JPH0438134A - Permanent magnet rotor - Google Patents

Permanent magnet rotor

Info

Publication number
JPH0438134A
JPH0438134A JP2141372A JP14137290A JPH0438134A JP H0438134 A JPH0438134 A JP H0438134A JP 2141372 A JP2141372 A JP 2141372A JP 14137290 A JP14137290 A JP 14137290A JP H0438134 A JPH0438134 A JP H0438134A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet pieces
core member
poles
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2141372A
Other languages
Japanese (ja)
Inventor
Hisanori Toyoshima
久則 豊島
Fumio Joraku
文夫 常楽
Yoshitaro Ishii
石井 吉太郎
Mitsuhisa Kawamata
光久 川又
Kunio Miyashita
邦夫 宮下
Haruo Oharagi
春雄 小原木
Kazuo Tawara
田原 和雄
Takashi Abe
安部 岳志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2141372A priority Critical patent/JPH0438134A/en
Priority to EP91108590A priority patent/EP0459355A1/en
Priority to KR1019910008834A priority patent/KR100204971B1/en
Publication of JPH0438134A publication Critical patent/JPH0438134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Frames (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To improve balance accuracy and to stabilize magnetic distribution characteristics during rotation by an arrangement wherein same poles of a plurality of tile type permanent magnet pieces are brought into contact to one another and diecast members are filled between different poles. CONSTITUTION:A diecast member 8 is fed from an annular groove 10 through six pouring gates 9 and a plurality of grooves 11 in a core member 4 into a gap 14 between magnet pieces 3 and a gap 15 formed by the beveled face of the magnet piece 3 to be filled therein. At this time, the magnet piece 3 is pressed in the circumferential direction by the diecast member 8 filled in the gap 14 to bring magnet pieces 3a-3b and 3c-3d into contact thus securing the magnet piece tightly. By such arrangement, degradation of magnetic distribution after magnetization in the central part of pole, i.e. the fitting parts of the magnet pieces 3a-3b and 3c-3d, can be prevented stably.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、永久磁石形回転子に係り、特に瓦状永久磁石
片の配置精度を向上させた永久磁石回転子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a permanent magnet rotor, and more particularly to a permanent magnet rotor with improved placement accuracy of shingled permanent magnet pieces.

〔従来の技術〕[Conventional technology]

従来、分割された永久磁石をアルミニウム、亜鉛等のダ
イカイト材を用いてヨークおよび表面保護部材とを一体
固着する永久磁石回転子の位置決めや、組立寸法精度向
上に関する考察の例は、実開昭64−25874号等に
見られるが、磁極を構成する瓦状永久磁石片相互の配置
精度や磁気分布特性のバラツキ防止等については配慮さ
れていなかった。
Conventionally, an example of consideration regarding positioning of a permanent magnet rotor and improvement of assembly dimensional accuracy, in which divided permanent magnets are integrally fixed to a yoke and a surface protection member using diakite material such as aluminum or zinc, is given in U.S. Pat. No. 25874, etc., but no consideration was given to the mutual arrangement accuracy of the shingled permanent magnet pieces constituting the magnetic poles, or to the prevention of variations in magnetic distribution characteristics.

特に近年、回転機は高速化用途が増大して来ており、ま
た、インバータ等電子回路を用いて駆動するブラシレス
モータ等の用途も増大している。
Particularly in recent years, applications for high-speed rotating machines have been increasing, and applications for brushless motors and the like driven using electronic circuits such as inverters have also been increasing.

このような背景にあって永久磁石回転子の極数は、多極
構成よりも極数の少ない2極構成の方が、駆動する電子
回路の通電切替周波数も低くてすみ。
Against this background, when the permanent magnet rotor has a two-pole configuration with fewer poles than a multi-pole configuration, the energization switching frequency of the driving electronic circuit can be lowered.

高速化する面から見ると技術的に有利である。This is technically advantageous in terms of speeding up.

