JPH01167268A - Carbon-containing uncalcined refractory - Google Patents

Carbon-containing uncalcined refractory

Info

Publication number
JPH01167268A
JPH01167268A JP32622187A JP32622187A JPH01167268A JP H01167268 A JPH01167268 A JP H01167268A JP 32622187 A JP32622187 A JP 32622187A JP 32622187 A JP32622187 A JP 32622187A JP H01167268 A JPH01167268 A JP H01167268A
Authority
JP
Japan
Prior art keywords
refractory
aluminum
carbon
carbon fibers
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32622187A
Other languages
Japanese (ja)
Inventor
Tsutomu Sato
力 佐藤
Susumu Hasegawa
晋 長谷川
Hirotaka Shintani
新谷 宏隆
Tatsuo Kawakami
川上 辰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd filed Critical Kawasaki Refractories Co Ltd
Priority to JP32622187A priority Critical patent/JPH01167268A/en
Publication of JPH01167268A publication Critical patent/JPH01167268A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a carbon-containing uncalcined refractory having improved strength in a wide temperature range from low temperature range to high temperature range and spalling resistance, by blending a carbon-containing refractory component with aluminum coated carbon fibers. CONSTITUTION:100 pts.wt. carbon-containing refractory component is blended with 0.5-30 pts.wt. aluminum coated carbon fibers to give an uncalcined refractory. SiO2, Al2O3, ZrO2, MgO, CaO, SiC, TiC, B4C, Si3N4, AlN, TiN, graphite, etc., may be cited as refractory aggregate to be used. The aluminum coated carbon fibers mean carbon fibers obtained by forming an aluminum layer or an aluminum alloy layer on carbon fibers having about 5-50mu diameter by melt plating method, PVD method, CVD method, etc., or by coating the same carbon fibers with an aluminum compound to form aluminum or an aluminum alloy by beating in use of the refractory.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、200〜600℃の低温域及び600〜10
00℃の中間温度域における強度と耐スポーリング性と
を特に改善した不焼成耐火物に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to low temperature ranges of 200 to 600°C and
The present invention relates to an unfired refractory with particularly improved strength and spalling resistance in the intermediate temperature range of 00°C.

従来の技術とその問題点 耐火性骨材と有機質バインダーとからなる不焼成耐火物
は、亀裂が発生しにくく、また万一発生しても焼成れん
かに比較して亀裂が広がりにくいことから、ある程度の
耐スポーリング性を具備している。
Conventional technology and its problems Unfired refractories made of refractory aggregate and organic binder are less prone to cracking, and even if cracks do occur, cracks are less likely to spread than fired bricks. It has some degree of spalling resistance.

しかしながら、例えば溶融金属流の流量制御に用いられ
るスライディングノズル(以下SNとする)のプレート
れんがのような特殊な耐火物では、溶融金属流による急
激な熱衝撃と摩耗による物理的且つ化学的侵食作用を受
けるため、より高度の耐スポーリング性及び耐食性が要
求される。
However, for special refractories such as plate bricks of sliding nozzles (hereinafter referred to as SN) used for controlling the flow rate of molten metal flow, physical and chemical erosion effects due to rapid thermal shock and wear caused by the molten metal flow occur. Therefore, a higher degree of spalling resistance and corrosion resistance is required.

カーボンは、耐滓性に優れ、熱伝導率が大きく、熱膨張
率の小さい材料であるため、耐スポーリング性に優れて
おり、この特性は、細材質と混合、或いは複合した場合
にも維持される。従って、耐スポーリング性を強く要求
される材質においては、カーボンを含有することが多い
Carbon is a material with excellent slag resistance, high thermal conductivity, and low coefficient of thermal expansion, so it has excellent spalling resistance, and this property is maintained even when mixed or combined with fine materials. be done. Therefore, materials that are strongly required to have spalling resistance often contain carbon.

有機結合剤は、温度上昇により軟化溶融する熱可塑性樹
脂と逆に温度上昇により硬化する熱硬化性樹脂の2つに
大別される。前者で結合した不焼成耐火物は、100〜
300°Cの温度で結合剤が軟化溶融するために、強度
が低下し、また後者で結合したものは、400〜800
℃の温度で樹脂が重縮合し炭素化するために、強度が低
下する。
Organic binders are broadly classified into two types: thermoplastic resins that soften and melt as the temperature rises, and thermosetting resins that harden as the temperature rises. The unfired refractories bonded with the former have 100~
Because the binder softens and melts at a temperature of 300°C, the strength decreases, and the strength of the bonded material at the latter temperature is 400-800°C.
Because the resin undergoes polycondensation and carbonization at a temperature of ℃, the strength decreases.

