JPH0437909Y2 - - Google Patents

Info

Publication number
JPH0437909Y2
JPH0437909Y2 JP16214887U JP16214887U JPH0437909Y2 JP H0437909 Y2 JPH0437909 Y2 JP H0437909Y2 JP 16214887 U JP16214887 U JP 16214887U JP 16214887 U JP16214887 U JP 16214887U JP H0437909 Y2 JPH0437909 Y2 JP H0437909Y2
Authority
JP
Japan
Prior art keywords
electron beam
liquid nitrogen
molecular beam
crystal growth
nitrogen shroud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16214887U
Other languages
Japanese (ja)
Other versions
JPH0165870U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16214887U priority Critical patent/JPH0437909Y2/ja
Publication of JPH0165870U publication Critical patent/JPH0165870U/ja
Application granted granted Critical
Publication of JPH0437909Y2 publication Critical patent/JPH0437909Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【考案の詳細な説明】 [概要] 分子線結晶成長装置に係り、特に、成長結晶の
監視機構の改善に関し、 反射型高エネルギー電子線回折装置の回折像を
正しく写出させることを目的とし、 反射型高エネルギー電子線回折装置を組み込ん
だ分子線結晶成長装置において、前記反射型高エ
ネルギー電子線回折装置からの発射電子線および
反射電子線が通過する少なくとも液体窒素シユラ
ウド近傍の通路周囲を帯電防止プレートで包囲
し、且つ、該帯電防止プレートと液体窒素シユラ
ウドを非接触とすることを特徴とする。
[Detailed description of the invention] [Summary] This invention relates to molecular beam crystal growth devices, and in particular, to improving the monitoring mechanism for growing crystals, with the aim of correctly imaging the diffraction image of a reflection-type high-energy electron beam diffraction device. In a molecular beam crystal growth apparatus incorporating a reflection-type high-energy electron beam diffraction device, anti-static charge is provided at least around a passage near a liquid nitrogen shroud through which the emitted electron beam and reflected electron beam from the reflection-type high-energy electron beam diffraction device pass. The antistatic plate is surrounded by a plate, and the antistatic plate and the liquid nitrogen shroud are not in contact with each other.

[産業上の利用分野] 本考案は分子線結晶成長装置に係り、特に成長
結晶の監視(チエツク)機構の改善に関する。
[Industrial Field of Application] The present invention relates to a molecular beam crystal growth apparatus, and particularly to an improvement in a mechanism for monitoring growing crystals.

結晶基板に沿つて半導体膜をエピタシシヤル成
長するエピタキシー法は半導体製造における基礎
技術として知られている。このエピタキシー法の
注目技術として、分子線エピタキシー法が開発さ
れており、これは超高真空(10 Torr以下)下で
金属ソースまたは金属化合物ソースを放射して成
長させる方法で、化合物半導体の結晶成長に利用
されている。
The epitaxy method of epitaxially growing a semiconductor film along a crystal substrate is known as a basic technology in semiconductor manufacturing. Molecular beam epitaxy has been developed as a notable technology for this epitaxy method, and this is a method of growing crystals of compound semiconductors by irradiating a metal source or metal compound source under ultra-high vacuum (10 Torr or less). It is used for.

このような分子線エピタキシー法を適用した分
子線結晶成長装置においては、結晶成長中に結晶
性をチエツクしながら結晶層を成長させる方法が
採られており、そのチエツクは当然、正確におこ
なわれなければならない。
In molecular beam crystal growth equipment that uses such molecular beam epitaxy, a method is adopted in which a crystal layer is grown while checking the crystallinity during crystal growth, and this checking must of course be performed accurately. Must be.