一方、永久磁石の製造技術面から見ると、第6図の如く
瓦状永久磁石のひろがり角θは、140〜160°が、
所定の磁気特性と寸法精度を得る限度であり、θ岬18
0°の永久磁石2片で2極を構成することは、困難であ
る。
On the other hand, from the viewpoint of manufacturing technology of permanent magnets, the spreading angle θ of the tiled permanent magnet is 140 to 160° as shown in Fig. 6.
This is the limit for obtaining the specified magnetic properties and dimensional accuracy, and θ Misaki 18
It is difficult to construct two poles with two pieces of 0° permanent magnet.

このことから、第4図の如く、θ≠90″の永久磁石4
片で構成し、2極に着磁する方式が現実的であり、永久
磁石のねじれや寸法精度の誤差を吸収して組立てること
ができ有利である。反面、各磁極片は、寸法公差上のバ
ラツキで片間に隙間が生じた場合、周方向に移動してし
まい、第2図の如く、隙間Gz + Gz 、Gs t
 G4がそれぞれ異なってしまう。特に、看磁時、磁極
中央部となるGl r Ga部の隙間は、最少となるこ
とが望ましいが、大きくなってしまうと、第5図の着磁
後磁気分布特性の如く、磁極中央部に谷部を生じてしま
い、良好な回転機特性が得られなくなってしまう問題が
あった。
From this, as shown in Fig. 4, the permanent magnet 4 with θ≠90''
A method in which the magnet is composed of a single piece and magnetized into two poles is practical, and is advantageous because it can be assembled while absorbing the torsion of the permanent magnet and errors in dimensional accuracy. On the other hand, if a gap is created between each magnetic pole piece due to variations in dimensional tolerance, it will move in the circumferential direction, and as shown in Figure 2, the gap Gz + Gz, Gs t
Each G4 is different. In particular, it is desirable that the gap between the Gl r Ga region, which becomes the center of the magnetic pole, be minimized during magnetization, but if it becomes large, as shown in the magnetic distribution characteristics after magnetization in Figure 5, the gap in the center of the magnetic pole will be There was a problem in that valleys were formed, making it impossible to obtain good rotating machine characteristics.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では、また各磁極片を回転軸に対して対称
となるように配置できないと回転アンバランスを生じ、
振動騒音の面でも不利になる問題があった。
In the above-mentioned conventional technology, rotational imbalance occurs if each magnetic pole piece cannot be arranged symmetrically with respect to the rotation axis.
There was also a disadvantage in terms of vibration and noise.

本発明の目的は、永久磁石片の配置精度を向上させ、回
転時におけるバランス精度の向上、磁気分布特性の安定
化を図ることにある。
An object of the present invention is to improve the placement accuracy of permanent magnet pieces, improve balance accuracy during rotation, and stabilize magnetic distribution characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、円筒状のコア部材と、この
コア部材の外周に配置した複数個の瓦状永久磁石片と、
これら瓦状永久磁石片の外周に配置した非磁性体円筒と
を備えた永久磁石形回転子において、前記複数個の瓦状
永久磁石片の同極同志は当接させるとともに、前記複数
個の瓦状永久磁石片の異極間にはダイカスト材を充填し
たものである。
In order to achieve the above object, a cylindrical core member, a plurality of tile-shaped permanent magnet pieces arranged around the outer periphery of this core member,
In a permanent magnet type rotor equipped with a non-magnetic cylinder arranged around the outer periphery of these tile-shaped permanent magnet pieces, the plurality of tile-shaped permanent magnet pieces are brought into contact with each other with the same polarity, and the plurality of tile-shaped permanent magnet pieces are brought into contact with each other. A die-casting material is filled between the different poles of the shaped permanent magnet pieces.