このような低温温度域(200〜600℃)及び中間温
度域で(600〜1000°C)での強度低下を抑制す
るために、アルミニウム、アルミニウム合金等の金属微
粉の添加が行なわれており、例えは特開昭54−163
913号、特開昭55−107749号等にそのような
例が見出される。
In order to suppress the decrease in strength in such low temperature ranges (200 to 600 °C) and intermediate temperature ranges (600 to 1000 °C), fine metal powders such as aluminum and aluminum alloys are added. For example, Japanese Patent Publication No. 54-163
Such examples are found in JP-A-55-107749 and the like.

更に、中間温度域での強度低下の抑制と合わせて耐スポ
ーリング性の向上及び亀裂発生による剥離損耗を防止す
る手段として、アルミニウム又はアルミニウム合金製の
細線(繊維)の添加も試みられており、例えば特開昭6
1−136966号、特開昭61−146773号等に
そのような技術が記載されている。
Furthermore, attempts have been made to add thin wires (fibers) made of aluminum or aluminum alloy as a means of suppressing the decrease in strength in the intermediate temperature range, improving spalling resistance, and preventing peeling and wear due to cracking. For example, JP-A-6
Such techniques are described in Japanese Patent Application Publication No. 1-136966, Japanese Patent Application Laid-open No. 146773/1983, and the like.

しかしながら、アルミニウムやアルミニウム合金等の金
属粉末や金属ファイバーの添加により、中間温度(60
0〜1000°C)から高温域(1000℃以上)での
強度や耐食性の向上についてかなりの効果が認められる
ものの、SNのプレートれんがのように耐食性、耐スポ
ーリング性のみならず、低温域から高温域まで高度の寸
法精度も要求される使用条件の厳しい耐火物に対しては
、亀裂の発生並びに発生した亀裂の進展の防止という点
において、効果の改善は、いまなお不充分である。
However, by adding metal powder or metal fiber such as aluminum or aluminum alloy, intermediate temperature (60
Although considerable effects have been recognized in improving strength and corrosion resistance in the high temperature range (1000°C and above) from 0 to 1000°C, unlike SN plate bricks, it is not only good in corrosion resistance and spalling resistance, but also in the low temperature range. For refractories that are used under severe conditions that require a high degree of dimensional accuracy up to a high temperature range, improvements in effectiveness are still insufficient in terms of preventing the occurrence of cracks and the propagation of cracks that have occurred.

問題点を解決するための手段 本発明者は、低温域から高温域までの広い温度域で、高
い機械的強度と優れた耐食性を発揮するとともに、耐ス
ポーリング性を著しく改善した不焼成耐火物を得るべく
、種々研究を重ねて来た。
Means for Solving the Problems The present inventor has developed an unfired refractory that exhibits high mechanical strength and excellent corrosion resistance in a wide temperature range from low to high temperatures, and has significantly improved spalling resistance. In order to obtain this, we have conducted various studies.

その結果、炭素含有耐火性骨材と有機質バインダーとの
配合物にアルミニウム被覆カーボンファイバー(炭素質
又は黒鉛質のファイバーを指す。以下同じ)を添加する
場合には、その目的を達し得ることを見出し、本発明を
完成するに至った。
As a result, they found that the objective could be achieved when aluminum-coated carbon fibers (referring to carbonaceous or graphite fibers; the same shall apply hereinafter) were added to a mixture of carbon-containing refractory aggregate and organic binder. , we have completed the present invention.

即ち、本発明は、含炭素耐火成分100重量部に対し、
アルミニウム被覆カーボン繊維0.5〜30重量部を配
合したことを特徴とする含炭素不焼成耐火物を提供する
ものである。
That is, in the present invention, for 100 parts by weight of the carbon-containing refractory component,
The present invention provides a carbon-containing unfired refractory characterized by blending 0.5 to 30 parts by weight of aluminum-coated carbon fiber.

本発明において使用する耐火性骨材は、特に限定されず
、シリカ(Si02)、アルミナ(A1203)、ジル
コニア(Zr02)、マグネシア(MgO)、ライム(
Ca O)等の酸化物及びこれ等の化合物ならびに混合
物;5iC1TiCSB4 C5Si3 N4 、AΩ
N5TiN。
The refractory aggregate used in the present invention is not particularly limited, and includes silica (Si02), alumina (A1203), zirconia (Zr02), magnesia (MgO), lime (
Oxides such as CaO) and their compounds and mixtures; 5iC1TiCSB4 C5Si3 N4, AΩ
N5TiN.

