JPH0437447A - Nozzle for casting wide and thin slab - Google Patents

Nozzle for casting wide and thin slab

Info

Publication number
JPH0437447A
JPH0437447A JP2139705A JP13970590A JPH0437447A JP H0437447 A JPH0437447 A JP H0437447A JP 2139705 A JP2139705 A JP 2139705A JP 13970590 A JP13970590 A JP 13970590A JP H0437447 A JPH0437447 A JP H0437447A
Authority
JP
Japan
Prior art keywords
nozzle
fiber
cao
graphite
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2139705A
Other languages
Japanese (ja)
Inventor
Seiji Hanagiri
誠司 花桐
Hatsuo Taira
初雄 平
Katsumi Uchinokura
内之倉 克己
Yoshiharu Iizuka
飯塚 祥治
Yoshitaka Hiraiwa
義隆 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd, Nippon Steel Corp filed Critical Kurosaki Refractories Co Ltd
Priority to JP2139705A priority Critical patent/JPH0437447A/en
Publication of JPH0437447A publication Critical patent/JPH0437447A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To provide a nozzle having excellent durability and excellent performance by incorporating the specific vol% of CaO-stabilized ZrO2 fiber in raw material of the nozzle for casting containing zirconia-graphite as the essential component. CONSTITUTION:The CaO-stabilized ZrO2 fiber is contained at 5-20 vol% in the raw material of nozzle for casting containing the zirconiz-graphite as the essential component. The contained CaO-stabilized ZrO fiber is made to have 1-6mum fiber diameter and 60-150mum fiber length. By this method, high bending strength, high breaking energy and high heat impact resistance can be provided to the nozzle.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、広幅薄肉ノズル鋳造用に使用される高耐食性
と、高耐熱衝撃性を有するノズルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a nozzle having high corrosion resistance and high thermal shock resistance used for wide thin wall nozzle casting.

〔従来の技術〕[Conventional technology]

溶鋼−スラグ界面近傍の高耐食性化を図るために、従来
よりジルコニア−グラファイト質ノズルが使用されてき
た。しかしジルコニア−グラファイト質ノズルは、ジル
コニア固有の熱膨張率の大きさに起因して耐熱衝撃性が
わるいために、予熱を充分行なって使用する、或はアル
ミナ−グラファイト質ノズルのスラクー溶鋼界面近傍部
のみにぼかし構造でジルコニア−クラファイト質を使用
してきた。
Zirconia-graphite nozzles have conventionally been used to improve corrosion resistance near the molten steel-slag interface. However, zirconia-graphite nozzles have poor thermal shock resistance due to the large coefficient of thermal expansion inherent to zirconia, so they must be sufficiently preheated before use, or the area near the slurry molten steel interface of an alumina-graphite nozzle must be used. Only zirconia-graphite material has been used with a blurred structure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしCaO安定化ジルコニア−グラファイト質ノズル
は、一般に低強度であり薄肉構造のノズルには使用でき
ない。更に結合剤の多量添加、超微粉骨材の添加、An
、 Siなとの金属添加、高い成型圧による組織の緻密
化等の方法で熱間強度を向上させた場合、材質の弾性率
が強度の向上と同じ程度、或はそれ以上に上昇してしま
う問題点が挙げられる。弾性率の上昇はすなわち耐スポ
ール性の低下を意味する。広幅薄肉スラブ鋳造用ノズル
においては、高い破壊エネルギーとともに熱衝撃に対す
る抵抗性が重要であり、強度を高くしたいがゆえに耐ス
ポール性を犠牲にすることは、実際の使用上好ましくな
い。
However, CaO-stabilized zirconia-graphite nozzles generally have low strength and cannot be used in nozzles with thin wall structures. Furthermore, a large amount of binder is added, ultrafine aggregate is added, An
When hot strength is improved by adding metals such as Si or densifying the structure through high molding pressure, the elastic modulus of the material increases to the same extent as the strength improvement, or even more. There are some problems. An increase in elastic modulus means a decrease in spall resistance. In a nozzle for casting wide, thin-walled slabs, resistance to thermal shock as well as high fracture energy are important, and sacrificing spall resistance in order to increase strength is undesirable in actual use.

本発明は上記課題に鑑みなされたもので、高耐食性と高
耐熱衝撃性を有する広幅薄肉スラブ鋳造用ノズルを提供
する。
The present invention was made in view of the above problems, and provides a nozzle for casting wide thin slabs having high corrosion resistance and high thermal shock resistance.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するための本発明は、ジルコニアヘグラ
ファイトを主成分とする鋳造用ノズル原料にCaO安定
化ZrO2ファイバーを5〜20Vol%含有したこと
を特徴とし、また前記含有するCaO安定化ZrO2フ
ァイバーの繊維径が1〜6μmで繊維長が60〜150
μmである広幅薄肉スラブ鋳造用ノズルである。
The present invention for solving the above problems is characterized in that a casting nozzle raw material mainly composed of zirconia and graphite contains 5 to 20 Vol% of CaO-stabilized ZrO2 fibers, and the contained CaO-stabilized ZrO2 fibers The fiber diameter is 1 to 6 μm and the fiber length is 60 to 150
This is a nozzle for casting wide thin-walled slabs with a diameter of μm.

