JPH0438703B2 - - Google Patents

Info

Publication number
JPH0438703B2
JPH0438703B2 JP61042357A JP4235786A JPH0438703B2 JP H0438703 B2 JPH0438703 B2 JP H0438703B2 JP 61042357 A JP61042357 A JP 61042357A JP 4235786 A JP4235786 A JP 4235786A JP H0438703 B2 JPH0438703 B2 JP H0438703B2
Authority
JP
Japan
Prior art keywords
light
ultraviolet
resin
wavelength
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61042357A
Other languages
Japanese (ja)
Other versions
JPS62201639A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP61042357A priority Critical patent/JPS62201639A/en
Publication of JPS62201639A publication Critical patent/JPS62201639A/en
Publication of JPH0438703B2 publication Critical patent/JPH0438703B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/10Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation for articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultra-violet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、光フアイバ等の線条体に塗布した
紫外線硬化性樹脂組成物(以下UV樹脂と略記す
る)に紫外線照射して硬化させる紫外線照射装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an ultraviolet irradiation device that irradiates and cures an ultraviolet curable resin composition (hereinafter abbreviated as UV resin) applied to a striated body such as an optical fiber. It is related to.

従来の技術 光フアイバにほどこしたUV樹脂コーテイグに
紫外線を照射して硬化させるのに用いる、従来の
紫外線照射装置の一例を第2図と第3図に示す。
第2図は、この紫外線照射装置の斜視図、第3図
は断面図である。
2. Description of the Related Art An example of a conventional ultraviolet irradiation device used to cure a UV resin coating applied to an optical fiber by irradiating it with ultraviolet rays is shown in FIGS. 2 and 3.
FIG. 2 is a perspective view of this ultraviolet irradiation device, and FIG. 3 is a sectional view.

第2図からわかるように、この紫外線照射装置
は、UV樹脂をコーテイングした光フアイバ1と
紫外線ランプ2とを平行に配置して、その周囲を
筒状の反射鏡3で囲んだ構成となつている。これ
ら部材は、第3図の断面図に示す位置関係をも
つ。即ち、筒状反射鏡3の横断面は楕円形で、そ
の焦点の一方にはUV樹脂をコーテイングした光
フアイバ1を、他方の焦点には紫外線ランプ2を
配してある。焦点位置に設けた紫外線ランプ2か
ら放射される紫外線は、楕円筒形の反射鏡表面で
反射され、もう一方の焦点集光されるので、その
位置に設けたUV樹脂をコーテイングした光フア
イバは効率良く紫外線照射を受ける。
As can be seen from Fig. 2, this ultraviolet irradiation device has a structure in which an optical fiber 1 coated with UV resin and an ultraviolet lamp 2 are arranged in parallel, and the periphery is surrounded by a cylindrical reflecting mirror 3. There is. These members have a positional relationship shown in the sectional view of FIG. That is, the cross section of the cylindrical reflecting mirror 3 is elliptical, and an optical fiber 1 coated with UV resin is disposed at one focal point, and an ultraviolet lamp 2 is disposed at the other focal point. The ultraviolet rays emitted from the ultraviolet lamp 2 placed at the focal position are reflected on the surface of the elliptical reflecting mirror and condensed at the other focal point, so the optical fiber coated with UV resin placed at that position is highly efficient. It receives good UV irradiation.