BN、ZrB2で代表される炭化物、窒化物、硼化物の
単体及びこれ等の化合物並びに混合物、黒鉛(鱗片黒鉛
、工状黒鉛等の天然黒鉛、ピッチコークス、ニードルコ
ークス等の人造黒鉛を含む)及び無定形炭素等の炭素材
料等の公知の任意の材料を使用することができる。本発
明耐火物の製造に際しては、耐火性骨材中の炭素含有量
が3〜50重量%となる様に上記の材料を適宜配合して
使用すれば良い。
Carbides, nitrides, and borides represented by BN and ZrB2, as well as their compounds and mixtures, graphite (including natural graphite such as scale graphite and engineered graphite, and artificial graphite such as pitch coke and needle coke); Any known material can be used, such as carbon materials such as amorphous carbon. When producing the refractory of the present invention, the above-mentioned materials may be appropriately mixed and used so that the carbon content in the refractory aggregate is 3 to 50% by weight.

有機質バインダーも、特に限定されないが、残留炭素量
の多い熱硬化性樹脂が好ましく、更にコストの点でフェ
ノール系及びフラン系樹脂がより好ましい。その使用量
も特に限定されないが、耐火性骨材、アルミニウム被覆
カーボン繊維の合計量100重量部に対し、通常2〜1
0重量部程度である。
The organic binder is also not particularly limited, but thermosetting resins with a large amount of residual carbon are preferred, and phenolic and furan resins are more preferred in terms of cost. The amount used is not particularly limited, but it is usually 2 to 1 part by weight per 100 parts by weight of the total amount of fire-resistant aggregate and aluminum-coated carbon fiber.
It is approximately 0 parts by weight.

本発明で使用するアルミニウム被覆カーボン繊維とは、
径5〜500μm程度のカーボン繊維上に溶融メツキ法
、PVD法、CVD法等によりアルミニウム又はアルミ
ニウム合金層を形成させたもの、並びに同様のカーボン
繊維上に耐火物使用時の加熱によりアルミニウム又はア
ルミニウム合金を生成するアルミニウム化合物を被覆し
たものを意味する。アルミニウム化合物被覆繊維は、例
えば、有機溶媒にアルコキシドなどのアルミニラ化合物
を溶解し、これにカーボン繊維を浸漬することにより、
得られる。被覆層の厚さ(AΩとして)は、特に限定さ
れないが、通常カーボン繊維径の1 /’100〜1/
2程度の範囲内にある。
The aluminum-coated carbon fiber used in the present invention is
Aluminum or aluminum alloy layers are formed on carbon fibers with a diameter of about 5 to 500 μm by melt plating, PVD, CVD, etc., and aluminum or aluminum alloys are formed on similar carbon fibers by heating when using refractories. means coated with an aluminum compound that produces Aluminum compound-coated fibers can be produced, for example, by dissolving an aluminilla compound such as an alkoxide in an organic solvent and dipping carbon fibers in this.
can get. The thickness of the coating layer (as AΩ) is not particularly limited, but is usually 1/'100 to 1/' of the carbon fiber diameter.
It is within the range of about 2.

アルミニウム被覆カーボン繊維は、直線、曲線、山形、
波形等の種々の形状で使用することができる。アルミニ
ウム被覆カーボン繊維の太さは、直径0.005〜0.
5mmの範囲が適している。
Aluminum coated carbon fiber can be straight, curved, chevron,
It can be used in various shapes such as waveform. The thickness of the aluminum-coated carbon fiber is 0.005 to 0.00 mm in diameter.
A range of 5 mm is suitable.

0.005mm未満の太さでは、配合物中への分散が困
難であり、0.5mmを超える太さでは、耐スポーリン
グ性の向上があまり期待できない。
If the thickness is less than 0.005 mm, it will be difficult to disperse it into the formulation, and if the thickness exceeds 0.5 mm, no significant improvement in spalling resistance can be expected.

