JP4546594B2 - Atypical refractories used in the production of hot metal or molten steel - Google Patents

Atypical refractories used in the production of hot metal or molten steel Download PDF

Info

Publication number
JP4546594B2
JP4546594B2 JP29088999A JP29088999A JP4546594B2 JP 4546594 B2 JP4546594 B2 JP 4546594B2 JP 29088999 A JP29088999 A JP 29088999A JP 29088999 A JP29088999 A JP 29088999A JP 4546594 B2 JP4546594 B2 JP 4546594B2
Authority
JP
Japan
Prior art keywords
refractory
aggregate
plate
raw material
refractory raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29088999A
Other languages
Japanese (ja)
Other versions
JP2001114572A (en
Inventor
浩志 今川
泰次郎 松井
吉平栄 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29088999A priority Critical patent/JP4546594B2/en
Publication of JP2001114572A publication Critical patent/JP2001114572A/en
Application granted granted Critical
Publication of JP4546594B2 publication Critical patent/JP4546594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶銑や溶鋼の製造に用いる不定形耐火物の耐スポーリングや耐溶損性を高めて、耐火物の長寿命化を図ることができる溶銑又は溶鋼の製造に用いる不定形耐火物に関する。
【0002】
【従来の技術】
従来、精錬炉あるいは二次精錬炉、取鍋、樋等には、耐火原料に水やバインダーを加えて混練した不定形耐火物や耐火原料を予め成形して焼成した耐火煉瓦等の耐火物が内張りされている。
これらの耐火物は、溶鉄やスラグによって溶損されたり、使用中に加熱・冷却による熱変化を受け、スポーリング等を起こして、局部あるいは全体が損耗する。
その結果、精錬炉や二次精錬炉等の寿命が短くなって、生産性が低下し、耐火物の補修のコストも上昇する。
従って、損耗した部位に吹き付けや鏝塗り等の補修をしたり、耐火原料の選択や補修方法の改善等を行って、耐火物や炉寿命の延長に努めている。しかし、精錬炉等の使用条件の過酷化や耐火物のいっそうの高品質化が指向されており、スポーリングや溶損に対し、十分な特性を備えた耐火物が求められている。
この対策として、例えば、特開平1−33075号公報には、粘土質51〜40質量%と40〜48質量%の粗粒からなる耐火原材に、綿状のセラミックファイバーを9〜12質量%配合し、成形耐火物の急熱・急冷の熱衝撃に強くして破損するのを防止する方法が記載されている。
また、特開平8−157270号公報では、厚みが0.2〜2mmの板状の耐火骨材、あるいはこの耐火骨材(板状片)の長さと厚みの比を1:2〜50にしたセラミックス屑を3〜70質量%配合し、耐スポーリング性を高め、同時に、耐火骨材のスパイキング(くさび状)効果による先行溶損を抑制して骨材(粗粒耐火原料)の脱落に伴う溶損を抑制することが行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、特開平1−33075号公報記載の発明では、セラミックファイバーを添加しているため、粘土質及び粗粒状からなる耐火原材に混合する際に、混練に時間を要したり、混練を十分に行っても均一に分散させることが困難である。
しかも、セラミックファイバーが、添加した水分を吸収するため、多めに水分を添加する必要があり、耐火物の乾燥時に亀裂が生じたり、耐火物の気孔率が上昇して、耐火物の強度や耐溶損性が悪くなる等の問題がある。
更に、セラミックスファイバー等の繊維系の素材では、耐火物の密度を低くして弾性率を抑制することによって、耐スポーリング性を高くするため、耐火物の密度の低下に伴って、スラグや溶鋼に対する耐溶損性が悪くなり、容器や精錬炉等の耐用性の低下や生産性の低下、耐火物コストの上昇を招くことになる。
また、繊維系の素材では、耐火物の曲げ強度を十分に向上することができず、急熱・急冷を繰り返した際に、繊維系の素材が伸びるため、スポーリング等を抑制することができない等の問題がある。
また、特開平8−157270号公報記載の発明では、板状の耐火骨材を用いることにより、比較的少ない水分で混合でき、流し込み後の耐火物の均一性を向上できる利点を有するが、耐火骨材の具備する特性等によって、効果が大きく異なる場合があり、急熱・急冷を繰り返す精錬炉や二次精錬炉等に用いても必ずしも効果が得られない。例えば、板状耐火骨材の配合条件によっては、板状骨材を境にした剥落やスポーリングを生じたり、耐火物そのものの強度が低下して耐火物の寿命が大幅に低下する。
更に、耐火骨材の厚みによって、受熱した際に耐火原料と反応して耐火骨材が消失したり、耐火原料中に残存する耐火骨材の厚みが薄くなり、スパイキング効果が低下する。その結果、稼働面の骨材(粗い耐火原料)の脱落を生じたり、スラグ等の浸透を防止することができなくなって耐食性等が低下する。
しかも、スポーリングの抑制の効果等が減少し、耐火物の寿命を安定して向上できない等の問題がある。
【0004】
本発明はかかる事情に鑑みてなされたもので、耐火物に板状骨材を常に存在させて耐火物の強度を高め、溶損やスポーリングを抑制することができる溶銑又は溶鋼の製造に用いる不定形耐火物を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記目的に沿う本発明に係る溶銑又は溶鋼の製造に用いる不定形耐火物は、破砕機で、最長辺が2.5mm以上60mm以下、厚みが2mmを超えて8mm以下に板状に破砕され、Alを少なくとも95質量%含有したアルミナ系セラミックスからなる板状骨材(ただし、直径2〜5mm、長さ20〜40mmの棒状アルミナを除く)を、アルミナ系の耐火原料に4〜50質量%添加している。
板状骨材の最長辺が2.5mmより小さいと、耐火原料中に、くさび状に存在させることができず、耐火原料の粒子間を結合することができない。