〔作 用〕[For production]

ノズルの破壊、損傷による主原因は、骨材部より微粒子
マトリックスを主としてクラックが発生する。つまりマ
トリックス部を強化することが重要な技術となる。しか
し前述の添加剤などによるただ単なるマトリックス部の
強化は、組織の弾性率の向上につながり耐熱衝撃性の低
下につながる。
The main cause of nozzle destruction and damage is that cracks occur mainly in the fine particle matrix from the aggregate part. In other words, strengthening the matrix part is an important technology. However, mere reinforcement of the matrix using the above-mentioned additives leads to an improvement in the elastic modulus of the structure and a decrease in thermal shock resistance.

本発明で添加するCaO安定化ZrO□ファイバーは、
CaO安定化ZrO□ファイバーの引抜き効果による破
壊エネルギーの向上だけを図るもので、その結果として
、溶鋼通湯時の圧力や、瞬間的な熱応力に耐えうるよう
にするものである。
The CaO-stabilized ZrO□ fiber added in the present invention is
The aim is only to improve the fracture energy due to the drawing effect of the CaO-stabilized ZrO□ fibers, and as a result, it can withstand the pressure during pouring of molten steel and instantaneous thermal stress.

つまりファイバーの添加により弾性率を増加させずに、
また強度を低下させることなく破壊エネルギーを吸収す
るように、最適な径、長さ及び添加量を見だした。
In other words, without increasing the elastic modulus by adding fiber,
We also found the optimal diameter, length, and addition amount to absorb fracture energy without reducing strength.

ここでCaO安定化ZrO□ファイバーの径および長さ
は、マトリックスを構成する耐火材料の粒度できまり、
繊維径は1〜6μm、長さは60〜150μmとする。
Here, the diameter and length of the CaO-stabilized ZrO□ fibers are determined by the particle size of the refractory material constituting the matrix.
The fiber diameter is 1 to 6 μm and the length is 60 to 150 μm.

通常このようなノズルのマトリックスを構成する粒径は
、1−10μmの範囲で、平均粒度が3〜5μm程度で
ある。まず繊維径であるが、通常市販されている0、3
〜1.4μmの径だと、細かすぎて凝集する傾向も認め
られ、結果としてのファイバー引抜き効果は認められな
かった。また1μm以下だと耐火材料との混練時にファ
イバーの折れが起こり、所定の繊維長が得られないとい
う問題点もあった。また6μm以上だと粒子添加と同様
の効果しか得られなかった。
Usually, the particle size constituting the matrix of such a nozzle is in the range of 1-10 .mu.m, with an average particle size of about 3-5 .mu.m. First of all, regarding the fiber diameter, there are usually commercially available 0 and 3 fiber diameters.
A diameter of ~1.4 μm was too fine and a tendency to agglomerate was observed, resulting in no fiber drawing effect. Further, if the thickness is less than 1 μm, the fibers will break when kneaded with the refractory material, resulting in a problem that a predetermined fiber length cannot be obtained. Moreover, when the particle size was 6 μm or more, only the same effect as the addition of particles could be obtained.

次に繊維長については、60μm以下だとファイバーの
引抜き効果が認められず、径の場合と同様に150μm
以上のファイバーは繊維の折れが発生し、ファイバー引
抜き効果は認められなかった。
Next, regarding the fiber length, if it is less than 60 μm, the fiber pulling effect is not observed, and as in the case of the diameter, it is 150 μm or less.
In the above fibers, fiber breakage occurred and no fiber pulling effect was observed.

次にCaO安定化ZrO□ファイバーの添加量について
であるか、5Vojl’%以下だと破壊エネルギーの上
昇は認められなかった。また20Vo 1%以上だとフ
ァイバーのからみ合いにより、強度及び破壊エネルギー
の極端な低下が認められた。従って添加量は5〜20V
o 1%とした。
Next, regarding the amount of CaO-stabilized ZrO□ fiber added, no increase in fracture energy was observed when the amount was 5 Vojl'% or less. Furthermore, when the content of 20Vo was 1% or more, an extreme decrease in strength and fracture energy was observed due to fiber entanglement. Therefore, the amount added is 5 to 20V
o 1%.

CaO安定化ZrO□ファイバー中のCaO含有量は、
3〜7wt%であれば耐食性9強度耐熱衝撃性の面でも
問題は認められなかった。
The CaO content in the CaO-stabilized ZrO□ fiber is
If the content was 3 to 7 wt%, no problems were observed in terms of corrosion resistance, 9 strength, and thermal shock resistance.

またCaO安定化z「02ファイバーの表面にカーボン
を100人程変波覆することは、耐火原料との混線時に
ファイバーの滑りがよくなり、均質混練が短時間ででき
ることか判明した。
It has also been found that coating the surface of CaO stabilized 02 fibers with about 100 layers of carbon improves the slippage of the fibers when mixed with refractory raw materials, allowing homogeneous kneading to be achieved in a short time.