その長さは、1〜15mmが適当である。15mmより
も長くなると、ファイバーが互いに絡み合い、坏土又は
れんが組成中への均一分散が困難となり、耐スポーリン
グ性の低下を来たすとともに、充填性も低下する。一方
、1mmよりも短い場合には、耐スポーリング性の向上
に十分に寄与しない。アルミニウム被覆カーボン繊維の
添加量は、前記耐火性骨材100重量部に対し、0.5
〜30重量部とする。この量が0.5重量部未満では、
充分な強度と耐スポーリング性が得られない。−方、3
0重量部を超えると、マトリックス中のカーボン繊維の
比率が大きくなり混合及び混練作業が困難となって、良
好な品質の耐火物が得られ難くなる。
The appropriate length is 1 to 15 mm. If the length is longer than 15 mm, the fibers become entangled with each other, making it difficult to uniformly disperse them into the clay or brick composition, resulting in a decrease in spalling resistance and in filling properties. On the other hand, if it is shorter than 1 mm, it will not contribute sufficiently to improving spalling resistance. The amount of aluminum-coated carbon fiber added is 0.5 parts by weight per 100 parts by weight of the fire-resistant aggregate.
~30 parts by weight. If this amount is less than 0.5 parts by weight,
Sufficient strength and spalling resistance cannot be obtained. - way, 3
If it exceeds 0 parts by weight, the proportion of carbon fiber in the matrix becomes large, making mixing and kneading operations difficult and making it difficult to obtain a refractory of good quality.

本発明においては、上述の配合物に、更に必要に応じて
、例えば、カーボン、アルミニウム(Af2)、シリコ
ン(Si)、マグネシウム(Mg)、亜鉛(Z n)及
びこれ等の合金の粒径0.5mm以下の金属粉を耐火性
骨材100重量部に対して1〜15重量部添加すること
ができる。
In the present invention, in the above-mentioned formulation, if necessary, for example, carbon, aluminum (Af2), silicon (Si), magnesium (Mg), zinc (Zn), and alloys thereof with a particle size of 0 are added. 1 to 15 parts by weight of metal powder of .5 mm or less can be added to 100 parts by weight of the refractory aggregate.

これにより600〜1000℃の中間温度域における強
度低下をより効果的に防止することができる。
This makes it possible to more effectively prevent a decrease in strength in the intermediate temperature range of 600 to 1000°C.

発明の効果 本発明によれば、耐スポーリング性に優れ低温域から高
温域まで強度低下の少ない不焼成耐火物が得られる。
Effects of the Invention According to the present invention, an unfired refractory which has excellent spalling resistance and whose strength decreases little from a low temperature range to a high temperature range can be obtained.

また、任意添加成分であるアルミニウム等は、酸化によ
り代表的な耐火材料であるアルミナ(Al2O2)等を
生成し、またカーボンは耐スラグ性にも優れることから
、これ等添加成分は、耐スポーリング性の向上のみなら
ず、耐食性の向上にも寄与する。
In addition, aluminum, which is an optionally added component, produces alumina (Al2O2), which is a typical fire-resistant material, when oxidized, and carbon has excellent slag resistance. This contributes not only to improving properties but also to improving corrosion resistance.

本発明の不焼成耐火物は、定形耐火物としてのみならず
、キャスタブル耐火物、プラスチック耐火物などの不定
形耐火物としても同様の顕著な効果を奏する。
The unfired refractory of the present invention exhibits similar remarkable effects not only as a shaped refractory but also as a monolithic refractory such as a castable refractory or a plastic refractory.

実施例 以下実施例を示し、本発明の特徴とするところをより一
層明らかにする。
EXAMPLES Hereinafter, examples will be shown to further clarify the features of the present invention.

実施例1〜6及び比較例1〜5 第1表に示すアルミナ−カーボン系の配合物(重量部)
を混合及び混練し、これを油圧プレスにより、1000
 kg/ cm2の圧力で114mmx230mmX4
5mmに成形後、熱風乾燥器によリ220℃で24時間
乾燥処理して、試料を作製した。
Examples 1 to 6 and Comparative Examples 1 to 5 Alumina-carbon blends shown in Table 1 (parts by weight)
were mixed and kneaded, and this was pressed into a 1000 m
114mmx230mmx4 at kg/cm2 pressure
After molding to 5 mm, it was dried in a hot air dryer at 220° C. for 24 hours to prepare a sample.

結果を第2表に併せて示す。The results are also shown in Table 2.

第2表から明らかなように、実施例品は、試験したいず
れの温度においても、曲げ強さが150kgf / 8
w12以上であり、また耐食性及び耐スポーリング性に
優れている。
As is clear from Table 2, the example product had a bending strength of 150 kgf/8 at all tested temperatures.
It has w12 or more and has excellent corrosion resistance and spalling resistance.