一方、板状骨材の最長辺が60mmを超えると、耐火原料中に板状骨材を均一に混合することができない。しかも、板状骨材の分布が高濃度となった部位の耐火原料の粒子間の結合が極端に弱くなり、耐火物の寿命が低下する。
更に、板状骨材の厚みが2mm以下になると、耐火原料と板状骨材が反応して複合組成物を形成するのに消費され、残存する板状骨材が減少して耐火物の結合強度や耐スポーリング性等の特性が悪くなる。また、厚みが8mmを超えると、残存する高密度の板状骨材の厚みが厚くなり過ぎ、急熱・急冷の熱変化が生じた際に、スポーリングや剥落により耐火物の寿命が低下する。
また、添加する量が4質量%より少ないと、耐火原料中の板状骨材が不足して耐火原料の粒子間をくさび状に結合することができず、耐火物の強度が不足し、耐火物の表面に生成した亀裂等が内部へ伝播するのを抑制できず、耐スポーリング性及び耐溶損性が低下する。
板状骨材の添加量が50質量%を超えると、耐火原料との複合組成物が十分に形成できず、強度が低下し、場合によっては、耐火原料中に板状片の連続した配列を招き、この配列部の境界で剥落が生じ易くなる。
この耐火物は、所定の長さ、厚みを有する板状骨材を耐火原料に添加しているので、耐火原料と板状骨材が反応して板状骨材の表面に複合組成物を形成して耐火原料の粒子間を強固に結合する。しかも、耐火原料中に板状骨材をくさび状(アンカー状)に残存させて、耐火物の強度を大幅に向上できる。
更に、スラグ等の浸透を抑制して耐火原料の骨材の溶損と脱落を防止して耐溶損性を高めると共に、急熱・急冷の過酷な熱変化が生じた際に、耐火物の表面に発生した亀裂を板状骨材でくい止め、内部への亀裂の伝播を抑制して、耐スポーリング性を向上することができる。
【0006】
ここで、前記板状骨材は、セラミックスにしている。
これにより、融点が高く、曲げ強度に優れた板状骨材を用いることができ、耐火物の耐スポーリングや耐溶損性等がより安定して向上できる。
【0007】
更に、耐火物を不定形耐火物にしている
これにより、少ない水分で板状片を均一に配合でき、流し込みや圧送充填による施工を容易に行うことができ、耐スポーリング及び耐溶損性に優れた耐火物を得ることができる。
【0008】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1は本発明の一実施の形態に係る溶銑又は溶鋼の製造に用いる不定形耐火物の断面の模式図、図2は耐火物に添加する板状骨材の厚みと板状骨材の残存量の比及びスポーリング指数の関係を表すグラフである。
図1に示すように、本発明の一実施の形態に係る溶銑又は溶鋼の製造に用いる不定形耐火物10は、2mm超、最大8mmの厚みを有し、その最長辺が2.5〜60mmの板状骨材11を耐火原料12に4〜50質量%添加している。
そして、耐火原料12中に板状骨材11の一部を未反応の状態で残存させている。
更に、板状骨材11は、耐火原料12を混練する際に添加され、耐火原料11中に均一に分散させている。
【0009】
不定形耐火物10に添加する板状骨材11は、セラミックスを用い、破砕機で板状に破砕したものを用いることができるが、アルミナ系を主成分にした原料を、ドクターブレード法あるいはプレス法、鋳込み法等により、所定の厚みに成形してから1300℃以上の温度で焼成したものを用いることもできる。
図2に示すように、セラミックスからなる板状骨材11は、その厚みが2mm以下になると、耐火原料12に残存する量の比が少なくなっている(図中実線)。これは、受熱した際に、板状骨材11が耐火原料12と反応して複合組成物を生成するのに消費されて、耐火原料12中に板状骨材11を残存させることができないためである。
また、板状骨材11の厚みが8mmを超えると、スポーリング指数(従来の耐火物を指数1とする)が急激に悪化して板状骨材11を添加する効果が得られないことが判る(図中点線)。
従って、板状骨材11の使用条件は、受熱して耐火原料12と反応した際に板状骨材11の一部を十分に残存させ、しかも、残存する未反応の板状骨材11の厚みが極端に厚くならないように調整することが重要であり、2mmを超えて8mm以下の範囲のものを添加することにより達成できる。
この板状骨材11の残存量の比は、板状骨材11を耐火原料12に混合して乾燥した後に適宜大きさのサンプルを切り出し、このサンプルを1500℃以上の温度で加熱した後にその表面を顕微鏡等により拡大して存在する板状骨材11の全表面積と、加熱する前のサンプルの表面を同様に拡大した際に存在する板状骨材11の全表面積の比で表したものである。
【0010】
特に、耐火原料12中に板状骨材11を所定の厚みで残存させることにより、板状骨材11の表面に複合組成物を形成させ、加えて、板状骨材11を耐火原料12中にくさび状に存在させることができ、耐火原料12の粒子間の結合強度を大きくする。
しかも、不定形耐火物10の表面から侵入するスラグや溶鉄は、板状骨材11で遮断され、平面的な溶損及び先行溶損による骨材の脱落等を抑制して耐溶損性を大幅に向上することができる。
更に、急熱・急冷に伴って表面に発生した亀裂が不定形耐火物10の内部に伝播するのを板状骨材11の位置でくい止めることができ、亀裂の成長を抑制して耐スポーリング性を向上することができる。
この理由から、板状骨材11の厚みは、2mmを超えて6mm以下の範囲にするとより好ましい結果が得られる。
【0011】
また、板状骨材11の最長辺(最も長い辺)を2.5〜60mmにすることにより、耐火原料12中にくさび状に存在させることができる。その結果、耐火原料12の粒子間の結合面を増加させ、全体の結合強度を向上することができる。
しかも、板状骨材11が耐火原料12に分散し易くなり、均一に混合することができ、板状骨材11の添加に伴う不定形耐火物10の強度や耐溶損性等の特性が悪化するのを防止することができる。
【0012】
更に、耐火原料12中に板状骨材11を十分に存在させているので、耐火原料12と板状骨材11が反応して複合組成物の形成が促進され、複合組成物による結合とくさび状板状骨材11のアンカー効果等の相互の働きによって、耐火原料12の粒子間の結合をより強めることができる。
しかし、板状骨材の添加量が多くなると、耐火原料の絶対量が不足し、板状骨材の表面に生成する複合組成物が少なくなって結合強度が小さくなる。
しかも、耐火原料中に、板状骨材の連続した配列が生じると、配列部の境界で、スポーリングや剥落等が発生するので、板状骨材の局部的な濃化を防止することが重要であり、板状骨材の添加量が多くなる程に局部的な濃化が生じ易くなるので、板状骨材11の添加量は、4〜50質量%の範囲にしている。
更に、混練及び耐火物の流し込みを行う際のフロー値(流動性の指標)を良好にして圧送を容易に行い、施工時の充填性を高めて高密度の不定形耐火物10にするには、板状骨材11の添加量を4〜30質量%にするとより好ましい。
【0013】