上記の紫外線照射装置においては、紫外線ラン
プから放射される紫外線はすべて紫外線被照射物
である、UV樹脂をコーテインクした光フアイバ
に照射される。しかし、紫外線ランプから放射さ
れる光はUV樹脂の硬化に必要な紫外線のみでは
なく、それとは直接関係のない波長の光も含む。
この硬化に無関係な波長域の光は、紫外線被照射
物に対して悪影響を及ぼす場合がありうる。例え
ば、赤外線が含まれる場合、その光が被照射物に
照射されると、被照射物の温度が上昇する。その
結果としてその被照射物は分解するとか、変質等
によりフアイバ被覆として好ましくない物質を生
成する等の化学反応を起こすことが多い。また、
熱応力による変形ということも頻繁に起こる。
In the above-mentioned ultraviolet irradiation device, all the ultraviolet rays emitted from the ultraviolet lamp are irradiated onto the object to be irradiated with ultraviolet rays, which is an optical fiber coated with UV resin. However, the light emitted from an ultraviolet lamp is not only the ultraviolet light necessary for curing the UV resin, but also includes light at wavelengths that are not directly related to this.
Light in a wavelength range unrelated to curing may have an adverse effect on the object to be irradiated with ultraviolet rays. For example, when infrared rays are included, when the object is irradiated with infrared light, the temperature of the object increases. As a result, the irradiated object often undergoes chemical reactions such as decomposition or alteration of properties, producing substances that are undesirable as fiber coatings. Also,
Deformation due to thermal stress also frequently occurs.

紫外線を除くためには、可視光域の波長よりも
短い波長をもつ光に対しては大きな反射率をもち
赤外線に対しては大きな透過率をもつコールドミ
ラーを反射鏡として用いることが可能である。し
かし、このコールドミラーをもちいても、UV樹
脂の硬化における問題点がすべて解決するわけで
はない。何故なら、コールドミラーが透過させる
のは赤外光のみであつて、それ以外の波長域の光
は反射するので、その光が被照射物に及ぼす影響
までも解消することはできないからである。
In order to remove ultraviolet rays, it is possible to use a cold mirror as a reflector, which has a high reflectance for light with wavelengths shorter than the visible light range and a high transmittance for infrared rays. . However, even using this cold mirror does not solve all the problems in curing UV resin. This is because the cold mirror only transmits infrared light and reflects light in other wavelength ranges, so it is impossible to eliminate the influence of that light on the irradiated object.

例えば可視光域の波長の光は、赤外線ほどでは
ないにしろ、照射により被照射物の温度上昇を引
き起こす。従つて、光の照射による温度上昇を避
けるためには、赤外線のみでなく可視光も透過さ
せる必要がある。
For example, although the wavelength of light in the visible light range is not as great as that of infrared rays, irradiation causes the temperature of the irradiated object to rise. Therefore, in order to avoid temperature rise due to light irradiation, it is necessary to transmit not only infrared rays but also visible light.

さらに、紫外線のみを反射させて照射すること
ができても、紫外線の波長によつては被照射物に
害を及ぼすため、紫外線の波長を特定する必要が
ある。例えば波長が200nm付近の紫外線は、UV
樹脂の表面を硬化させるには充分に役に立つが、
UV樹脂の内部まで透過することがない。従つ
て、照射された紫外線はUV樹脂の表面のみに吸
収されるため、その表面部のみ著しく温度が上昇
するという問題点がある。
Furthermore, even if only the ultraviolet rays can be reflected and irradiated, the wavelength of the ultraviolet rays may be harmful to the object to be irradiated, so it is necessary to specify the wavelength of the ultraviolet rays. For example, ultraviolet rays with a wavelength of around 200 nm are UV
It is useful enough to harden the surface of the resin, but
UV does not penetrate inside the resin. Therefore, since the irradiated ultraviolet rays are absorbed only on the surface of the UV resin, there is a problem in that the temperature only on the surface increases significantly.

発明が解決しようとする問題点 以上説明したように、従来の紫外線照射装置を
用いた場合には、広い波長域の光を被照射物に照
射することになるため好ましくない影響がいろい
ろと生ずる。
Problems to be Solved by the Invention As explained above, when the conventional ultraviolet irradiation device is used, various undesirable effects occur because the object to be irradiated is irradiated with light in a wide wavelength range.

そのうちの特に大きな問題点としては、加熱に
よる効果がある。被照射物が分解するとか、化学
反応を起こしてフアイバ被覆として好ましくない
物質を発生するといつた化学的変化以外に、熱応
力による変形等の物理的変化も伴う。
Among these, a particularly big problem is the effect of heating. In addition to chemical changes such as decomposition of the irradiated object or chemical reactions that generate substances undesirable as fiber coatings, physical changes such as deformation due to thermal stress also occur.