〔実施例〕〔Example〕

本発明を実施例に基づいて説明する。 The present invention will be explained based on examples.

ファイバーの添加は、乾燥状態の表1に示す配合耐火原
料に遊星型ミキサーで混練した。更にバインダーとして
フェノール樹脂を用いて混練し、成型用配合物を調整し
た。アイソスタティックプレス、乾燥、焼成工程を経て
、ノズルを得た。これらの試料を40 X 40 X 
160mmサイズに加工した後、冷間3点曲げ強度およ
びその際の破壊エネルギーを測定した。
The fibers were added to the dry refractory raw materials shown in Table 1 and kneaded using a planetary mixer. Further, a phenol resin was used as a binder and kneaded to prepare a molding compound. A nozzle was obtained through isostatic pressing, drying, and firing steps. These samples were sized 40 x 40 x
After processing into a size of 160 mm, cold three-point bending strength and fracture energy at that time were measured.

また耐熱衝撃性評価として、熱サイクルスポーリング試
験を行った。すなわち40X40X  160mmサイ
ズに加工した耐火性試料を、窒素中で1400°CIO
分加熱した後、30分字数冷する試験を繰返し、このと
きの亀裂発生状況を目視観察により調べ、耐熱衝撃性を
亀裂が発生したときの熱サイクル回数で評価した。これ
らの結果をファイバーの添加条件とともに表2に示す。
In addition, a thermal cycle spalling test was conducted to evaluate thermal shock resistance. In other words, a refractory sample processed into a size of 40 x 40 x 160 mm was heated at 1400°CIO in nitrogen.
A test of heating for 30 minutes and then cooling for 30 minutes was repeated, the occurrence of cracks at this time was visually observed, and the thermal shock resistance was evaluated by the number of thermal cycles at which cracks occurred. These results are shown in Table 2 together with the fiber addition conditions.

Claims (2)

【特許請求の範囲】[Claims] (1)ジルコニア−グラファイトを主成分とする鋳造用
ノズル原料にCaO安定化ZrO_2ファイバーを5〜
20Vol%含有したことを特徴とする広幅薄肉スラブ
鋳造用ノズル。
(1) Adding 5 to 50% of CaO-stabilized ZrO_2 fibers to the casting nozzle raw material whose main component is zirconia-graphite.
A wide thin slab casting nozzle characterized by containing 20 Vol%.
(2)含有するCaO安定化ZrO_2ファイバーの繊
維径が1〜6μmで繊維長が60〜150μmである請
求項(1)記載の広幅薄肉スラブ鋳造用ノズル。
(2) The nozzle for casting wide thin-walled slabs according to claim (1), wherein the CaO-stabilized ZrO_2 fibers contained have a fiber diameter of 1 to 6 μm and a fiber length of 60 to 150 μm.
JP2139705A 1990-05-31 1990-05-31 Nozzle for casting wide and thin slab Pending JPH0437447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2139705A JPH0437447A (en) 1990-05-31 1990-05-31 Nozzle for casting wide and thin slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2139705A JPH0437447A (en) 1990-05-31 1990-05-31 Nozzle for casting wide and thin slab

Publications (1)

Publication Number Publication Date
JPH0437447A true JPH0437447A (en) 1992-02-07

Family

ID=15251501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2139705A Pending JPH0437447A (en) 1990-05-31 1990-05-31 Nozzle for casting wide and thin slab

Country Status (1)

Country Link
JP (1) JPH0437447A (en)

Similar Documents

Publication Publication Date Title
JP5110539B2 (en) FeO resistant coating material
CA2200666C (en) Well brick of vessel for molten metal
EP0825968B2 (en) Use of a water-containing fire-resistant ceramic casting material
JPH0437447A (en) Nozzle for casting wide and thin slab
JPH0437450A (en) Nozzle for casting wide and thin slab
JP2599428B2 (en) Method for producing unburned MgO-C brick
JP3327883B2 (en) Refractories containing massive graphite
JP2008189531A (en) Refractory
JPH0437449A (en) Nozzle for casting wide and thin slab
JPH06345550A (en) Castable refractory
JPH0437448A (en) Nozzle for casting wide and thin slab
JPH01167268A (en) Carbon-containing uncalcined refractory
JP4703087B2 (en) Water-based castable refractories
KR20040016493A (en) High intensity castable refractories with good adiabatic and high thermal shock resistance
JP2002338347A (en) Zirconia-graphite fire resisting material and immersion nozzle for continuous casting using the material
JPH0437453A (en) Nozzle for casting wide and thin slab
JPS59146975A (en) Plate refractories for sliding nozzle
KR101149372B1 (en) Refractory composite of castable for repairing of ladle slag line
JP4546594B2 (en) Atypical refractories used in the production of hot metal or molten steel
KR101144488B1 (en) Carbon based refractory composition
JP3143666B2 (en) Refractory materials for steelmaking furnaces
CN117865696A (en) Zr (Hf) O 2 -MgAl 2 O 4 Composite material and preparation method thereof
JPS6131346A (en) Nozzle for casting
JP3421362B2 (en) Alumina cement composite
JP2005231953A (en) Graphite-containing brick