また、板状骨材11の融点を1500℃以上にすることにより、耐火原料12と反応した際に、適正な厚みの複合組成物を形成させ、同時に、板状骨材11の一部を安定して残存させることができる。
そして、板状骨材11が耐火原料12内にくさび状に存在し、受熱した際に、その表面に耐火原料と反応した複合組成物の極端な増加を抑制して、耐火原料12の間の結合力を高めることができる。
板状骨材の融点が1500℃より低くなると、焼成過程や使用中の受熱により、添加した板状骨材が溶融したり、耐火原料と板状骨材が反応して低強度の複合組成物が多く形成され、大幅に耐溶損性が低下して耐火物の寿命が短くなる。
【0014】
更に、板状骨材11の曲げ強度は、300〜5000kg/cm2のものを用いると不定形耐火物10の強度が高くなり好ましい結果が得られる。
板状骨材の曲げ強度が300kg/cm2未満なると、弾性率比(1500℃の温度で3時間加熱後の弾性率/加熱前の弾性率)が急激に低下してスポーリングが生じ易くなり、耐火物の寿命が低下する。一方、曲げ強度が5000kg/cm2を超えると、板状骨材が高純度、且つ高密度になり、急加熱や急冷却によって、板状骨材自体がスポーリングを招いて耐火物の寿命が低下する。
しかも、高純度化する程に素材の価格が高くなり、耐火物コストが上昇したり、破砕する際の破砕機の損傷等を招く。
なお、耐火物の弾性率は、一般に用いらている耐火物の弾性限界内における応力と歪みの比で表される。
【0015】
不定形耐火物10の耐火原料12としては、アルミナ系の一般に用いられている原料を使用することができる。
この耐火原料12に添加するバインダーは、セメント、フェノール等の有機樹脂等のバインダーを添加したり、AlやSi等の金属を添加できる。
【0016】
このような不定形耐火物10を製造するには、耐火原料12に、板状骨材11を添加してから混練機に装入し、水を5〜7質量%、バインダーの一例であるセメント粉を0.2〜8質量%添加し、2〜10分間の混練を行う。
混練の際に、板状骨材11は、耐火原料12中に分散し、それぞれの板状骨材11が異方性(向く方向が異なる)を持ってくさび状で存在し、耐火原料12の粒子間を結合することができる。
そして、図示しない精錬炉の稼働面に型枠を設け、稼働面と型枠の隙間に流し込みを行って用いることができる。
【0017】
【実施例】
Al23を90質量%含有したAl23系の耐火原料に、Al23を95質量%含有したセラミックスからなる板状骨材の厚み、添加量、最長辺長さを変化させて添加し、バインダーとしてセメントを5質量%添加してから混練して形枠に流し込んだ後、1500℃で使用した際に従来の耐火物の指数を1とした場合の溶損指数及び耐スポーリング性の良否、総合評価について調査した。その結果を表1に示す。
実施例1は、Al23系の耐火原料に、厚みが2.2mm、最長辺長さを40mmにしたセラミックスの板状骨材を10質量%添加した場合であり、溶損指数を0.9、耐スポーリングも良好(○)であり、総合評価としては良い結果(○)が得られた。
実施例2は、Al23系の耐火原料に、厚みが2.5mm、最長辺長さを60mmにしたセラミックスの板状骨材を4質量%添加した場合であり、溶損指数を0.7、耐スポーリングも良好(○)であり、総合評価としては良い結果(○)が得られた。
実施例3は、Al23系の耐火原料に、厚みが7.0mm、最長辺長さを60mmにしたセラミックスの板状骨材を40質量%添加した場合であり、溶損指数を0.8、耐スポーリング指数も良好(○)であり、総合評価としては良い結果(○)が得られた。
【0018】
【表1】

Figure 0004546594
【0019】
これに対して、比較例1では、Al23系の耐火原料に、厚みが1.8mm、最長辺長さを30mmにしたセラミックスの板状骨材を3質量%添加した場合であり、溶損指数も1.0、耐スポーリング性が低下(×)し、総合評価としては悪い結果(×)であった。
比較例2は、Al23系の耐火原料に、厚みが10.0mm、最長辺長さを60mmにしたセラミックスの板状骨材を6質量%添加した場合であり、溶損指数が1.2、耐スポーリング性が低下(×)し総合評価としては悪い結果(×)であった。
【0020】
以上、本発明の一実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、板状骨材としては、厚みに比べて、最も長い辺(最長辺)が大きいものであれば、煉瓦等の破砕したものを篩分けしたものを用いることもできる。
更に、板状骨材の原料としては、耐火物や不定形耐火物に一般に用いられている無機素材であれば良く、単体あるいは組み合わせて用いることができる。
【0021】
【発明の効果】
請求項1記載の溶銑又は溶鋼の製造に用いる不定形耐火物は、耐火原料に、最長辺が2.5以上60mm以下、厚みが2mmを超えて8mm以下の板状骨材(ただし、直径2〜5mm、長さ20〜40mmの棒状アルミナを除く)を4〜50質量%添加しているので、耐火物の強度を大幅に向上でき、耐溶損性を高めると共に、耐スポーリング性を向上することができる。
そして、精錬炉や二次精錬炉等の炉寿命を延長でき、生産性の向上や耐火物コストの低減、補修の手間等の減少を図ることができる。
【0022】
特に溶銑又は溶鋼の製造に用いる不定形耐火物は、板状骨材をアルミナ系セラミックスにするので、耐火物の耐スポーリングや耐溶損性等をより安定して向上でき、耐火物の寿命を大幅に延長することができる。
【0023】
また、溶銑又は溶鋼の製造に用いる耐火物は、不定形耐火物からなるので、少ない水分で板状骨材を均一に配合でき、流し込みや圧送充填による施工を容易にして高密度、高強度にでき、耐スポーリング及び耐溶損をより安定して向上して耐火物の寿命を延長することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る溶銑又は溶鋼の製造に用いる不定形耐火物の断面の模式図である。
【図2】耐火物の板状骨材の厚みと板状骨材の残存量の比及びスポーリング指数の関係を表すグラフである。
【符号の説明】
10:不定形耐火物、11:板状骨材、12:耐火原料[0001]
BACKGROUND OF THE INVENTION
The present invention enhances the spallation and melting loss of the monolithic refractories used for the production of molten iron and molten steel, about castable refractory for use in molten iron or molten steel fabrication which can prolong the life of the refractory .
[0002]
[Prior art]