照射光の波長を制限する目的でコールドミラー
が提案されているが、これとて本当に必要な波長
域の紫外光のみを選択して反射することはできな
い。
Cold mirrors have been proposed for the purpose of limiting the wavelength of irradiated light, but they cannot selectively reflect only the ultraviolet light in the wavelength range that is really needed.

光フアイバの製造にあつては高速、大量という
状態が望ましい。そのためには、光フアイバをコ
ーテイングするUV樹脂の高速硬化が必須の要件
である。しかし、上記の問題点が解決されないま
ま、高速化のための強いパワーの紫外光をUV樹
脂に照射するのでは、害を増大させるだけであ
る。
When producing optical fibers, it is desirable to produce them at high speed and in large quantities. To this end, it is essential that the UV resin used to coat the optical fiber cure quickly. However, if the above-mentioned problems are not resolved, irradiating UV resin with ultraviolet light of high power to increase speed will only increase the damage.

そこで、本発明は、有用な波長域の紫外線のみ
を選択的に反射させ、それ以外の波長の光は透過
または吸収する反射鏡を備えてUV樹脂の硬化を
有効に行なうことのできる紫外線照射装置を提供
することを目的とする。
Therefore, the present invention provides an ultraviolet irradiation device that is equipped with a reflecting mirror that selectively reflects only ultraviolet rays in a useful wavelength range and transmits or absorbs light of other wavelengths, and is capable of effectively curing UV resin. The purpose is to provide

問題点を解決するための手段 上記問題点を解決するための本発明の紫外線照
射装置は、紫外線光源からの紫外線を反射、集光
して線条の紫外線被照射物に照射し、硬化させる
反射鏡を備える紫外線照射装置において、該反射
鏡は波長300〜450nmの範囲内に含まれる光を反
射し、該範囲外の波長の光を吸収または透過する
ようになされる。
Means for Solving the Problems In order to solve the above problems, the ultraviolet irradiation device of the present invention reflects and condenses ultraviolet rays from an ultraviolet light source, and irradiates a linear ultraviolet irradiated object to cure the reflected ultraviolet rays. In an ultraviolet irradiation device including a mirror, the reflecting mirror is configured to reflect light within a wavelength range of 300 to 450 nm and absorb or transmit light with a wavelength outside the range.

作 用 光フアイバのコーテイングに用いるUV樹脂
は、一般に波長450nm以下の紫外線の照射により
硬化する。ただし、紫外線の波長が200nm程度ま
で短くなると透過性が悪くなり、照射した紫外線
は表面の硬化にしか効果がない。従つて、内部ま
で均一にUV樹脂を効果させることができ、UV
樹脂の温度上昇等の好ましくない影響を避けるこ
とのできる光は波長が300〜450nm近傍に限られ
る。
Function UV resin used for coating optical fibers is generally cured by irradiation with ultraviolet light with a wavelength of 450 nm or less. However, when the wavelength of ultraviolet rays becomes short to around 200 nm, the transparency becomes poor, and the irradiated ultraviolet rays are only effective in hardening the surface. Therefore, UV resin can be applied uniformly to the inside, and UV
The wavelength of light that can avoid undesirable effects such as an increase in the temperature of the resin is limited to around 300 to 450 nm.

上記300〜450nmの波長範囲内の紫外線のみを
反射し、他の波長域の光を透過または吸収する物
質を反射鏡に用いることによりUV樹脂の硬化を
有効に行なわせることができる。
By using a material in the reflecting mirror that reflects only ultraviolet rays within the wavelength range of 300 to 450 nm and transmits or absorbs light in other wavelength ranges, the UV resin can be effectively cured.