〔作用〕[Effect]

永久磁石片間に充てんされるダイカスト材により、永久
磁石片は、周方向に押圧され、磁極の中央部となる永久
磁石片間の隙間が最小となるように一体固着されるので
、磁極中央部での磁気分布の低下を生じることはない。
The permanent magnet pieces are pressed in the circumferential direction by the die-casting material filled between the permanent magnet pieces, and are fixed together so that the gap between the permanent magnet pieces, which forms the center of the magnetic pole, is minimized. There is no decrease in the magnetic distribution.

コア部に設けた位置決め用の凸部を隙間に位置させるこ
とによって永久磁石片の基準位置を安定的に設定でき、
回転軸に対して対称に永久磁石片が配置され、回転バラ
ンス精度を向上できる。
By positioning the positioning convex part provided on the core part in the gap, the reference position of the permanent magnet piece can be stably set.
Permanent magnet pieces are arranged symmetrically with respect to the rotation axis, improving rotational balance accuracy.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図から第3図において、1は永久磁石回転子、2は
非磁性体円筒、3は瓦状永久磁石片、4は積層鋼板から
なる円筒状のコア部材、5,6は、非磁性体からなる端
板、7は回転軸である。
In FIGS. 1 to 3, 1 is a permanent magnet rotor, 2 is a non-magnetic cylinder, 3 is a shingled permanent magnet piece, 4 is a cylindrical core member made of laminated steel plates, and 5 and 6 are non-magnetic The end plate 7 is a rotating shaft.

8はダイカスト部材で、端板5に設けた湯口9から、そ
れに対向してヨーク4に設けた複数個の溝11および磁
石片3間の間隙を通って回転子1内の空間部に充てんさ
れる。
Reference numeral 8 denotes a die-cast member, which is filled into the space inside the rotor 1 through a sprue 9 provided in the end plate 5, through a plurality of grooves 11 provided in the yoke 4 facing it, and through gaps between the magnet pieces 3. Ru.

第3図は、本発明の一実施例の示す縦断面図、第1図は
、その径方向の断面図であり、第2図は組立途中の斜視
図を示す。第4図は従来例を示す縦断面図であり、同一
機能部材には同一符号を付しである。第4図において、
12はダイカスト注入導路となる穴である。第4図から
第6図については、従来技術の項で説明した。
FIG. 3 is a longitudinal cross-sectional view of one embodiment of the present invention, FIG. 1 is a radial cross-sectional view thereof, and FIG. 2 is a perspective view during assembly. FIG. 4 is a longitudinal sectional view showing a conventional example, in which the same functional members are given the same reference numerals. In Figure 4,
Reference numeral 12 denotes a hole that becomes a die-casting injection path. 4 to 6 have been explained in the section of the prior art.

第1図の径方向断面図において、13はコア部材4に設
けた凸部で、磁石片3に付しである後工程での着磁極性
N、S極間に位置させである。本実施例では、2極を4
個の磁石片3で構成してあり、凸部13は2個設けであ
る。
In the radial cross-sectional view of FIG. 1, reference numeral 13 denotes a convex portion provided on the core member 4, which is placed between the N and S poles of magnetization polarity in a subsequent process attached to the magnet piece 3. In this example, 2 poles are used as 4 poles.
It is composed of two magnet pieces 3, and two protrusions 13 are provided.

第1図に一点鎖線で示す環状溝10から6個の湯口9(
第1図に点線で示す)を通り、コア部材4の複数個の溝
11を経て、磁石片3間の空隙14や磁石片3の面取り
仕上面の作る空隙15゜16にも充てんされる。この時
、空隙14間に充てんされるダイカスト材により、磁石
片3は、周方向に押圧され、第1図に示すように磁石片
3a−3b問および3+c−3d間で磁石片3が当接し
て隙間が生じない状態で磁石片3が固着される。
Six sprues 9 (
(shown by dotted lines in FIG. 1), passes through the plurality of grooves 11 in the core member 4, and fills the gaps 14 between the magnet pieces 3 and the gaps 15° 16 formed by the chamfered surfaces of the magnet pieces 3. At this time, the die-casting material filled between the gaps 14 presses the magnet pieces 3 in the circumferential direction, and as shown in FIG. The magnet pieces 3 are fixed without any gaps.