Conventionally, in smelting furnaces or secondary smelting furnaces, ladles, ladles, etc., there are refractories such as refractory materials such as refractory materials that have been pre-molded and fired with refractory materials that have been kneaded with water and binder added to refractory materials. It is lined.
These refractories are damaged by molten iron or slag, or are subjected to thermal changes due to heating / cooling during use, causing spalling and the like, and the local part or the whole is worn.
As a result, the life of the refining furnace, the secondary refining furnace, etc. is shortened, the productivity is lowered, and the cost of repairing the refractory is increased.
Therefore, we are working to extend the life of refractories and furnaces by repairing the worn parts by spraying, glazing, etc., selecting refractory materials, and improving repair methods. However, the use conditions of smelting furnaces and the like are becoming more severe and the quality of refractories is further improved, and there is a demand for refractories with sufficient characteristics against spalling and melting.
As a countermeasure, for example, in JP-A-1-33075, 9-12 % by mass of cotton-like ceramic fiber is added to a refractory raw material composed of 51-40 % by mass of clay and 40-48 % by mass of coarse particles. A method of blending and preventing breakage by strengthening the thermal shock of rapid heating / cooling of the molded refractory is described.
In JP-A-8-157270, a plate-like fireproof aggregate having a thickness of 0.2 to 2 mm, or the ratio of the length and thickness of this fireproof aggregate (plate-like piece) is set to 1: 2-50. Mixing 3 to 70 % by mass of ceramic waste to increase spalling resistance, and at the same time, to suppress the preceding melting damage due to the spiking (wedge-like) effect of the refractory aggregate, to remove the aggregate (coarse refractory raw material) It is performed to suppress the accompanying melting loss.
[0003]
[Problems to be solved by the invention]
However, in the invention described in JP-A-1-33075, since ceramic fibers are added, it takes time for kneading or sufficient kneading when mixing with a refractory raw material composed of clay and coarse particles. However, it is difficult to disperse uniformly.
In addition, since the ceramic fiber absorbs the added moisture, it is necessary to add a large amount of moisture, causing cracks during drying of the refractory, increasing the porosity of the refractory, and increasing the strength and resistance of the refractory. There are problems such as loss of damage.
Furthermore, in fiber-based materials such as ceramic fibers, the spalling resistance is increased by lowering the density of the refractory and suppressing the elastic modulus. Therefore, as the density of the refractory decreases, slag and molten steel As a result, the erosion resistance of the container and the smelting furnace deteriorates, the productivity decreases, and the refractory cost increases.