本発明の装置で硬化させるUV樹脂には、ウレ
タンアクリレート等のウレタン型樹脂、エポキシ
アクリレート等のエポキシ型樹脂、ポリエステア
クリレート等のポリエステル型樹脂、ポリブタジ
エンアクリレート等のポリブタジエン型樹脂、シ
リコンアクリレート等のシリコン型樹脂とこれら
の化合物もしくは上記UV樹脂を一部含む樹脂を
も含むものである。
The UV resins to be cured with the apparatus of the present invention include urethane type resins such as urethane acrylate, epoxy type resins such as epoxy acrylate, polyester type resins such as polyester acrylate, polybutadiene type resins such as polybutadiene acrylate, and silicon type resins such as silicone acrylate. It also includes resins and their compounds, or resins that partially contain the above UV resins.

実施例 第1図は、本発明による紫外線照射装置の実施
例である。UV樹脂をコーテイングした直線状光
フアイバ1と紫外線ランプ2が筒状反射鏡3内に
その母線と平行になるように収められている。筒
状反射鏡3は、断面が楕円形である。2カ所ある
焦点のそれぞれの位置に光フアイバ1と紫外線ラ
ンプ2が配置してある。筒状反射鏡3の側面を取
り囲むように筐体4が設けられている。
Embodiment FIG. 1 shows an embodiment of the ultraviolet irradiation device according to the present invention. A linear optical fiber 1 coated with UV resin and an ultraviolet lamp 2 are housed in a cylindrical reflecting mirror 3 so as to be parallel to its generatrix. The cylindrical reflecting mirror 3 has an elliptical cross section. An optical fiber 1 and an ultraviolet lamp 2 are placed at each of two focal points. A housing 4 is provided to surround the side surface of the cylindrical reflecting mirror 3.

反射鏡3はガラス製であり、その表面に非金属
の多層薄膜を蒸着して干渉膜が形成されている。
蒸着する物質、蒸着の膜厚および膜の層数を制御
することにより、紫外線ランプ2からの紫外線の
うち波長が300〜450nmのもののみを反射させ、
他の波長域の光は透過させるようにできる。ただ
し、物質の屈折率の膜は作製条件、例えば作製
法、雰囲気ガス、堆積速度などに大きく依存する
ため望みの性質をもつ膜を得るのは難しい。
The reflecting mirror 3 is made of glass, and an interference film is formed on its surface by depositing a non-metallic multilayer thin film.
By controlling the substance to be deposited, the thickness of the deposited film, and the number of layers of the film, only the ultraviolet light with a wavelength of 300 to 450 nm from the ultraviolet lamp 2 is reflected.
Light in other wavelength ranges can be transmitted. However, it is difficult to obtain a film with desired properties because the refractive index of the film greatly depends on the manufacturing conditions, such as the manufacturing method, atmospheric gas, and deposition rate.

一例として、屈折率が2.04と小さく、透明波長
域が300〜1000nmのSb2O3と、屈折率が1.35と小
さく透明波長が200〜1400nmの氷晶石を交互にガ
ラス基板上に蒸着する。蒸着する層数はそれぞれ
9層である。この多層薄膜では、主波長320nmで
最大反射率95.8%が得られる。
As an example, Sb 2 O 3 having a small refractive index of 2.04 and a transparent wavelength range of 300 to 1000 nm and cryolite having a small refractive index of 1.35 and a transparent wavelength range of 200 to 1400 nm are alternately deposited on a glass substrate. The number of layers to be deposited is nine each. This multilayer thin film has a maximum reflectance of 95.8% at a dominant wavelength of 320 nm.

上記多層薄膜をコーテイングした反射鏡3は波
長が300〜450nmの紫外線を選択的に反射し、他
の波長域の光は透過させる。従つて、紫外線ラン
プ2から放射された光の一部は直接光フアイバ1
にコーテイングされたUV樹脂を直接照射する
が、反射鏡3を通して光フアイバ1上のUV樹脂
に照射される光は波長域が限られたものになつて
いる。
The reflecting mirror 3 coated with the above-mentioned multilayer thin film selectively reflects ultraviolet light having a wavelength of 300 to 450 nm, and transmits light in other wavelength ranges. Therefore, a part of the light emitted from the ultraviolet lamp 2 is directly transmitted to the optical fiber 1.
The UV resin coated on the optical fiber 1 is directly irradiated with light, but the wavelength range of the light irradiated onto the UV resin on the optical fiber 1 through the reflecting mirror 3 is limited.