注1)500°C,1000℃及び1400℃での試験
は、コークスプリーズ中に埋め込んだ試料をトンネル型
電気炉に送り込み、30分間所定温度に保持後、三点法
で測定した。
Note 1) For tests at 500°C, 1000°C, and 1400°C, the sample embedded in coke pleat was sent into a tunnel electric furnace, held at a predetermined temperature for 30 minutes, and then measured using the three-point method.

注2)1600°Cに保持した溶銑中に30mmx30
mmX230mmに切断加工した供試体を3分間浸漬2
15分間空冷の操作を3回行い、試験供試体の弾性率を
測定した後、長さ方向に2等分し、断面の亀裂を観察す
る。○:亀裂の少ないもの、△:亀裂がかなり見られる
もの、×:亀裂が著しく多いもの、 弾性率低下の割合の少ないものほど、耐スポーリング性
に優れている。
Note 2) 30mm x 30 in hot metal kept at 1600°C
Immerse the specimen cut into mm x 230 mm for 3 minutes 2
After performing air cooling three times for 15 minutes and measuring the elastic modulus of the test specimen, it was divided into two equal parts in the length direction and cracks in the cross section were observed. ○: Fewer cracks, △: Considerable cracks, ×: Significantly more cracks. The smaller the rate of decline in elastic modulus, the better the spalling resistance.

注3)高周波炉内張法・・・高周波炉に試料れんがを内
張すし、普通鋼を溶解し、酸化鉄をフラックスとして1
650°Cで3時間保持する。
Note 3) High-frequency furnace lining method: A high-frequency furnace is lined with sample bricks, ordinary steel is melted, and iron oxide is used as a flux.
Hold at 650°C for 3 hours.

試験後、溶損面積を測定して、溶損量とする。After the test, measure the area of erosion loss and use it as the amount of erosion loss.

溶損指数の小さいものほど耐食性に優れている。The smaller the erosion index, the better the corrosion resistance.

実施例7及び比較例6 第3表に使用したマグネシア−カーボン系材料の配合を
示す。
Example 7 and Comparative Example 6 Table 3 shows the formulations of the magnesia-carbon materials used.

この配合を混合、混練し1000kgf /cm2の成
形圧で114 m m X 230 m m X 45
 m mに成形後、200°Cで36時間乾燥処理した
This mixture was mixed and kneaded and molded at a molding pressure of 1000 kgf/cm2 to form a 114 mm x 230 mm x 45
After molding into a size of 2 mm, it was dried at 200°C for 36 hours.

結果を第3表に併せて示す。The results are also shown in Table 3.

第3表に見られるように、本発明品は、曲げ強さ及び耐
スポーリング性に著しく優れていることが明らかである
As seen in Table 3, it is clear that the products of the present invention are significantly superior in bending strength and spalling resistance.

第  3  表 *耐食性 高周波炉内張法・・・高周波炉に試料れんがを内張すし
、普通鋼を溶解し、C/S=1、鉄 分(Total、Pe) −20%の合成スラグを用い
て1680°Cで3時間保持した際の溶損量。
Table 3 *Corrosion-resistant high-frequency furnace lining method: A high-frequency furnace is lined with sample bricks, ordinary steel is melted, and synthetic slag with C/S=1 and iron content (Total, Pe) -20% is used. Amount of erosion when held at 1680°C for 3 hours.

曲げ強さ、耐スポール性等の試験法は実施例1〜6、比
較例1〜5に準する。
Test methods for bending strength, spalling resistance, etc. are based on Examples 1-6 and Comparative Examples 1-5.

実施例8及び比較例7 実施例5及び比較例2と同様の配合でタンデイツシュ用
スライディングノズルのプレートれんがをそれぞれ成形
し、第1表に示す製品と同一の条件で乾燥処理後、研摩
加工し、実機使用した(それぞれ実施例8及び比較例7
とする)。
Example 8 and Comparative Example 7 Plate bricks for sliding nozzles for tundish were molded using the same formulations as in Example 5 and Comparative Example 2, and after drying and polishing under the same conditions as the products shown in Table 1, Actual machine used (Example 8 and Comparative Example 7, respectively)
).

その結果、実施例8のものは12連(通過溶鋼の総量1
200ton)の使用に耐え、プレートれんがの摺動面
には面荒れも見られなかったのに対し、比較例7のもの
は、6連目(575ton)に摺動面から湯もれし、使
用を中止した。
As a result, in Example 8, 12 stations (total amount of molten steel passing through 1
200 tons), and no surface roughness was observed on the sliding surfaces of the plate bricks, whereas in Comparative Example 7, hot water leaked from the sliding surfaces at the 6th brick (575 tons) and the plate bricks were not used. has been discontinued.