Also, with fiber-based materials, the bending strength of the refractory cannot be sufficiently improved, and when rapid heating / cooling is repeated, the fiber-based material stretches, so that spalling and the like cannot be suppressed. There are problems such as.
Further, in the invention described in JP-A-8-157270, by using a plate-like refractory aggregate, it can be mixed with a relatively small amount of water, and there is an advantage that the uniformity of the refractory after pouring can be improved. The effect may vary greatly depending on the characteristics of the aggregate and the like, and the effect is not necessarily obtained even when used in a refining furnace or a secondary refining furnace that repeats rapid heating and quenching. For example, depending on the blending conditions of the plate-like refractory aggregate, peeling or spalling at the plate-like aggregate may occur, or the strength of the refractory itself may be reduced and the life of the refractory may be greatly reduced.
Further, depending on the thickness of the refractory aggregate, the refractory aggregate reacts with the refractory raw material when receiving heat, and the thickness of the refractory aggregate remaining in the refractory raw material becomes thin, so that the spiking effect is reduced. As a result, the aggregate (coarse refractory raw material) on the working surface may drop off, or the penetration of slag or the like cannot be prevented, and the corrosion resistance and the like will deteriorate.
In addition, there is a problem that the effect of suppressing spalling is reduced, and the life of the refractory cannot be stably improved.
[0004]
The present invention has been made in view of such circumstances, and is used for the production of hot metal or molten steel capable of increasing the strength of the refractory by always having a plate-like aggregate in the refractory and suppressing melting damage and spalling. The purpose is to provide irregular refractories.
[0005]
[Means for Solving the Problems]
The amorphous refractory used for the production of hot metal or molten steel according to the present invention in accordance with the above object is a crusher, the longest side is 2.5 mm to 60 mm, the thickness exceeds 2 mm, and is crushed into a plate shape to 8 mm or less, A plate-like aggregate made of alumina-based ceramics containing at least 95% by mass of Al 2 O 3 (excluding rod-shaped alumina having a diameter of 2 to 5 mm and a length of 20 to 40 mm) is used as an alumina-based refractory raw material. Mass% is added.
If the longest side of the plate aggregate is smaller than 2.5 mm, it cannot be present in the refractory raw material in a wedge shape, and the particles of the refractory raw material cannot be bonded.
On the other hand, if the longest side of the plate aggregate exceeds 60 mm, the plate aggregate cannot be uniformly mixed in the refractory raw material. In addition, the bond between the refractory raw material particles at the site where the distribution of the plate aggregate is high is extremely weak, and the life of the refractory is reduced.
Further, when the thickness of the plate aggregate is 2 mm or less, the refractory raw material and the plate aggregate are consumed to react to form a composite composition, and the remaining plate aggregate is reduced to bond the refractory. Properties such as strength and spalling resistance deteriorate. Further, if the thickness exceeds 8 mm, the thickness of the remaining high-density plate-like aggregate becomes too thick, and the life of the refractory is reduced due to spalling or peeling when a rapid heat / cooling thermal change occurs. .
When the amount added is less than 4% by mass, the plate-like aggregate in the refractory raw material is insufficient, and the particles of the refractory raw material cannot be connected in a wedge shape, and the strength of the refractory is insufficient. Propagation of cracks and the like generated on the surface of the object cannot be suppressed, and the spalling resistance and the erosion resistance are reduced.
When the amount of the plate aggregate exceeds 50% by mass, a composite composition with the refractory raw material cannot be sufficiently formed, the strength is lowered, and in some cases, a continuous arrangement of plate-like pieces is formed in the refractory raw material. Inviting, peeling off is likely to occur at the boundary of the array portion.
In this refractory, a plate-like aggregate having a predetermined length and thickness is added to the refractory raw material, so that the refractory raw material and the plate-like aggregate react to form a composite composition on the surface of the plate-like aggregate. Thus, the particles of the refractory raw material are firmly bonded. Moreover, the strength of the refractory can be greatly improved by leaving the plate-like aggregate in a wedge shape (anchor shape) in the refractory raw material.
In addition, the penetration of slag, etc. is suppressed to prevent the refractory raw material from damaging and falling off, improving the erosion resistance, and the surface of the refractory when a severe heat change such as rapid heating / cooling occurs. It is possible to improve the spalling resistance by stopping the cracks generated in the plate with a plate-like aggregate and suppressing the propagation of the cracks to the inside.
[0006]
Here, the plate-like aggregate is made of ceramics .
As a result, a plate-like aggregate having a high melting point and excellent bending strength can be used, and the spalling resistance, the erosion resistance and the like of the refractory can be improved more stably.
[0007]
In addition, it has a refractory material in monolithic refractories.
Thereby, a plate-shaped piece can be mix | blended uniformly with little water | moisture content, the construction by pouring and pumping filling can be performed easily, and the refractory material excellent in spalling resistance and erosion resistance can be obtained.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
FIG. 1 is a schematic diagram of a cross section of an amorphous refractory used for producing hot metal or molten steel according to an embodiment of the present invention, and FIG. 2 shows the thickness of the plate aggregate added to the refractory and the remaining plate aggregate. It is a graph showing the relationship between ratio of quantity and a spalling index.
As shown in FIG. 1, molten pig iron or molten steel castable refractory 10 that used in the production of according to an embodiment of the present invention, 2 mm greater, has a thickness of up to 8 mm, the longest side is 2.5 4 to 50 % by mass of 60 mm plate-like aggregate 11 is added to the refractory raw material 12.