[従来の技術] 第3図は反射型高エネルギー電子線回折装置
(RHEED;Reflective High Energy Electron
Diffraction)を組み込んだ分子線結晶成長
(MBE)装置の概要を示しており、1は高真空成
長室,2はウエハー(被成長基盤),3は基板ホ
ルダー,4は分子線源セル,5は液体窒素シユラ
ウド,6は基板準備室に通じるゲートバルブであ
る。また、8は電子線発射部,9は螢光スクリー
ンで、螢光スクリーン9背後には覗き窓(ビユー
イングポート)10が設けてある。
[Prior art] Figure 3 shows a reflective high energy electron diffraction device (RHEED).
This figure shows an overview of a molecular beam crystal growth (MBE) system incorporating a Diffraction system, in which 1 is a high vacuum growth chamber, 2 is a wafer (substrate to be grown), 3 is a substrate holder, 4 is a molecular beam source cell, and 5 is a The liquid nitrogen shroud 6 is a gate valve leading to the substrate preparation chamber. Further, 8 is an electron beam emitting unit, 9 is a fluorescent screen, and a viewing port 10 is provided behind the fluorescent screen 9.

このように構成し、ウエハー2を加熱して、ウ
エハーの対向位置に設けた複数の分子線源セルか
ら分子線を照射して、ウエハー面に結晶層を成長
させている。例えば、ウエハーがGaAs基板の場
合には600〜700℃に加熱され、その基板表面に
GaAs結晶層を成長させる場合はAs分子線源セ
ル,Ga分子線源セルその他のドーパント分子線
源セルがウエハーに対向して配置されている。且
つ、液体窒素シユラウド5は成長室内の不純物を
吸着して、成長領域を超高真空に維持するための
冷却体である。
With this configuration, a crystal layer is grown on the wafer surface by heating the wafer 2 and irradiating molecular beams from a plurality of molecular beam source cells provided at positions facing the wafer. For example, if the wafer is a GaAs substrate, it is heated to 600 to 700℃, and the surface of the substrate is
When growing a GaAs crystal layer, an As molecular beam source cell, a Ga molecular beam source cell, and other dopant molecular beam source cells are placed facing the wafer. Further, the liquid nitrogen shroud 5 is a cooling body for adsorbing impurities in the growth chamber and maintaining the growth region at an ultra-high vacuum.

この結晶成長装置を用いて、ウエハー2に分子
線エピタキシヤル成長を行なう場合、成長層の結
晶性や成長速度の様子を連続観察するために、通
常、RHEEDが組み込まれており、それは電子
銃,引出し電極,電磁コイルからなる電子線発射
部8と螢光スクリーン9,覗き窓10の観測部分
とで構成されている。電子線発射部8から発射し
た電子線をウエハーの表面に照射して散乱電子の
回折像を螢光スクリーン9に写し出し、その背後
の覗き窓10から回折像を観測する方式で、パタ
ーンを観測することにより結晶性の良否が判定さ
れる。また、その鏡面反射点の明暗の繰り返し回
数を観測して成長速度が検出できる。
When molecular beam epitaxial growth is performed on the wafer 2 using this crystal growth apparatus, RHEED is usually incorporated in order to continuously observe the crystallinity and growth rate of the grown layer. It consists of an electron beam emitting section 8 consisting of an extraction electrode and an electromagnetic coil, a fluorescent screen 9, and an observation section including a viewing window 10. The pattern is observed by irradiating the surface of the wafer with an electron beam emitted from an electron beam emitter 8, projecting a diffraction image of scattered electrons on a fluorescent screen 9, and observing the diffraction image through a viewing window 10 behind it. The quality of crystallinity is determined by this. In addition, the growth rate can be detected by observing the number of repetitions of brightness and darkness at the specular reflection point.

[考案が解決しようとする問題点] さて、上記のRHEEDは電子線をウエハー面に
発射して、更にウエハー面から反射させる関係
上、ウエハーに対して左右両側に電子線発射部と
螢光スクリーンが設けてあり、それは液体窒素シ
ユラウド5に孔をあけ、その孔部分を電子線が通
過するようになつている。
[Problems to be solved by the invention] Since the RHEED described above emits an electron beam onto the wafer surface and then reflects it from the wafer surface, there are electron beam emitters and fluorescent screens on both sides of the wafer. A hole is provided in the liquid nitrogen shroud 5 through which the electron beam passes.