反射鏡3を透過した光は筐体4の内面を照射す
る。この筐体4には反射鏡3を透過してきた光を
吸収する物質を用いる。特に照射による加熱効果
が大きい可視領域から赤外線に至る波長の光を吸
収することが望ましい。光の吸収にはやはり多層
薄膜を用いてもよいし、筐体4を金属で作りその
黒化処理しても良い。
The light transmitted through the reflecting mirror 3 illuminates the inner surface of the casing 4. This housing 4 is made of a material that absorbs the light transmitted through the reflecting mirror 3. In particular, it is desirable to absorb light with wavelengths ranging from the visible region to infrared rays, where the heating effect caused by irradiation is large. A multilayer thin film may be used for light absorption, or the casing 4 may be made of metal and treated with blackening.

例えば、入射光の波長をλとした場合には、ガ
ラス基板に屈折率1.38のMgF2を光学膜厚λ/4
蒸着し、その上に屈折率2.1のZrO2を光学膜厚
λ/2蒸着し、さらにその上に屈折率1.63のCeF3
を光学膜厚λ/4蒸着するという3層薄膜構造が
考えられる。この多層薄膜では、波長が可視光域
以上の光をほぼ吸収することが可能である。
For example, if the wavelength of the incident light is λ, then the optical film thickness of MgF 2 with a refractive index of 1.38 is λ/4 on the glass substrate.
On top of that, ZrO 2 with a refractive index of 2.1 is evaporated to an optical thickness of λ/2, and on top of that, CeF 3 with a refractive index of 1.63 is deposited.
A three-layer thin film structure is considered in which the optical film thickness is λ/4. This multilayer thin film can absorb almost all light having wavelengths in the visible light range or longer.

筐体4では、この多層薄膜加工により反射鏡3
を通過した光を吸収して熱に変えることができ
る。この熱は、筐体4を空冷により冷却すること
で外部に放出できるため、伝導または放射により
再度UV樹脂がコーテイングされた光フアイバ1
が加熱されることを防ぐことができる。その結
果、パワーの大きい光を光フアイバ1を包囲して
いるUV樹脂に照射しても波長が300〜450nm以
外の領域の光は大幅に低減されるので、UV樹脂
の硬化が良好に行なえる。
In the case 4, the reflecting mirror 3 is formed by this multilayer thin film processing.
It can absorb the light that passes through it and convert it into heat. This heat can be released to the outside by cooling the housing 4 with air, so it can be transferred to the optical fiber 1 coated with UV resin again by conduction or radiation.
can be prevented from being heated. As a result, even if the UV resin surrounding the optical fiber 1 is irradiated with high-power light, the light in wavelengths other than 300 to 450 nm is significantly reduced, allowing the UV resin to be cured effectively. .

特に、波長が450nm以上の光が紫外線ランプに
反射されることが少なくなるため、紫外線ランプ
自体の温度上昇を防ぐことができる。その結果、
紫外線ランプの寿命を伸ばすことができる。
In particular, since light with a wavelength of 450 nm or more is less likely to be reflected by the ultraviolet lamp, it is possible to prevent the temperature of the ultraviolet lamp itself from rising. the result,
It can extend the life of UV lamps.