従って、第5図の点線で示す磁気分布特性のように、着
磁後磁極中央部となる磁石片3a−3b。
Therefore, as shown in the magnetic distribution characteristics shown by the dotted line in FIG. 5, the magnet pieces 3a-3b become the central part of the magnetic pole after magnetization.

3cm3d合せ部での低下を安定的に防止できる。It is possible to stably prevent the drop at the 3cm3d joint part.

またN極、S極の磁極間となる磁石片3a−3d間、3
b−3c間には、積極的に空隙を設けることになるが、
磁束分布が、零となる切替り部であり、磁気特性を変え
ることはない。
Also, between the magnetic pieces 3a and 3d between the N and S poles, 3
A gap will be actively provided between b and 3c,
This is a switching section where the magnetic flux distribution becomes zero, and the magnetic characteristics do not change.

永久磁石片3は、コア部材4の凸部13とダイカスト材
充てんにより押圧され、軸7に対称に配置される。また
、溝11にもダイカスト材が充てんされることにより永
久磁石片3は、それぞれ、外周に位置する非磁性体円筒
2の内周面に押圧された状態で固着する。
The permanent magnet piece 3 is pressed by the convex portion 13 of the core member 4 and the die-casting material filling, and is arranged symmetrically about the axis 7. Furthermore, by filling the grooves 11 with the die-casting material, the permanent magnet pieces 3 are fixed to the inner peripheral surface of the non-magnetic cylinder 2 located on the outer periphery while being pressed.

すなわち、永久磁石片3はそれぞれ、周方向および径方
向においても安定的に対称位置に配置される。従って、
永久磁石片3の配置位置のバラツキによる回転アンバラ
ンスの発生を防ぐことができ、永久磁石回転子1の回転
振動および騒音を低減することができる。
That is, the permanent magnet pieces 3 are each stably arranged at symmetrical positions also in the circumferential direction and the radial direction. Therefore,
It is possible to prevent the occurrence of rotational imbalance due to variations in the arrangement positions of the permanent magnet pieces 3, and it is possible to reduce rotational vibration and noise of the permanent magnet rotor 1.

本実施例では、位置決め用の凸部13は、コア部材4に
一体に形成されているが、これに限定されるものではな
い。永久磁石片3の位置決め部材としでは、コア部材4
とは、別体のピースとし、そのピースを非磁性円筒側に
設ける構造としてもよい。
In this embodiment, the positioning convex portion 13 is formed integrally with the core member 4, but the present invention is not limited thereto. As a positioning member for the permanent magnet piece 3, the core member 4
Alternatively, a structure may be adopted in which a separate piece is provided and the piece is provided on the non-magnetic cylinder side.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、永久磁石片3間に充てんされるダイカ
スト材により、永久磁石片3は、周方向に押圧され、磁
極の中央部となる永久磁石片間の隙間が最小となるよう
保持された状態で、ダイカストされ一体固着されるので
、磁極中央部での磁気分布低下を生じることがない。
According to the present invention, the permanent magnet pieces 3 are pressed in the circumferential direction by the die-casting material filled between the permanent magnet pieces 3, and are held so that the gap between the permanent magnet pieces that forms the center part of the magnetic pole is minimized. Since the magnetic poles are die-cast and fixed together in the same state, the magnetic distribution at the center of the magnetic poles does not deteriorate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す要部縦断面図。 第2図は要部斜視図、第3図は第1図の1−1断面図、
第4図は従来例を示す要部縦断面図、第5図は着磁後の
磁気分布特性図、第6図は永久磁石片の側面図である。 1・・・永久磁石回転子、2・・・非磁性体円筒、3・
・瓦状永久磁石片、4・・コア部材、8・・・ダイカス
ト材、第 図 第 図 第 図 第 図
FIG. 1 is a vertical cross-sectional view of essential parts showing an embodiment of the present invention. Figure 2 is a perspective view of the main parts, Figure 3 is a 1-1 sectional view of Figure 1,
FIG. 4 is a vertical sectional view of a main part showing a conventional example, FIG. 5 is a magnetic distribution characteristic diagram after magnetization, and FIG. 6 is a side view of a permanent magnet piece. 1... Permanent magnet rotor, 2... Non-magnetic cylinder, 3...
- Tile-shaped permanent magnet piece, 4... Core member, 8... Die-casting material, Fig. Fig. Fig. Fig.