(以 上)(that's all)

Claims (1)

【特許請求の範囲】[Claims] (1)含炭素耐火成分100重量部に対し、アルミニウ
ム被覆カーボン繊維0.5〜30重量部を配合したこと
を特徴とする含炭素不焼成耐火物。
(1) A carbon-containing unfired refractory characterized in that 0.5 to 30 parts by weight of aluminum-coated carbon fibers are blended with 100 parts by weight of a carbon-containing refractory component.
JP32622187A 1987-12-23 1987-12-23 Carbon-containing uncalcined refractory Pending JPH01167268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32622187A JPH01167268A (en) 1987-12-23 1987-12-23 Carbon-containing uncalcined refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32622187A JPH01167268A (en) 1987-12-23 1987-12-23 Carbon-containing uncalcined refractory

Publications (1)

Publication Number Publication Date
JPH01167268A true JPH01167268A (en) 1989-06-30

Family

ID=18185341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32622187A Pending JPH01167268A (en) 1987-12-23 1987-12-23 Carbon-containing uncalcined refractory

Country Status (1)

Country Link
JP (1) JPH01167268A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283054A (en) * 1995-04-13 1996-10-29 Yoshinari Hasegawa Heat resistant high strength composite material
KR20050064542A (en) * 2003-12-24 2005-06-29 주식회사 포스코 Batch composition of forming refractories for blast furnace tap hole
JP2007137712A (en) * 2005-11-17 2007-06-07 Lignyte Co Ltd Refractory composition and refractory
WO2016058162A1 (en) * 2014-10-16 2016-04-21 李世光 Wall brick for buildings and preparation method therefor and wall composed therefrom
CN107324825A (en) * 2017-07-18 2017-11-07 海城市中兴高档镁质砖有限公司 A kind of unfired magnesia-calcium zirconia block without free carbon

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283054A (en) * 1995-04-13 1996-10-29 Yoshinari Hasegawa Heat resistant high strength composite material
KR20050064542A (en) * 2003-12-24 2005-06-29 주식회사 포스코 Batch composition of forming refractories for blast furnace tap hole
JP2007137712A (en) * 2005-11-17 2007-06-07 Lignyte Co Ltd Refractory composition and refractory
JP4703379B2 (en) * 2005-11-17 2011-06-15 リグナイト株式会社 Refractory composition and refractory
WO2016058162A1 (en) * 2014-10-16 2016-04-21 李世光 Wall brick for buildings and preparation method therefor and wall composed therefrom
CN107324825A (en) * 2017-07-18 2017-11-07 海城市中兴高档镁质砖有限公司 A kind of unfired magnesia-calcium zirconia block without free carbon

Similar Documents

Publication Publication Date Title
KR0139421B1 (en) Refractory materials bonded by a sialon matrix and method of preparation
US4208214A (en) Refractory compositions
CA2809049C (en) Monolithic graphitic castable refractory
JPH01167268A (en) Carbon-containing uncalcined refractory
JPS6348828B2 (en)
JP2599428B2 (en) Method for producing unburned MgO-C brick
JP2002274959A (en) Refractory material for aluminum and aluminum alloy
JPH08259340A (en) Magnesia-carbon-based castable refractory
JP3351998B2 (en) Sliding nozzle plate and method of manufacturing the same
JP2003171170A (en) Magnesia-carbon brick
JP4703087B2 (en) Water-based castable refractories
KR940005080B1 (en) Process for preparation of magnesia-carbon stamp material
JPH039066B2 (en)
JP4193419B2 (en) Resin granulated graphite and graphite-containing refractories
JPH01122972A (en) Unburned shaped refractory
JPH0412065A (en) Double structure refractory
JPH0578180A (en) Carbon fiber-containing refractory
JPH0585805A (en) Carbon-containing fire-resistant material
JPH11157927A (en) Zirconia amorphous refractory
JP2001146464A (en) Refractory containing lump graphite
JPH09142945A (en) Prepared unshaped refractories for lining vessel for molten iron and lining structure of vessel for molten iron formed by using the same
JPH0510299B2 (en)
JP2000178075A (en) Castable refractory containing carbon
JPH03205347A (en) Magnesia-carbon brick
JPH07101770A (en) Carbon-containing refractory