しかしながら、液体窒素シユラウド5は液体窒
素温度という極低温度に冷却させてあり、その表
面にAsなどの不純物が付着して被覆され、それ
が冷却されて絶縁体になつている。
However, the liquid nitrogen shroud 5 is cooled to an extremely low temperature called liquid nitrogen temperature, and its surface is covered with impurities such as As, which are cooled and become an insulator.

その液体窒素シユラウド5表面の絶縁体は
RHEEDを操作中に電子線によつてチヤージアツ
プ(帯電)され、そのチヤージアツプのために電
子線が影響を受けて歪められ、回折像が歪むと云
う不具合が起きる。且つ、それが激しい場合は螢
光スクリーン上に像が表われないこともある。
The insulator on the surface of the liquid nitrogen shroud 5 is
During RHEED operation, the electron beam is charged up, and this charge up affects and distorts the electron beam, causing a problem in which the diffraction image is distorted. In addition, if it is severe, an image may not appear on the fluorescent screen.

従来、この回折像の歪を減少させるため、液体
窒素シユラウドに設ける孔径rを大きくして影響
を少なくする方法も採られているが、そうすれば
逆に、それは液体窒素シユラウドの吸着効果を低
減させ、真空度を低下させることになつて、結晶
品質上から余り好ましくはない。
Conventionally, in order to reduce the distortion of this diffraction image, a method has been adopted to reduce the effect by increasing the hole diameter r provided in the liquid nitrogen shroud, but this conversely reduces the adsorption effect of the liquid nitrogen shroud. This is not very preferable from the viewpoint of crystal quality, as it lowers the degree of vacuum.

本考案はそのような回折像の歪を解消させて、
正しい回折像を写出させることを目的とした分子
線結晶成長装置を提案するものである。
The present invention eliminates such distortion of the diffraction image,
This paper proposes a molecular beam crystal growth device that aims to produce accurate diffraction images.

[問題点を解決するための手段] その目的は、反射型高エネルギー電子線回折装
置を組み込んだ分子線結晶成長装置において、該
反射型高エネルギー電子線回折装置からの発射電
子線および反射電子線が通過する少なくとも液体
窒素シユラウド近傍の通路周囲を帯電防止プレー
トで包囲し、且つ、該帯電防止プレートと液体窒
素シユラウドとを非接触とする分子線結晶成長装
置によつて達成される。
[Means for Solving the Problems] The purpose is to provide a molecular beam crystal growth apparatus incorporating a reflection-type high-energy electron beam diffraction apparatus, in which emitted electron beams and reflected electron beams from the reflection-type high-energy electron beam diffraction apparatus are This is achieved by a molecular beam crystal growth apparatus in which an antistatic plate surrounds at least a passage near the liquid nitrogen shroud through which the antistatic plate passes, and the antistatic plate and the liquid nitrogen shroud are not in contact with each other.

[作用] 即ち、本考案は液体窒素シユラウド表面の絶縁
体の影響を避けるために、その近傍の電子線通路
周囲を帯電防止プレートで包囲し、且つ、それを
液体窒素シユラウドに接触せずに配設する。そう
すれば、電子線はチヤージアツプの影響を受け
ず、歪のない回折像を写出して観測できる。
[Function] That is, in order to avoid the influence of the insulator on the surface of the liquid nitrogen shroud, the present invention surrounds the electron beam path in the vicinity with an antistatic plate, and arranges it without contacting the liquid nitrogen shroud. Set up In this way, the electron beam will not be affected by charge up, and a distortion-free diffraction image can be imaged and observed.

[実施例] 以下、図面を参照して実施例によつて詳細に説
明する。
[Examples] Hereinafter, examples will be described in detail with reference to the drawings.