Claims (1)

【特許請求の範囲】 1、円筒状のコア部材と、このコア部材の外周に配置し
た複数個の瓦状永久磁石片と、これら瓦状永久磁石片の
外周に配置した非磁性体円筒とを備え、前記複数個の瓦
状永久磁石片の同極同志は当接させるとともに、前記複
数個の瓦状永久磁石片の異極間にはダイカスト材を充填
してなることを特徴とする永久磁石形回転子。 2、前記複数個の瓦状永久磁石片の異極間内に延在する
凸部を、前記コア部材と一体に設けたことを特徴とする
請求項1記載の永久磁石形回転子。 3、円筒状のコア部材と、このコア部材の外周に配置し
た複数個の瓦状永久磁石片と、これら瓦状永久磁石片の
外周に配置した非磁性体円筒と、この円筒の端面に設け
た端板とを備え、前記複数個の瓦状永久磁石片の異極間
内に位置決め部材を配設して、前記複数個の瓦状永久磁
石片の異極間は隙間を保持するとともに、前記複数個の
瓦状永久磁石片の同極同志は当接させてなる永久磁石形
回転子において、前記端板には、環状溝とこの環状溝に
連通する複数個の湯口とを設け、しかも、前記コア部材
には、軸方向に延びる複数個の溝を設けるとともに、前
記湯口は、前記複数個の瓦状永久磁石片の異極間の隙間
若しくは前記コア部材の溝に対向させてなることを特徴
とする永久磁石形回転子。 4、前記位置決め部材は、前記コア部材の外周に設けた
凸部としたことを特徴とする請求項3記載の永久磁石形
回転子。 5、前記永久磁石片は、N極となる2個の永久磁石片と
、S極となる2個の永久磁石片とからなり、これら永久
磁石片を、前記コア部材の外周に、N極−N極−S極−
S極の順で配置してなることを特徴とする請求項3記載
の永久磁石形回転子。 6、円筒状のコア部材と、このコア部材の外周に配置し
た複数個の瓦状永久磁石片と、これら瓦状永久磁石片の
外周に配置した非磁性筒体と、この非磁性筒体の両端面
に設けた端板とを備え、前記瓦状永久磁石片は、N極と
なる2個の永久磁石片と、S極となる2個の永久磁石片
とからなり、これら永久磁石片を、前記コア部材の外周
に、N極−N極−S極−S極の順で配置し、しかも、前
記永久磁石のN極とS極との間には、前記コア部材の外
周に設けた位置決め用の凸部を位置させることにより、
隙間を保持させるとともに、この隙間に前記端板に設け
た湯口からダイカスト材を充填させることにより、前記
永久磁石のN極同志及びS極同志を当接させてなる永久
磁石形回転子。 7、前記コア部材の外周面には、軸方向に延びる溝を4
個設けるとともに、前記端板には、前記コア部材の溝に
対向する湯口を設けたことを特徴とする請求項6記載の
永久磁石形回転子。 8、前記コア部材の外周面に設けた溝は、断面形状を半
円状としてなることを特徴とする請求項7記載の永久磁
石形回転子。
[Claims] 1. A cylindrical core member, a plurality of shingled permanent magnet pieces arranged around the outer periphery of this core member, and a non-magnetic cylinder arranged around the outer periphery of these shingled permanent magnet pieces. A permanent magnet, characterized in that the plurality of tile-shaped permanent magnet pieces are brought into contact with each other with the same polarity, and die-casting material is filled between the different polarities of the plurality of tile-shaped permanent magnet pieces. shaped rotor. 2. The permanent magnet rotor according to claim 1, wherein a convex portion extending between different poles of the plurality of shingled permanent magnet pieces is provided integrally with the core member. 3. A cylindrical core member, a plurality of tile-shaped permanent magnet pieces arranged on the outer periphery of this core member, a non-magnetic cylinder arranged on the outer periphery of these tile-shaped permanent magnet pieces, and a non-magnetic cylinder arranged on the end face of this cylinder. a positioning member is provided between the different poles of the plurality of tile-shaped permanent magnet pieces, and a gap is maintained between the different poles of the plurality of tile-shaped permanent magnet pieces; In the permanent magnet rotor in which the plurality of tile-shaped permanent magnet pieces are brought into contact with each other with the same polarity, the end plate is provided with an annular groove and a plurality of sprues communicating with the annular groove, and , the core member is provided with a plurality of grooves extending in the axial direction, and the sprue is opposed to a gap between different poles of the plurality of shingled permanent magnet pieces or to a groove in the core member. A permanent magnet rotor featuring: 4. The permanent magnet rotor according to claim 3, wherein the positioning member is a convex portion provided on the outer periphery of the core member. 