負
荷能力を有するため、これを通電式スラスト軸
受として使用することもできる。
(a) Since the sliding material of the present invention not only has an antistatic function but also conductivity, it can be used as an electrical component that is energized or grounded, and can be used to prevent harmful effects caused by static electricity, such as image after-sound on a VTR or copy machine. Thoroughly prevents paper adhesion. It can also be used as an IC package, and the IC package can be grounded. (b) Since the frictional properties of the sliding material of the present invention are extremely good and stable over a long period of time, the reliability of electrical components with rotating and sliding parts is improved. (c) Since the sliding material of the present invention has excellent wear resistance, when it is applied to electrical parts that rotate and slide, it is expected that parts replacement will be reduced and that maintenance will be free. (d) Taking advantage of the excellent load capacity and the effect of (a) above, the sliding material of the present invention can be used in small and lightweight bearing devices that require electricity. (e) Since the sliding material of the present invention has a high load capacity under thrust loads, it can also be used as an energized thrust bearing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はカーボンブラツク添加量と固有体積抵
抗率(ρ)の関係を示すグラフ、そして第2図は
フツ素樹脂の繊維の形状を示す電子顕微鏡写真で
ある。
FIG. 1 is a graph showing the relationship between the amount of carbon black added and the specific volume resistivity (ρ), and FIG. 2 is an electron micrograph showing the shape of the fluororesin fibers.

Claims (1)

【特許請求の範囲】[Claims] 1 2〜30重量%のカーボンブラツク、0.1〜30
重量%の繊維状分散フツ素樹脂、0.1〜10重量%
の潤滑油、そして残余の熱可塑性樹脂からなるこ
とを特徴とする導電性摺動樹脂材料。
1 2-30% by weight carbon black, 0.1-30
wt% fibrous dispersion fluororesin, 0.1-10wt%
A conductive sliding resin material characterized by comprising a lubricating oil and a residual thermoplastic resin.
JP7353290A 1990-03-26 1990-03-26 Conductive slippery resin material Granted JPH0395296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7353290A JPH0395296A (en) 1990-03-26 1990-03-26 Conductive slippery resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7353290A JPH0395296A (en) 1990-03-26 1990-03-26 Conductive slippery resin material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27101584A Division JPS61151267A (en) 1984-12-24 1984-12-24 Electrically conductive sliding resin material

Publications (2)

Publication Number Publication Date
JPH0395296A JPH0395296A (en) 1991-04-19
JPH0438792B2 true JPH0438792B2 (en) 1992-06-25

Family

ID=13520938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7353290A Granted JPH0395296A (en) 1990-03-26 1990-03-26 Conductive slippery resin material

Country Status (1)

Country Link
JP (1) JPH0395296A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4944323B2 (en) * 2001-09-26 2012-05-30 オイレス工業株式会社 Polyacetal resin composition and sliding member formed by molding the same
JP6139305B2 (en) * 2013-07-10 2017-05-31 三菱エンジニアリングプラスチックス株式会社 Sliding polycarbonate resin composition and molded product
JP2019041555A (en) * 2017-08-29 2019-03-14 正毅 千葉 Dielectric elastomer transducer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196951A (en) * 1975-01-20 1976-08-25
JPS5610942A (en) * 1979-07-05 1981-02-03 Nec Corp Inspection of memory retaining capacity of semiconductor nonvolatile memory
JPS5832655A (en) * 1981-08-19 1983-02-25 Daicel Chem Ind Ltd Plastic composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196951A (en) * 1975-01-20 1976-08-25
JPS5610942A (en) * 1979-07-05 1981-02-03 Nec Corp Inspection of memory retaining capacity of semiconductor nonvolatile memory
JPS5832655A (en) * 1981-08-19 1983-02-25 Daicel Chem Ind Ltd Plastic composition

Also Published As

Publication number Publication date
JPH0395296A (en) 1991-04-19

Similar Documents

Publication Publication Date Title
US6516940B1 (en) Low electrostatic discharge conveyor
US4909961A (en) Electric conductive and sliding resin material
TW555797B (en) Synthetic resin composition
WO2010038718A1 (en) Electrically conductive polyethylene resin composition, electrically conductive polyethylene resin molding, sliding bearing and sliding sheet
JPH0260694B2 (en)
JPH0438792B2 (en)
JP2006002907A (en) Conductive high-precision sliding bearing
JPS6051747A (en) Electroconductive sliding resin material
JPS6051748A (en) Resin material having good electrical conductivity and friction characteristics
JPS6051749A (en) Resin material having good electrical conductivity and friction characteristics
JP3705241B2 (en) Conductive sliding resin molded product
JPH05112723A (en) Conductive composition for sliding member
JP5430939B2 (en) Powder coating material, method for producing painted material, and painted material
JP4532697B2 (en) Conductive rolling bearing
JP2668011B2 (en) Guide post for magnetic tape
CN114276619A (en) Preparation process of wear-resistant and corrosion-resistant anti-static material
JP3018559B2 (en) Sliding material
JPH1180558A (en) Lubricant resin composition
US6720379B1 (en) Electrostatic dissipative plastics adapted particularly for use at elevated temperatures
JPH0561306B2 (en)
JP2595317B2 (en) Conductive roll
JPH0561305B2 (en)
JP2015098515A (en) Conductive elastomer composition and production method of the same, drive roller, and image forming apparatus
JPH07138488A (en) Conductive resin composition for bearing
WO1993020148A1 (en) Bearing and resin composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term