第1図は本考案にかかる分子線結晶成長装置の
断面図を示しており、e1は発射電子線,e2は反射
電子線,11は帯電防止プレート,その他の第3
図と同一部材には同一記号が付けてある。即ち、
帯電防止プレート11によつて電子線通路周囲を
包囲し、それを液体窒素シユラウドと接触しない
ように設置して接地させている。例えば、帯電防
止プレートはタンタル,モリブデンなど高融点金
属製で円筒状に形成し、これをフランジにネジ止
めして、液体窒素シユラウドから分離して配置に
する。そのように、液体窒素シユラウドから離し
ておくと冷却熱が伝導では伝わらず、また、真空
中のために輻射でも伝わらず、従つて、帯電防止
プレートは冷却されることが少なく、そのためプ
レート表面に不純物が付着しても絶縁体にはなら
ない。且つ、このプレートを接地させておくと、
接地電位に保持されチヤージアツプしない。な
お、この帯電防止プレートも同様に不純物が表面
に堆積するため、長期間には表面が絶縁化する恐
れがあり、従つて、帯電防止プレートは取替え可
能な取付け法が望ましい。
Figure 1 shows a cross-sectional view of the molecular beam crystal growth apparatus according to the present invention, where e 1 is an emitted electron beam, e 2 is a reflected electron beam, 11 is an antistatic plate, and other tertiary elements.
Components that are the same as those in the figures are given the same symbols. That is,
An antistatic plate 11 surrounds the electron beam path, and is installed and grounded so as not to come into contact with the liquid nitrogen shroud. For example, the antistatic plate is made of a high melting point metal such as tantalum or molybdenum and is formed into a cylindrical shape and is screwed to a flange so as to be separated from the liquid nitrogen shroud. As such, if the antistatic plate is kept away from the liquid nitrogen shroud, the cooling heat will not be transferred by conduction, nor will it be transferred by radiation because it is in a vacuum. Even if impurities adhere to it, it will not become an insulator. Moreover, if this plate is grounded,
It is held at ground potential and does not charge up. It should be noted that since impurities are similarly deposited on the surface of this antistatic plate, there is a risk that the surface will become insulated over a long period of time.Therefore, it is desirable that the antistatic plate be installed in a way that it can be replaced.

第2図はその取付け法の一例を示す部分断面図
で、12はフランジ,13はガスケツト,14は
ネジ、その他の部材の記号は第1図と同じである
が、本例はネジ14によつて接地させたフランジ
に取り付けしたものである。このようにすれば、
接地も容易で、且つ、プレートの交換も簡単にお
こなえる。
Fig. 2 is a partial sectional view showing an example of the mounting method, in which 12 is a flange, 13 is a gasket, 14 is a screw, and the symbols of other parts are the same as in Fig. 1, but in this example, the screw 14 is used. It is attached to a flange that is grounded. If you do this,
Grounding is easy and plates can be easily replaced.