5. The permanent magnet pieces are composed of two permanent magnet pieces that serve as N poles and two permanent magnet pieces that serve as S poles, and these permanent magnet pieces are attached to the outer periphery of the core member. N pole - S pole -
4. The permanent magnet rotor according to claim 3, wherein the permanent magnet rotor is arranged in the order of south pole. 6. A cylindrical core member, a plurality of shingled permanent magnet pieces arranged around the outer periphery of this core member, a non-magnetic cylinder arranged around the outer periphery of these shingled permanent magnet pieces, and a non-magnetic cylindrical body. The tile-shaped permanent magnet piece includes two permanent magnet pieces that serve as north poles and two permanent magnet pieces that serve as south poles. , are arranged on the outer periphery of the core member in the order of N pole-N pole-S pole-S pole, and between the N pole and the S pole of the permanent magnet are provided on the outer periphery of the core member. By positioning the protrusion for positioning,
A permanent magnet type rotor in which the N poles and the S poles of the permanent magnets are brought into contact with each other by maintaining a gap and filling this gap with die casting material from a sprue provided in the end plate. 7. A groove extending in the axial direction is formed on the outer peripheral surface of the core member.
7. The permanent magnet type rotor according to claim 6, wherein the end plate is provided with a sprue facing the groove of the core member. 8. The permanent magnet rotor according to claim 7, wherein the groove provided on the outer peripheral surface of the core member has a semicircular cross-sectional shape.
JP2141372A 1990-06-01 1990-06-01 Permanent magnet rotor Pending JPH0438134A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2141372A JPH0438134A (en) 1990-06-01 1990-06-01 Permanent magnet rotor
EP91108590A EP0459355A1 (en) 1990-06-01 1991-05-27 Permanent magnet type rotor
KR1019910008834A KR100204971B1 (en) 1990-06-01 1991-05-30 Permanent magnet type rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2141372A JPH0438134A (en) 1990-06-01 1990-06-01 Permanent magnet rotor

Publications (1)

Publication Number Publication Date
JPH0438134A true JPH0438134A (en) 1992-02-07

Family

ID=15290461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2141372A Pending JPH0438134A (en) 1990-06-01 1990-06-01 Permanent magnet rotor

Country Status (1)