A part of the plate aggregate 11 is left in the refractory raw material 12 in an unreacted state.
Further, the plate-like aggregate 11 is added when the refractory raw material 12 is kneaded and is uniformly dispersed in the refractory raw material 11.
[0009]
Plate aggregate 11 to be added to the monolithic refractory 10 with ceramic, can be used after crushed into a plate with crusher, the raw material was composed mainly of alumina, a doctor blade method or a press It is also possible to use a material that has been molded to a predetermined thickness by a method, a casting method, or the like and then fired at a temperature of 1300 ° C. or higher.
As shown in FIG. 2, when the plate-like aggregate 11 made of ceramics has a thickness of 2 mm or less, the ratio of the amount remaining in the refractory raw material 12 decreases (solid line in the figure). This is because when the heat is received, the plate aggregate 11 is consumed to react with the refractory raw material 12 to produce a composite composition, and the plate aggregate 11 cannot remain in the refractory raw material 12. It is.
Moreover, when the thickness of the plate-like aggregate 11 exceeds 8 mm, the spalling index (conventional refractory is set to the index 1) is rapidly deteriorated, and the effect of adding the plate-like aggregate 11 cannot be obtained. You can see (dotted line in the figure).
Therefore, the usage conditions of the plate-like aggregate 11 are such that when the plate-like aggregate 11 receives heat and reacts with the refractory raw material 12, a part of the plate-like aggregate 11 remains sufficiently, and the remaining unreacted plate-like aggregate 11 remains. It is important to adjust the thickness so that it does not become extremely thick, and this can be achieved by adding a material in the range of more than 2 mm and not more than 8 mm.
The ratio of the remaining amount of the plate aggregate 11 is determined by mixing the plate aggregate 11 with the refractory raw material 12 and drying it, cutting out a sample of an appropriate size, and heating the sample at a temperature of 1500 ° C. or higher. The ratio of the total surface area of the plate-like aggregate 11 existing by enlarging the surface with a microscope or the like and the total surface area of the plate-like aggregate 11 existing when the surface of the sample before heating is similarly enlarged. It is.
[0010]
In particular, by leaving the plate-like aggregate 11 with a predetermined thickness in the refractory raw material 12, a composite composition is formed on the surface of the plate-like aggregate 11, and in addition, the plate-like aggregate 11 is placed in the refractory raw material 12. It can exist in the shape of a wedge and increases the bond strength between the particles of the refractory raw material 12.
In addition, slag and molten iron entering from the surface of the irregular refractory 10 are blocked by the plate-like aggregate 11, and the loss of the aggregate due to planar melting and prior melting is suppressed, thereby greatly increasing the resistance to melting. Can be improved.
Furthermore, it is possible to stop the cracks generated on the surface due to rapid heating / cooling from propagating to the inside of the irregular refractory 10 at the position of the plate-like aggregate 11, and suppress the growth of cracks to prevent spalling. Can be improved.
For this reason, more preferable results can be obtained when the thickness of the plate-like aggregate 11 exceeds 2 mm and falls within a range of 6 mm or less.
[0011]
Further, by making the longest side (longest side) of the plate-like aggregate 11 2.5 to 60 mm, it can be present in the refractory raw material 12 in a wedge shape. As a result, the bonding surface between the particles of the refractory raw material 12 can be increased, and the overall bonding strength can be improved.
Moreover, the plate-like aggregate 11 can be easily dispersed in the refractory raw material 12 and can be uniformly mixed, and the properties such as the strength and melting resistance of the amorphous refractory 10 accompanying the addition of the plate-like aggregate 11 are deteriorated. Can be prevented.
[0012]
Furthermore, since the plate aggregate 11 is sufficiently present in the refractory raw material 12, the refractory raw material 12 and the plate aggregate 11 react to promote the formation of the composite composition, and the bonding and wedge by the composite composition. By the mutual action such as the anchor effect of the plate-like aggregate 11, the bond between the particles of the refractory raw material 12 can be further strengthened.
However, when the added amount of the plate aggregate is increased, the absolute amount of the refractory raw material is insufficient, and the composite composition generated on the surface of the plate aggregate is decreased, so that the bond strength is decreased.
In addition, when a continuous arrangement of plate-like aggregates occurs in the refractory raw material, spalling or peeling occurs at the boundaries of the arrangement parts, so that local concentration of the plate-like aggregates can be prevented. Importantly, as the amount of plate aggregate added increases, local concentration tends to occur. Therefore, the amount of plate aggregate 11 added is in the range of 4 to 50 % by mass .
Furthermore, in order to obtain a high density amorphous refractory 10 by improving the filling value at the time of construction by improving the flow value (fluidity index) at the time of kneading and pouring refractory to facilitate pressure feeding. More preferably, the addition amount of the plate-like aggregate 11 is 4 to 30 % by mass .
[0013]
Further, by setting the melting point of the plate-like aggregate 11 to 1500 ° C. or higher, a composite composition with an appropriate thickness is formed when reacting with the refractory raw material 12, and at the same time, a part of the plate-like aggregate 11 is stabilized. And can remain.
And when the plate-like aggregate 11 exists in a wedge shape in the refractory raw material 12 and receives heat, the extreme increase of the composite composition that has reacted with the refractory raw material on its surface is suppressed, Bonding power can be increased.