[考案の効果] 以上の実施例の説明から明らかなように、本考
案にかかる帯電防止プレートを設けた分子線結晶
成長装置によれば、回折像を正しく写出・観測で
き、そのために正確に対応して高品質な結晶層が
安定して得られる効果がある。また、帯電防止プ
レートを発射電子線,反射電子線に対して精度良
く配置すれば、液体窒素シユラウドの孔は大きく
する必要はなく、従つて、高真空成長室は高真空
に維持され、結晶層の品質向上に一層寄与するも
のである。
[Effects of the invention] As is clear from the description of the embodiments above, the molecular beam crystal growth apparatus equipped with the antistatic plate according to the invention allows diffraction images to be correctly imaged and observed. Correspondingly, a high quality crystal layer can be stably obtained. In addition, if the antistatic plate is precisely placed with respect to the emitted and reflected electron beams, the holes in the liquid nitrogen shroud do not need to be large, and the high vacuum growth chamber can be maintained at high vacuum, allowing the crystal layer to grow. This will further contribute to improving the quality of the products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案にかかる分子線結晶成長装置の
断面図、第2図は帯電防止プレート取付けの部分
断面図、第3図は従来の分子線結晶成長装置の断
面図である。 図において、1は高真空成長室、2はウエハ
ー、3は基板ホルダー、4は分子線源セル、5は
液体窒素シユラウド、6はゲートバルブ、8は電
子線発射部、9は螢光スクリーン、10は覗き
窓、11は帯電防止プレート、12はフランジ、
13はガスケツト、14はネジ、を示している。
FIG. 1 is a sectional view of a molecular beam crystal growth apparatus according to the present invention, FIG. 2 is a partial sectional view of the attachment of an antistatic plate, and FIG. 3 is a sectional view of a conventional molecular beam crystal growth apparatus. In the figure, 1 is a high vacuum growth chamber, 2 is a wafer, 3 is a substrate holder, 4 is a molecular beam source cell, 5 is a liquid nitrogen shroud, 6 is a gate valve, 8 is an electron beam emitter, 9 is a fluorescent screen, 10 is a viewing window, 11 is an antistatic plate, 12 is a flange,
13 indicates a gasket, and 14 indicates a screw.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 反射型高エネルギー電子線回折装置を組み込ん
だ分子線結晶成長装置において、前記反射型高エ
ネルギー電子線回折装置からの発射電子線および
反射電子線が通過する少なくとも液体窒素シユラ
ウド近傍の通路周囲を帯電防止プレートで包囲
し、且つ、該帯電防止プレートと液体窒素シユラ
ウドとを非接触とすることを特徴とする分子線結
晶成長装置。
In a molecular beam crystal growth apparatus incorporating a reflection-type high-energy electron beam diffraction device, anti-static charge is provided at least around a passage near a liquid nitrogen shroud through which the emitted electron beam and reflected electron beam from the reflection-type high-energy electron beam diffraction device pass. A molecular beam crystal growth apparatus characterized in that the antistatic plate is surrounded by a plate, and the antistatic plate and a liquid nitrogen shroud are not in contact with each other.
JP16214887U 1987-10-22 1987-10-22 Expired JPH0437909Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16214887U JPH0437909Y2 (en) 1987-10-22 1987-10-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16214887U JPH0437909Y2 (en) 1987-10-22 1987-10-22

Publications (2)

Publication Number Publication Date
JPH0165870U JPH0165870U (en) 1989-04-27
JPH0437909Y2 true JPH0437909Y2 (en) 1992-09-04

Family

ID=31445710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16214887U Expired JPH0437909Y2 (en) 1987-10-22 1987-10-22

Country Status (1)

Country Link
JP (1) JPH0437909Y2 (en)

Also Published As

Publication number Publication date
JPH0165870U (en) 1989-04-27

Similar Documents

Publication Publication Date Title
Pinizzotto et al. Subgrain boundaries in laterally seeded silicon‐on‐oxide formed by graphite strip heater recrystallization
TW201611089A (en) Film formation method, vacuum treatment device, method for producing semiconductor light-emitting element, semiconductor light-emitting element, method for producing semiconductor electronic element, semiconductor electronic element, and lighting device
JPH0437909Y2 (en)
JPS61280610A (en) Molecular beam epitaxial growing device
US4732108A (en) Apparatus for monitoring epitaxial growth
Belouet et al. X-ray topographic study of dislocations in KH2 (1− x) D2xPO4 single crystals
JP2001185605A (en) Substrate holding mechanism and method for manufacturing compound semiconductor by using the same
JPS59188152A (en) Semiconductor device
JP2820957B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
Suzuki et al. Characterization of metalorganic chemical vapor deposition grown GaAs on Si by means of x‐ray scattering radiography
JPH1092747A (en) Manufacture of amorphous gaas thin film and manufacture of amorphous gaas tft
JPH05182910A (en) Molecular beam epitaxtially growing method
JPH0831410B2 (en) Method for manufacturing semiconductor device
JPS62128515A (en) Molecular-beam epitaxy equipment
JP3116286B2 (en) Molecular beam source
Gotoh et al. Growth mechanism of a Ag crystal particle containing a twin plane grown on a Mo (110) surface
JPH0566354B2 (en)
JPH06263587A (en) Molecular beam epitaxial growth apparatus
JPH06132221A (en) Substrate holder for molecular beam crystal growth
JPH0790569A (en) Sputtering device
JPH07518B2 (en) Molecular beam crystal growth equipment
JPS63222092A (en) Diffraction device for reflected fast electron beam
JPH0352435B2 (en)
JPS63242993A (en) Method for growing crystal by molecular beam
JPS6255919A (en) Molecular beam crystal growth device