Country Link
JP (1) JPH0438134A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001218402A (en) * 2000-02-04 2001-08-10 Isuzu Motors Ltd Electric rotating machine
JP2002186206A (en) * 2000-12-04 2002-06-28 Alstom Power Nv Method for manufacturing rotor of synchronous machine having permanent magnet, and rotor manufactured by the method
KR100687528B1 (en) * 1997-10-24 2007-05-17 가부시키가이샤 후지쯔 제네랄 Permanent magnet rotor type electric motor
KR100687529B1 (en) * 1997-10-29 2007-05-17 가부시키가이샤 후지쯔 제네랄 Permanent magnet rotor type electric motor
JP2008022587A (en) * 2006-07-10 2008-01-31 Toyota Motor Corp Ipm rotor, manufacturing method therefor, and manufacturing apparatus
JP2009017709A (en) * 2007-07-06 2009-01-22 Nidec Sankyo Corp Motor
JP2009512413A (en) * 2005-10-11 2009-03-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Rotor used in electrical machines
KR20150086484A (en) * 2012-11-23 2015-07-28 콘티넨탈 오토모티브 게엠베하 Rotor of an electric motor and method for producing the rotor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100687528B1 (en) * 1997-10-24 2007-05-17 가부시키가이샤 후지쯔 제네랄 Permanent magnet rotor type electric motor
KR100687529B1 (en) * 1997-10-29 2007-05-17 가부시키가이샤 후지쯔 제네랄 Permanent magnet rotor type electric motor
JP2001218402A (en) * 2000-02-04 2001-08-10 Isuzu Motors Ltd Electric rotating machine
JP2002186206A (en) * 2000-12-04 2002-06-28 Alstom Power Nv Method for manufacturing rotor of synchronous machine having permanent magnet, and rotor manufactured by the method
JP2009512413A (en) * 2005-10-11 2009-03-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Rotor used in electrical machines
JP2008022587A (en) * 2006-07-10 2008-01-31 Toyota Motor Corp Ipm rotor, manufacturing method therefor, and manufacturing apparatus
JP4725442B2 (en) * 2006-07-10 2011-07-13 トヨタ自動車株式会社 IPM rotor and method of manufacturing IPM rotor
US8415849B2 (en) 2006-07-10 2013-04-09 Toyota Jidosha Kabushiki Kaisha IPM rotor and IPM rotor manufacturing method
JP2009017709A (en) * 2007-07-06 2009-01-22 Nidec Sankyo Corp Motor
KR20150086484A (en) * 2012-11-23 2015-07-28 콘티넨탈 오토모티브 게엠베하 Rotor of an electric motor and method for producing the rotor
JP2016502389A (en) * 2012-11-23 2016-01-21 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH Rotor for electric motor and method for manufacturing the rotor

Similar Documents

Publication Publication Date Title
US9966809B2 (en) Motor
US6043583A (en) Motor structure
US7323801B2 (en) Axial air-gap electronic motor
JP4310611B2 (en) Permanent magnet motor
CA1135761A (en) Permanent magnet motor armature
WO1992009132A1 (en) Rotor of brushless motor
KR100204971B1 (en) Permanent magnet type rotor
JP5501660B2 (en) Electric motor and its rotor
JP3752946B2 (en) Manufacturing method of rotor of rotating machine
JPH06245419A (en) Yoke for motor or generator
JPH0438134A (en) Permanent magnet rotor
JP2002218683A (en) Rotor of rotating machine
KR20060045356A (en) Rotor of motor
JPS6364556A (en) Manufacture of rotor with permanent magnet
JPH05207690A (en) Rotor for synchronous motor
JP3268762B2 (en) Rotor of rotating electric machine and method of manufacturing the same
JPH03106850U (en)
JPH04133637A (en) Permanent magnet type rotor
JPH09168247A (en) Inner rotor brushless motor
KR20200108636A (en) Rotor using bonded magnet and motor comprising the same
JP2005039909A (en) Permanent magnet embedded type motor
JP3865332B2 (en) Permanent magnet motor
JP2526141Y2 (en) Permanent magnet rotor
US4914334A (en) Permanent magnet DC machine
JP2003047186A (en) Rotor for rotary electric machine