また、波長が300nm以下の光によるUV樹脂表
面へのエネルギーの集中を防ぐこともできるた
め、樹脂表面の変質や樹脂表面からの樹脂組成物
の揮発発散を避けることができ、UV樹脂を安全
に硬化させることができる。何故なら、揮発発散
があると、反射鏡等、照射装置内部の部材に樹脂
組成物が付着する結果、UV樹脂への光の照射を
妨げることになり、UV樹脂の硬化が不安定にな
るからである。
In addition, it is possible to prevent the concentration of energy on the UV resin surface due to light with a wavelength of 300 nm or less, so it is possible to avoid deterioration of the resin surface and volatilization of the resin composition from the resin surface, making it possible to safely use UV resin. Can be hardened. This is because, if volatilization occurs, the resin composition will adhere to components inside the irradiation device, such as a reflector, which will prevent the UV resin from being irradiated with light, making the curing of the UV resin unstable. It is.

なお、上記実施例では、300〜450nmの波長域
の紫外線を反射したが、300〜450nmの範囲外の
光が少くとも反射されなければ、300〜450nmの
範囲内の一部の波長域のみ反射されても、その反
射光が十分な強さも持つ限り同様な効果を実現で
きる。
In addition, in the above example, ultraviolet rays in the wavelength range of 300 to 450 nm were reflected, but unless at least light outside the range of 300 to 450 nm is reflected, only part of the wavelength range within the range of 300 to 450 nm is reflected. Even if the reflected light is reflected, the same effect can be achieved as long as the reflected light has sufficient strength.

発明の効果 以上説明したように、本発明の紫外線照射装置
を用いると、UV樹脂の硬化に有効な波長300〜
450nmの紫外線のみを選択的にUV樹脂に照射す
ることができるため、光フアイバにUV樹脂によ
り良好な被覆を施すことができる。
Effects of the Invention As explained above, when the ultraviolet irradiation device of the present invention is used, wavelengths of 300 to 300, which are effective for curing UV resin,
Since the UV resin can be selectively irradiated with only 450 nm ultraviolet rays, the optical fiber can be well coated with the UV resin.

また、UV樹脂が過度に熱せられることを避け
ることができるため、熱により生ずる問題点、即
ち分解、反応、変形を考える必要がない。従つ
て、被照射体に強力な光を照射することができる
ので、UV樹脂の高速硬化が可能となる。これ
は、光フアイバの高速大量生産に都合がよい。
Furthermore, since the UV resin can be prevented from being excessively heated, there is no need to consider problems caused by heat, such as decomposition, reaction, and deformation. Therefore, the object to be irradiated can be irradiated with intense light, making it possible to cure the UV resin at high speed. This is convenient for high-speed mass production of optical fibers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による紫外線照射装置の一実
施例を示す図であり、第2図は、従来の紫外線照
射装置の一実施例を示す図であり、第3図は、第
2図の紫外線照射装置の平面図である。 主な参照番号、1……UV樹脂をコーテイング
した光フアイバ、2……紫外線ランプ、3……反
射鏡、4……筐体。
1 is a diagram showing an embodiment of the ultraviolet irradiation device according to the present invention, FIG. 2 is a diagram showing an embodiment of the conventional ultraviolet irradiation device, and FIG. 3 is a diagram showing an embodiment of the conventional ultraviolet irradiation device. FIG. 3 is a plan view of the ultraviolet irradiation device. Main reference numbers: 1... Optical fiber coated with UV resin, 2... Ultraviolet lamp, 3... Reflector, 4... Housing.

Claims (1)