When the melting point of the plate-like aggregate is lower than 1500 ° C., the added plate-like aggregate is melted or the refractory raw material reacts with the plate-like aggregate due to the heat received during the firing process or in use. Are formed, and the resistance to erosion is greatly reduced, and the life of the refractory is shortened.
[0014]
Furthermore, when the plate-like aggregate 11 has a bending strength of 300 to 5000 kg / cm 2 , the strength of the amorphous refractory 10 is increased, and a preferable result is obtained.
When the bending strength of the plate-like aggregate is less than 300 kg / cm 2, (elastic modulus / heating before elastic modulus after 3 hours of heating at a temperature of 1500 ° C.) modulus ratio is likely to occur spalling decreases rapidly The life of the refractory is reduced. On the other hand, when the bending strength exceeds 5000 kg / cm 2 , the plate-like aggregate becomes high purity and high density, and the plate-like aggregate itself causes spalling due to rapid heating and rapid cooling, resulting in the life of the refractory. descend.
In addition, the higher the purity, the higher the price of the material, the higher the refractory cost, and the damage to the crusher when crushing.
The elastic modulus of the refractory is represented by the stress and strain ratio in the elastic limit of the commonly used we are in refractories are.
[0015]
The refractory raw material 12 of castable refractory 10, may use materials that are generally used in the alumina-based.
As the binder to be added to the refractory raw material 12, a binder such as an organic resin such as cement or phenol can be added, or a metal such as Al or Si can be added.
[0016]
In order to manufacture such an irregular refractory 10, a plate aggregate 11 is added to a refractory raw material 12, and then charged into a kneader, and water is 5 to 7 mass%, which is an example of a binder. Add 0.2 to 8% by mass of the powder and knead for 2 to 10 minutes.
At the time of kneading, the plate aggregate 11 is dispersed in the refractory raw material 12, and each plate aggregate 11 exists in a wedge shape with anisotropy (different directions). The particles can be bonded.
Then, the mold is provided on the operating surface of the refining furnace (not shown) can be used poured into the gap running surface and the mold I line.
[0017]
【Example】
The Al 2 O 3 to 90 wt% containing the Al 2 O 3 refractory raw material, Al 2 O 3 plate-like aggregate thickness consisting of 95 wt% containing the ceramic, the addition amount, by changing the longest side length After adding 5 % by mass of cement as a binder, kneading and pouring into a formwork, when used at 1500 ° C., the conventional refractory index is assumed to be 1 We investigated polling quality and comprehensive evaluation. The results are shown in Table 1.
Example 1 is a case where 10 % by mass of a ceramic plate-like aggregate having a thickness of 2.2 mm and a longest side length of 40 mm is added to an Al 2 O 3 refractory raw material, and the melting index is 0 .9, spalling resistance was also good (◯), and a good result (◯) was obtained as a comprehensive evaluation.
Example 2 is a case where 4 % by mass of a ceramic plate-like aggregate having a thickness of 2.5 mm and a longest side length of 60 mm was added to an Al 2 O 3 refractory raw material, and the melting index was 0 .7, spalling resistance was also good (◯), and a good result (◯) was obtained as a comprehensive evaluation.
Example 3 is a case in which 40 % by mass of a ceramic plate-like aggregate having a thickness of 7.0 mm and a longest side length of 60 mm is added to an Al 2 O 3 -based refractory raw material, and the melting index is 0 .8, the spalling resistance index was also good (◯), and a good result (◯) was obtained as a comprehensive evaluation.
[0018]
[Table 1]
Figure 0004546594
[0019]
In contrast, in Comparative Example 1, 3 % by mass of a ceramic plate-like aggregate having a thickness of 1.8 mm and a longest side length of 30 mm was added to the Al 2 O 3 -based refractory raw material. The erosion index was 1.0, the spalling resistance was lowered (x), and the overall evaluation was bad (x).
Comparative Example 2 is a case where 6 % by mass of a ceramic plate-like aggregate having a thickness of 10.0 mm and a longest side length of 60 mm is added to an Al 2 O 3 -based refractory raw material, and the melting index is 1 .2, spalling resistance was lowered (x), and the overall evaluation was bad (x).
[0020]
Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and all changes in conditions and the like that do not depart from the gist are within the scope of the present invention.
For example, as the plate-like aggregate, as long as the longest side (longest side) is larger than the thickness, a crushed material such as a brick can be used.
Furthermore, the raw material for the plate-like aggregate may be an inorganic material generally used for refractories and amorphous refractories, and can be used alone or in combination.
[0021]
【The invention's effect】
The amorphous refractory used for the production of hot metal or molten steel according to claim 1 is a plate-like aggregate having a longest side of 2.5 to 60 mm and a thickness of more than 2 mm and not more than 8 mm (provided that the diameter is 2). 4 to 50% by mass ) (excluding rod-like alumina having a length of ˜5 mm and a length of 20 to 40 mm) is added, so that the strength of the refractory can be greatly improved, the resistance to fusing resistance is improved, and the spalling resistance is improved. be able to.
Further, it is possible to extend the life of the refining furnace, the secondary refining furnace, and the like, thereby improving productivity, reducing the refractory cost, and reducing the labor required for repair.
[0022]
In particular , the amorphous refractory used in the production of hot metal or molten steel uses alumina-based ceramics for the plate-like aggregate, so that the spalling resistance and erosion resistance of the refractory can be improved more stably, and the life of the refractory Can be extended significantly.