【特許請求の範囲】 1 紫外線光源からの紫外線を集光して、線条の
紫外線被照射物に照射し硬化させる反射鏡を備え
る紫外線照射装置において、該反射鏡は、波長
300〜450nmの範囲内に含まれる光を反射し、該
範囲外の波長の光を吸収または透過するようにな
されていることを特徴とする紫外線照射装置。 2 前記反射鏡は、波長300〜450nmの光を反射
し、その範囲外の光を透過する干渉膜で被覆され
たガラスであることを特徴とする特許請求の範囲
第1項記載の紫外線照射装置。 3 前記反射鏡の外側には、該反射鏡を透過した
光を吸収する光吸収体が配置されていることを特
徴とする特許請求の範囲第2項記載の紫外線照射
装置。
[Scope of Claims] 1. In an ultraviolet irradiation device equipped with a reflecting mirror that condenses ultraviolet rays from an ultraviolet light source and irradiates a linear ultraviolet irradiated object to cure the ultraviolet rays, the reflecting mirror has a wavelength
An ultraviolet irradiation device characterized in that it reflects light within a range of 300 to 450 nm and absorbs or transmits light with a wavelength outside the range. 2. The ultraviolet irradiation device according to claim 1, wherein the reflecting mirror is glass coated with an interference film that reflects light with a wavelength of 300 to 450 nm and transmits light outside that range. . 3. The ultraviolet irradiation device according to claim 2, wherein a light absorber is disposed outside the reflecting mirror to absorb the light transmitted through the reflecting mirror.
JP61042357A 1986-02-27 1986-02-27 Device for irradiating ultraviolet ray Granted JPS62201639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61042357A JPS62201639A (en) 1986-02-27 1986-02-27 Device for irradiating ultraviolet ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61042357A JPS62201639A (en) 1986-02-27 1986-02-27 Device for irradiating ultraviolet ray

Publications (2)

Publication Number Publication Date
JPS62201639A JPS62201639A (en) 1987-09-05
JPH0438703B2 true JPH0438703B2 (en) 1992-06-25

Family

ID=12633780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61042357A Granted JPS62201639A (en) 1986-02-27 1986-02-27 Device for irradiating ultraviolet ray

Country Status (1)

Country Link
JP (1) JPS62201639A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279007A (en) * 1988-09-16 1990-03-19 Sumitomo Electric Ind Ltd Coated optical fiber
DE29607581U1 (en) * 1996-04-26 1996-12-05 Frank Andreas UV flange reactor for irradiation of ultraviolet light in a reaction medium
CN104526936A (en) * 2014-12-31 2015-04-22 苏州立人听力器材有限公司 Rotary type light-curing device
CN104526938A (en) * 2014-12-31 2015-04-22 苏州立人听力器材有限公司 Ultraviolet lamp light curing machine
CN104526937A (en) * 2014-12-31 2015-04-22 苏州立人听力器材有限公司 Upper opening type curing machine
CN112723757B (en) * 2020-12-25 2021-12-14 武汉长盈通光电技术股份有限公司 Device and method for supplying coating for optical fiber drawing

Also Published As

Publication number Publication date
JPS62201639A (en) 1987-09-05

Similar Documents

Publication Publication Date Title
KR840001876B1 (en) Ultraviolet ab sorbers in oplical fiber coatings
JP6605464B2 (en) Curing apparatus, photoreactive system, and method
KR900001646B1 (en) Flare reduction in hologrames
JP2001316136A (en) Laser hardening system
JPH0438703B2 (en)
US6599585B2 (en) UV curing system for heat sensitive substances and process
WO2018186056A1 (en) Light source device for curing resin
CN111508872B (en) Light irradiation device and semiconductor processing apparatus
GB2155357A (en) Optical fibres
JPS61158451A (en) Ultraviolet-ray irradiating device
JPH04506031A (en) Improved curing furnace
RU2093864C1 (en) Dielectric coat for laser mirror
JP2003176157A (en) Optical fiber recoating device
JP3354825B2 (en) UV irradiation device
JPH06104217B2 (en) UV irradiation device
JP2602087Y2 (en) UV irradiation device
JPS61158454A (en) Ultraviolet-ray irradiating device
JPH05156050A (en) Luminous apparatus of ultraviolet lamp with electrode
JP2915181B2 (en) Microwave electrodeless light emitting device
JPH06130205A (en) Formation of microlens
JPH0651585B2 (en) Manufacturing equipment for glass fiber for optical transmission
JP2712349B2 (en) Light reflector and tube
PT891872E (en) PROCESS OF OBTAINING A REASON FOR A TRANSPARENT SUBSTRATE
JPS61158453A (en) Ultraviolet-ray irradiating device
JPS61220844A (en) Ultraviolet rays irradiator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term