[0023]
In addition, refractories used in the production of hot metal or molten steel are made of amorphous refractories, so plate-like aggregates can be blended uniformly with a small amount of water, making the construction by pouring and pressure filling easy, high density and high strength. In addition, the spalling resistance and the erosion resistance can be improved more stably and the life of the refractory can be extended.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of an amorphous refractory used for producing hot metal or molten steel according to an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between the thickness of a plate-like aggregate of refractory and the remaining amount of plate-like aggregate and the spalling index.
[Explanation of symbols]
10: Amorphous refractory, 11: Plate aggregate, 12: Refractory raw material

Claims (1)

破砕機で、最長辺が2.5mm以上60mm以下、厚みが2mmを超えて8mm以下に板状に破砕され、Alを少なくとも95質量%含有したアルミナ系セラミックスからなる板状骨材(ただし、直径2〜5mm、長さ20〜40mmの棒状アルミナを除く)を、アルミナ系の耐火原料に4〜50質量%添加したことを特徴とする溶銑又は溶鋼の製造に用いる不定形耐火物。A plate-like aggregate made of alumina ceramics having a longest side of 2.5 mm or more and 60 mm or less, a thickness exceeding 2 mm and a thickness of 8 mm or less, and containing at least 95% by mass of Al 2 O 3 ( However, an amorphous refractory used for the production of hot metal or molten steel, wherein 4 to 50% by mass of a rod-like alumina having a diameter of 2 to 5 mm and a length of 20 to 40 mm is added to an alumina-based refractory raw material.
JP29088999A 1999-10-13 1999-10-13 Atypical refractories used in the production of hot metal or molten steel Expired - Fee Related JP4546594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29088999A JP4546594B2 (en) 1999-10-13 1999-10-13 Atypical refractories used in the production of hot metal or molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29088999A JP4546594B2 (en) 1999-10-13 1999-10-13 Atypical refractories used in the production of hot metal or molten steel

Publications (2)

Publication Number Publication Date
JP2001114572A JP2001114572A (en) 2001-04-24
JP4546594B2 true JP4546594B2 (en) 2010-09-15

Family

ID=17761831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29088999A Expired - Fee Related JP4546594B2 (en) 1999-10-13 1999-10-13 Atypical refractories used in the production of hot metal or molten steel

Country Status (1)

Country Link
JP (1) JP4546594B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849514B2 (en) * 1976-06-26 1983-11-04 昭和電工株式会社 Spalling resistant refractories
JPH0360470A (en) * 1989-07-28 1991-03-15 Kawasaki Refract Co Ltd Castable refractory for pretreating molten pig iron
JPH10281664A (en) * 1997-04-02 1998-10-23 Tokyo Yogyo Co Ltd Steel tapping trough
JP2001010869A (en) * 1999-06-25 2001-01-16 Nippon Steel Corp Amorphous refractory having excellent dissolution loss resistance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3420360B2 (en) * 1994-11-30 2003-06-23 黒崎播磨株式会社 Refractory brick for hot metal pretreatment vessel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849514B2 (en) * 1976-06-26 1983-11-04 昭和電工株式会社 Spalling resistant refractories
JPH0360470A (en) * 1989-07-28 1991-03-15 Kawasaki Refract Co Ltd Castable refractory for pretreating molten pig iron
JPH10281664A (en) * 1997-04-02 1998-10-23 Tokyo Yogyo Co Ltd Steel tapping trough
JP2001010869A (en) * 1999-06-25 2001-01-16 Nippon Steel Corp Amorphous refractory having excellent dissolution loss resistance

Also Published As

Publication number Publication date
JP2001114572A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
US7939458B2 (en) Refractory brick
CN104355634B (en) A kind of aluminum oxide electric furnace cover and preparation method thereof
US20110034317A1 (en) Hot gunning repair mix
CN106083110A (en) High strength steel ladle-lining castable
CN107954697A (en) A kind of magnesia carbon brick for adding boron carbide and preparation method thereof
JP4572521B2 (en) Castable refractories, manufacturing method thereof and lance pipe
JP6179534B2 (en) Unshaped refractories for blast furnace glazing
CN109851333A (en) Main trough of blast furnace Nano sol bonded wear-resistant plate and the preparation method and application thereof
CN106946550B (en) A kind of magnesia-spinel brick and preparation method thereof that antistrip performance is excellent
JP4855339B2 (en) Amorphous refractories and methods for producing refractories
CN1298465C (en) Bottom fire-proof material of large steel ladle
CN112759369A (en) Magnesia-carbon brick with high thermal shock stability
CN107032808A (en) A kind of corundum electric furnace cover
JP4546594B2 (en) Atypical refractories used in the production of hot metal or molten steel
CN105819871A (en) Air blowing and slag removing spray gun for foundry ladle and preparation method thereof
CN110395998B (en) Castable for ferrovanadium spray gun and method for pouring ferrovanadium spray gun
JP6361705B2 (en) Lining method of converter charging wall
JP2000351678A (en) Refractory material with excellent spalling resistance and erosion resistance
JP7513380B2 (en) Runner bricks for steel ingot casting
JP5341135B2 (en) Alumina-magnesia casting material and method for producing the same
JP4464487B2 (en) Amorphous refractory with excellent melting resistance
JP4814544B2 (en) Granulated slag production equipment
JP4484173B2 (en) Indefinite refractory
JPS59146975A (en) Plate refractories for sliding nozzle
JPH0465370A (en) Casting material for molten pig iron pretreating vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4546594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees