JP2000178075A - Castable refractory containing carbon - Google Patents

Castable refractory containing carbon

Info

Publication number
JP2000178075A
JP2000178075A JP10352874A JP35287498A JP2000178075A JP 2000178075 A JP2000178075 A JP 2000178075A JP 10352874 A JP10352874 A JP 10352874A JP 35287498 A JP35287498 A JP 35287498A JP 2000178075 A JP2000178075 A JP 2000178075A
Authority
JP
Japan
Prior art keywords
raw material
alumina
weight
matrix
magnesia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10352874A
Other languages
Japanese (ja)
Inventor
Hisahiro Teranishi
久広 寺西
Koji Saito
幸治 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP10352874A priority Critical patent/JP2000178075A/en
Publication of JP2000178075A publication Critical patent/JP2000178075A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon containing castable refractory having the ability to inhibit structure spalling even when it is repeatedly used while hating, improved resistance to thermal impact, thereby the formation of exfoliation and crack is prevented, improved in resistance to infiltration of slag by carbon, thereby softening and melting of the refractory by infiltration of the slug can be inhibited, and improved in durability, which refractory is produced by using alumina raw material as the main component of its aggregate and its matrix, and further, controlling components contained in the matrix. SOLUTION: In the castable refractory, alumina raw material is used as the main component of its aggregate having particle diameters more than 0.3 mm and of its matrix having particle diameters of <=0.3 mm. The castable refractory contains 2 to 8 wt.% alumina cement, 2 to 8 wt.% magnesia raw material, 0.3 to 2 wt.% amorphous silica raw material and 0.5 to 3 wt.%, expressed in terms of the residual carbon, of a carbonaceous raw material, as the components of the matrix.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、溶鋼取鍋、タン
デッシュ内張り材等に普及しているアルミナ−マグネシ
ア質キャスタブル耐火物の欠点である繰返し加熱冷却使
用時の耐熱衝撃性を向上させ、耐火物の剥離損耗防止に
よる耐用性向上が期待できるようなカーボン含有キャス
タブル耐火物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention improves the thermal shock resistance during repeated use of heating and cooling, which is a drawback of alumina-magnesia castable refractories widely used in molten steel ladle, tundish lining material and the like. The present invention relates to a carbon-containing castable refractory that can be expected to improve durability by preventing peeling and abrasion of carbon.

【0002】[0002]

【従来の技術】アルミナ−マグネシア質キャスタブル耐
火物は、従来のキャスタブル耐火物であるハイアルミナ
質、アルミナ−スピネル質キャスタブル耐火物に比べて
耐食性・耐浸潤性に優れており、溶鋼取鍋、タンデッシ
ュ内張り材やマスブロック材等に普及している。特に、
溶鋼取鍋内張り材としては、アルミナ−カーボン質、マ
グネシア−カーボン質れんが等と比較しても、操業条件
によっては同等の耐用性が得られることもあり、既に一
般的な材料といえるものである。
2. Description of the Related Art Alumina-magnesia castable refractories are superior in corrosion resistance and infiltration resistance to conventional castable refractories such as high alumina and alumina-spinel castable refractories. Widely used for lining materials and mass block materials. In particular,
Even if compared with alumina-carbon, magnesia-carbon brick, etc., the same durability can be obtained as the lining material of the molten steel ladle, depending on the operating conditions, and it can be said that it is already a general material. .

【0003】このように優れた特性を有するアルミナ−
マグネシア質キャスタブル耐火物ではあるが、これには
マグネシア原料の消化を防止するためにシリカ質原料が
添加されているために、このシリカ質原料が組織をガラ
ス化させるものであった。このガラス化は、冷却後の収
縮や強度増加をもたらすため、加熱冷却の繰返しにより
ガラス化−非ガラス化境界部での構造スポーリングや稼
動面の耐熱衝撃性低下を起こし、その結果として亀裂や
剥離が発生するといった問題があった。。
[0003] Alumina having such excellent properties
Although it is a magnesia castable refractory, a siliceous material is added to the magnesia material to prevent digestion of the magnesia material, so that the siliceous material vitrifies the tissue. This vitrification causes shrinkage and increase in strength after cooling, so repeated heating and cooling causes structural spalling at the vitrification-non-vitrification boundary and lowers thermal shock resistance of the working surface. There was a problem that peeling occurred. .

【0004】この構造スポーリング発生や耐熱衝撃性低
下を防止したものとしては、アルミナ−マグネシア質キ
ャスタブル成分へ水酸化アルミニウム3〜15重量%添
加した溶鋼金属容器内張り不定形耐火物(特開平9−1
2375号)が提案されているが、これは水酸化アルミ
ニウムの脱水反応が起こるため、マグネシア消化による
亀裂発生や気孔率増加による耐食性低下といった問題が
生じていた。
To prevent the occurrence of the structural spalling and the reduction of the thermal shock resistance, an amorphous refractory lined in a molten steel metal container in which 3 to 15% by weight of aluminum hydroxide is added to an alumina-magnesia castable component (Japanese Patent Application Laid-Open No. 9-1997) 1
No. 2375) has been proposed, but this involves a dehydration reaction of aluminum hydroxide, which causes problems such as generation of cracks due to magnesia digestion and deterioration of corrosion resistance due to an increase in porosity.

【0005】また、アルミナ−マグネシア質キャスタブ
ル耐火物は、施工厚が薄く、これを全面加熱する浸漬ノ
ズル、タンデッシュ注入管等のプレキャストブロックに
使用した場合には、スラグ浸潤による軟化溶融で浸漬部
の脱落が発生するおそれがあった。
[0005] Alumina-magnesia castable refractories have a small construction thickness, and when they are used for precast blocks such as immersion nozzles and tundish injection pipes for heating the entire surface, the immersion portion is softened and melted by slag infiltration. There was a risk of falling off.

【0006】[0006]

【発明が解決しようとする課題】この発明は、アルミナ
質原料を骨材とマトリックスの主成分とし、更にマトリ
ックス成分を規制したカーボンキャスタブル耐火物とす
ることによって、繰り返し加熱使用時の構造スポーリン
グ防止と耐熱衝撃性向上により剥離・亀裂が防止され、
併せてカーボンの耐スラグ浸潤性向上により、スラグ浸
潤による軟化溶融も防止でき、耐用向上をはかろうとす
るものである。
SUMMARY OF THE INVENTION The present invention provides a carbon castable refractory having an alumina raw material as a main component of an aggregate and a matrix, and a matrix component regulated, thereby preventing structural spalling during repeated use. Peeling and cracking are prevented by
At the same time, by improving the slag infiltration resistance of carbon, softening and melting due to slag infiltration can be prevented, and the durability is improved.

【0007】[0007]

【課題を解決するための手段】この発明は、アルミナ質
原料を粒径が0.3mmを超える骨材と0.3mm以下のマ
トリックスの主成分とし、マトリックス成分として2〜
8重量%のアルミナセメントと、2〜8重量%のマグネ
シア質原料と、0.3〜2重量%の非晶質シリカ原料
と、残炭量で0.5〜3重量%のカーボン質原料とを含
有することを特徴とするカーボン含有キャスタブル耐火
物(請求項1)およびアルミナ質原料を粒径が0.3mm
を超える骨材と0.3mm以下のマトリックスの主成分と
し、マトリックス成分として2〜8重量%のアルミナセ
メントと、2〜8重量%のマグネシア質原料と、0.3
〜2重量%の非晶質シリカ原料と、残炭量で0.5〜3
重量%のカーボン質原料と、さらに0.5〜5重量%の
無機炭化物原料を含有することを特徴とするカーボン含
有キャスタブル耐火物(請求項2)である。
According to the present invention, an alumina-based raw material is mainly composed of an aggregate having a particle size exceeding 0.3 mm and a matrix having a particle size of 0.3 mm or less.
8% by weight of alumina cement, 2 to 8% by weight of magnesia raw material, 0.3 to 2% by weight of amorphous silica raw material, and 0.5 to 3% by weight of carbonaceous raw material in terms of residual carbon content. And a carbon-containing castable refractory (claim 1) and an alumina raw material having a particle size of 0.3 mm.
And a main component of a matrix of 0.3 mm or less, and 2 to 8% by weight of alumina cement as a matrix component, 2 to 8% by weight of magnesia raw material,
To 2% by weight of an amorphous silica raw material and a residual carbon content of 0.5 to 3
A carbon-containing castable refractory (Claim 2) characterized in that the carbon-containing castable refractory further contains 0.5% to 5% by weight of an inorganic carbide material.

【0008】[0008]

【発明の実施の形態】この発明は、アルミナ質原料を骨
材およびマトリックスの主成分とするものである。ここ
でのアルミナ質原料は、電融アルミナ、焼結アルミナ、
仮焼アルミナの如き合成原料が好ましい。ボーキサイト
のような天然原料では品質が安定しないので一定の特性
の維持が困難である。骨材は、こうしたアルミナ質原料
の粒径が0.3mmを超えるものとする。粒径が0.3mm
以下のマトリックスには、上記のアルミナ質原料の以外
に、アルミナセメント、マグネシア質原料、非晶質シリ
カ原料、カーボン質原料を含有する。請求項2の発明で
は、さらに無機炭化物原料を含有する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention uses an alumina material as a main component of an aggregate and a matrix. The alumina raw material here is fused alumina, sintered alumina,
Synthetic raw materials such as calcined alumina are preferred. Natural materials such as bauxite have instability in quality, making it difficult to maintain certain properties. In the aggregate, the particle size of such an alumina-based raw material exceeds 0.3 mm. Particle size 0.3mm
The following matrix contains alumina cement, magnesia-based material, amorphous silica material, and carbon-based material in addition to the above-mentioned alumina-based material. The invention according to claim 2 further contains an inorganic carbide raw material.

【0009】この内、アルミナセメントはバインダーと
して必要不可欠のものである。含有アルミナ成分は、多
いほど耐食性が優れたものとなるが、発現強度が低下す
るためその含有量は70〜80重量%が好ましい。アル
ミナセメントの添加量は2〜8重量%が必要で、2重量
%未満では脱型時の強度およびプレキャストブロック製
品での乾燥後のハンドリング強度が不十分である。逆
に、8重量%以上ではハンドリング時の強度は問題ない
が、カルシア成分が過剰となって耐食性が低下する。
Of these, alumina cement is indispensable as a binder. The greater the content of the alumina component, the more excellent the corrosion resistance, but the content of the alumina component is preferably 70 to 80% by weight because the developing strength is reduced. The addition amount of alumina cement is required to be 2 to 8% by weight, and if it is less than 2% by weight, the strength at the time of demolding and the handling strength after drying with a precast block product are insufficient. Conversely, when the content is 8% by weight or more, there is no problem in strength at the time of handling, but the calcia component becomes excessive and the corrosion resistance is reduced.

【0010】マグネシア質原料は、主原料であるアルミ
ナ質原料と体積膨張を伴うスピネル反応を起こし、その
結果として組織を緻密化させるため、高耐食性・高耐浸
潤性を得るのに不可欠である。この原料としては、電融
マグネシア、焼結マグネシアのような合成原料が望まし
い。これが天然マグネシア原料であると品質が安定せ
ず、一定の特性を維持することが難しい。マグネシア質
原料の添加量は2〜8重量%が必要である。これが2重
量%未満では緻密化が不十分であるばかりでなく、塩基
性スラグに対する耐食性が期待できなくなる。反対に、
これが8重量%を超えるとマグネシアの水和反応による
養生および乾燥時の亀裂発生防止が困難になる。
The magnesia-based raw material causes a spinel reaction with volume expansion with the alumina-based raw material, which is a main raw material, and as a result, densifies the structure. Therefore, it is indispensable to obtain high corrosion resistance and high infiltration resistance. As this raw material, a synthetic raw material such as electrofused magnesia and sintered magnesia is desirable. If this is a natural magnesia raw material, the quality is not stable and it is difficult to maintain certain characteristics. The added amount of the magnesia raw material needs to be 2 to 8% by weight. If this is less than 2% by weight, not only densification is insufficient, but also corrosion resistance to basic slag cannot be expected. Conversely,
If it exceeds 8% by weight, it becomes difficult to cure the magnesia by hydration and to prevent cracking during drying.

【0011】非晶質シリカ原料はマグネシア質原料の水
和反応を防止するために必要不可欠である。マグネシア
質原料は、混練水との水和反応により水酸化マグネシウ
ムとなり、その体積膨張作用により成形体の養生、乾燥
中に亀裂が発生しやすい。そこで、ここに非晶質シリカ
が存在すると、非晶質シリカは水中での表面電苛が負に
強く帯電し、これが逆に正に強く帯電しているマグネシ
ア原料表面に吸着されて、マグネシア粒子表面は非晶質
シリカでコートされ、マグネシア質原料の水和反応が防
止されるものと考えられている。
An amorphous silica raw material is indispensable for preventing a hydration reaction of a magnesia raw material. The magnesia raw material becomes magnesium hydroxide by a hydration reaction with the kneading water, and cracks are easily generated during curing and drying of the molded article due to its volume expansion action. Therefore, if amorphous silica is present, the amorphous silica is strongly negatively charged by surface electrolysis in water, which is conversely adsorbed on the surface of the positively charged magnesia raw material to form magnesia particles. It is believed that the surface is coated with amorphous silica to prevent the hydration reaction of the magnesia raw material.

【0012】非晶質シリカ原料は、シリカヒュームの使
用が一般的である。非晶質シリカは、より少量でコーテ
ィング効果を出すためには、粒径は出来だけ小さい方が
よい。非晶質シリカの添加量は0.3〜2重量%で、こ
れが0.3重量%未満ではマグネシア質原料の消化反応
防止効果が不十分となり、養生・乾燥中の亀裂が発生し
やすい。また、これが2重量%を超えると消化防止の効
果は十分あるが、ガラス化による耐食性の低下を起こす
ため、耐用の向上が期待できない。
As an amorphous silica raw material, silica fume is generally used. In order to achieve a coating effect with a smaller amount of amorphous silica, the particle size should be as small as possible. The addition amount of the amorphous silica is 0.3 to 2% by weight. If this amount is less than 0.3% by weight, the effect of preventing the digestive reaction of the magnesia raw material becomes insufficient, and cracks are likely to occur during curing and drying. If it exceeds 2% by weight, the effect of preventing digestion is sufficient, but the corrosion resistance is reduced by vitrification, so that an improvement in durability cannot be expected.

【0013】カーボン質原料は、本発明中では最も重要
な原料であり、本発明の特徴であるアルミナ−カーボン
質キャスタブル耐火物の繰返し加熱時の亀裂防止には不
可欠である。発明者らの研究によると、カーボン質原料
の添加が焼成後の強度増加および収縮を抑制し、その結
果として繰返し過熱使用時のシリカのガラス化抑制に伴
う構造スポーリング防止と、耐熱衝撃性向上が図られる
ことが認められた。また、更にカーボン質原料の添加
は、耐スラグ浸潤性を著しく向上させ、肉薄時に防止す
ることが不可能であったスラグ浸潤による軟化溶融損耗
が防止できるようになり、浸漬ノズル、タンデッシュ注
入管のような薄肉製品の耐用性向上が期待できるように
なった。
The carbonaceous raw material is the most important raw material in the present invention, and is indispensable for preventing the alumina-carbonaceous castable refractory, which is a feature of the present invention, from cracking during repeated heating. According to the study of the inventors, the addition of the carbonaceous material suppresses the increase in strength and shrinkage after firing, and as a result, prevents structural spalling due to the suppression of vitrification of silica during repeated overheating, and improves thermal shock resistance. Was found to be achieved. Further, the addition of a carbonaceous material significantly improves the resistance to slag infiltration, and can prevent softening and melting wear due to slag infiltration, which could not be prevented when the wall thickness is small. Improvements in durability of such thin products can be expected.

【0014】カーボン質原料の添加量は、キャスタブル
中の結晶水除去が可能な350℃で1時間加熱した時、
残炭量で0.5〜3重量%が必要である。これが0.5
重量%未満では上記の構造スポーリング防止と耐熱衝撃
性向上が望めない。また、3重量%を超えると強度不足
による摩耗で耐用性向上が望めない。即ち、アルミナ−
マグネシア質キャスタブルの特徴を維持しながら本発明
の構造スポーリング防止と耐熱衝撃性向上の効果を発揮
するためには、上記の添加量が重要である。カーボン質
原料は、水への高分散性、高残炭量からカーボンブラッ
クが望ましい。無機炭化物原料は、酸素との反応性がカ
ーボン質原料より高いため、カーボン質原料の酸化防止
材として有効である。また、無機炭化物原料は、耐食性
低下が少ないため、その添加により本発明の効果がさら
に安定して発揮される。
The amount of the carbonaceous raw material added is as follows: when heated at 350 ° C. for one hour at which castable water can be removed,
0.5 to 3% by weight of the remaining coal is required. This is 0.5
If the amount is less than the weight percentage, the above-mentioned prevention of structural spalling and improvement in thermal shock resistance cannot be expected. On the other hand, if it exceeds 3% by weight, improvement in durability cannot be expected due to wear due to insufficient strength. That is, alumina
In order to maintain the characteristics of magnesia castables and exhibit the effects of preventing structural spalling and improving thermal shock resistance of the present invention, the above-mentioned amount is important. The carbonaceous raw material is desirably carbon black because of its high dispersibility in water and high residual carbon content. Since the inorganic carbide raw material has higher reactivity with oxygen than the carbonaceous material, it is effective as an antioxidant for the carbonaceous material. In addition, since the inorganic carbide raw material has a small decrease in corrosion resistance, the effect of the present invention is more stably exhibited by its addition.

【0015】プレキャストブロック製品の場合、表面に
釉薬などの酸化防止コート剤を予め塗布しておくことに
より、予熱時のカーボンの酸化を防止することは可能で
あるが、内張り材ではコート吹き付け設備等が必要とな
り、施工場所が限定される。また、コート剤剥離などに
よる特性バラツキを防止するためにも、カーボン酸化防
止剤として無機炭化物原料の添加が望ましい。
In the case of a precast block product, it is possible to prevent oxidation of carbon during preheating by applying an antioxidant coating agent such as glaze on the surface in advance, but in the case of a lining material, a coating spraying equipment or the like is used. Is required, and the construction place is limited. In addition, in order to prevent variations in properties due to peeling of the coating agent, it is desirable to add an inorganic carbide raw material as a carbon antioxidant.

【0016】無機炭化物原料としては、炭化珪素、炭化
硼素、炭化ジルコニウム等が有効である。その添加量
は、0.5〜5重量%である。これが0.5重量%未満
ではカーボン質原料の酸化防止効果が十分に得られな
い。また、これが5重量%を超えると酸化防止効果は高
いが、低融点化により耐食性が低下し耐用性向上が望め
なくなる。
As the inorganic carbide raw material, silicon carbide, boron carbide, zirconium carbide and the like are effective. The added amount is 0.5 to 5% by weight. If it is less than 0.5% by weight, the effect of preventing oxidation of the carbonaceous raw material cannot be sufficiently obtained. On the other hand, if it exceeds 5% by weight, the antioxidant effect is high, but the lowering of the melting point lowers the corrosion resistance and makes it impossible to expect an improvement in the durability.

【0017】[0017]

【実施例】(実施例1〜5)表1に示す配合比の各原料
を、JIS R−5201に準じてフロー値測定による
流動性試験を行い、従来のアルミナ−マグネシア質キャ
スタブル耐火物と同等の流動性を示した添加水分でキャ
スタブル耐火物のテストピースを作成した。このキャス
タブル耐火物の物性評価を次のようにして行った。
Examples (Examples 1 to 5) Each raw material having the compounding ratio shown in Table 1 was subjected to a fluidity test by flow value measurement according to JIS R-5201, and was equivalent to a conventional alumina-magnesia castable refractory. A test piece of castable refractory was prepared with the added water exhibiting the fluidity. Physical properties of this castable refractory were evaluated as follows.

【0018】物性評価(試料寸法,40×40×160
mm) 110℃で2時間乾燥し、これを1500℃で3時間焼
成し、このもののかさ密度、曲げ強さを比較した。な
お、焼成はカーボンブリーズ中で焼成した。
Evaluation of physical properties (sample size, 40 × 40 × 160
mm) It was dried at 110 ° C. for 2 hours, baked at 1500 ° C. for 3 hours, and the bulk density and the bending strength were compared. The firing was performed in a carbon breathe.

【0019】耐熱衝撃性評価(試料寸法,40×40×
160mm) 個別に温度設定可能な2室を台板が往復移動するスポー
リング用電気炉で、500〜1500℃各1時間保持を
5回繰返し、試験後に試料を切断して亀裂の進展を目視
で確認した。亀裂進展の具合を3段階で評価し、◎は亀
裂なし、○は少し亀裂がある、×は亀裂多いとした。更
に、組織劣化の度合いを比較するために、上記条件で繰
返し焼成した試料について強度測定も行った。
Evaluation of thermal shock resistance (sample size, 40 × 40 ×
160mm) In a spalling electric furnace in which the base plate reciprocates in two chambers where the temperature can be set individually, holding at 500 to 1500 ° C for 1 hour is repeated 5 times, and after the test, the sample is cut and crack growth is visually observed. confirmed. The degree of crack growth was evaluated on a three-point scale. ◎ indicates no cracks, は indicates slight cracks, and × indicates many cracks. Further, in order to compare the degree of structural deterioration, the strength of the sample repeatedly fired under the above conditions was also measured.

【0020】耐食性および耐スラグ浸食性評価(試料寸
法,φ20×160mm) 誘電炉デッイプ法にて溶鋼温度1600℃内に60分浸
漬し、冷却後試料を切断してその損耗量およびスラグ浸
潤量を測定した。実施例1を100として指数化、他の
実施例のスラグ浸潤量を数値で示した。この場合、数値
が小さいほど高耐食性を示す。なお、浸食剤は合成スラ
グを使用し、このスラグの組成は表4に示した。
Evaluation of corrosion resistance and slag erosion resistance (sample size, φ20 × 160 mm) Immerse in a molten steel temperature of 1600 ° C. for 60 minutes by a dielectric furnace dipping method, cut the sample after cooling, and determine the amount of wear and slag infiltration. It was measured. The index of Example 1 was set to 100, and the amount of slag infiltration of other Examples was shown by numerical values. In this case, the smaller the numerical value, the higher the corrosion resistance. In addition, the erosion agent used synthetic slag, and the composition of this slag is shown in Table 4.

【0021】耐酸化性評価(試料寸法,40×40×4
0mm) 電気炉にて試料を1200℃(8時間で昇温して3時間
保持)に加熱した。これを自然放冷したのち切断し、そ
の酸化層の厚みを測定した。実施例1の酸化層の厚みを
100として指数化し、他の実施例のスラグ浸潤量を数
値で示した。この場合、数値が小さいほど高耐酸化性を
示す。これらの結果を表1に示した。
Oxidation resistance evaluation (sample size, 40 × 40 × 4
0 mm) The sample was heated to 1200 ° C. (heated in 8 hours and held for 3 hours) in an electric furnace. This was allowed to cool naturally and then cut, and the thickness of the oxide layer was measured. The thickness of the oxidized layer in Example 1 was indexed as 100, and the amount of slag infiltration in other examples was shown by numerical values. In this case, the smaller the value, the higher the oxidation resistance. The results are shown in Table 1.

【0022】(比較例1〜12)また、表1ないし3に
比較例1ないし12を示した。この比較例の内、比較例
10ないし12は、従来のアルミナ−マグネシア質キャ
スタブル耐火物に水酸化アルミニウムを添加したもので
ある。
Comparative Examples 1 to 12 Comparative Examples 1 to 12 are shown in Tables 1 to 3. Among the comparative examples, Comparative Examples 10 to 12 are obtained by adding aluminum hydroxide to a conventional alumina-magnesia castable refractory.

【0023】ここに用いる原料およびテストピースの作
成、キャスタブル耐火物の物性評価は、いずれも実施例
と同様にして行った。
The preparation of the raw materials and test pieces used here and the evaluation of the physical properties of the castable refractories were performed in the same manner as in the examples.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】表1から明らかなように、この発明の実施
例になるものは、いずれも繰返し加熱時の耐スポーリン
グ性を向上させることが分かる。また、耐食性について
も、長時間スラグに浸漬された場合に、従来では見られ
るような軟化溶融現象が見られず、明らかに耐用性の向
上が確認できる。
As is clear from Table 1, it can be seen that all of the embodiments of the present invention improve the spalling resistance during repeated heating. Regarding the corrosion resistance, when immersed in the slag for a long time, the softening and melting phenomenon as seen in the prior art is not observed, and the improvement of the durability can be clearly confirmed.

【0029】さらに、浸漬ノズル(内径40mm、長さ3
60mm)の実機試験において、実施例2の配合で製造し
た試験品(酸化防止用コート剤表面塗布)を使用したと
ころ、従来アルミナ−マグネシア質キャスタブル耐火物
のものに比べて、大幅な亀裂減少および耐食性の向上が
確認できた。
Further, an immersion nozzle (inner diameter 40 mm, length 3
In the actual machine test of 60 mm), when a test product (surface coating of an antioxidant coating agent) manufactured using the composition of Example 2 was used, a large crack reduction and a large cracking were obtained as compared with the conventional alumina-magnesia castable refractory. The improvement of corrosion resistance was confirmed.

【0030】[0030]

【発明の効果】この発明のカーボン含有キャスタブル耐
火物によれば、繰返し加熱使用時の構造スポーリングの
防止と耐熱衝撃性向上により、耐火物の剥離・亀裂が防
止され、その結果として耐火物の耐用性の向上が期待で
きる製品とすることが出来る。また、耐火物中のカーボ
ンの耐スラグ浸潤性向上効果により、肉薄時のスラグ浸
潤による軟化溶融も防止できて、この面でも耐用性の向
上が期待できるものとなる。
According to the castable refractory containing carbon of the present invention, the spalling of the refractory is prevented by the prevention of structural spalling and the improvement of the thermal shock resistance during repeated use, and as a result, the refractory The product can be expected to have improved durability. Further, the effect of improving the slag infiltration resistance of carbon in the refractory can prevent softening and melting due to slag infiltration when the wall is thin, and improvement in durability can be expected in this aspect as well.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ質原料を粒径が0.3mmを超え
る骨材と0.3mm以下のマトリックスの主成分とし、マ
トリックス成分として2〜8重量%のアルミナセメント
と、2〜8重量%のマグネシア質原料と、0.3〜2重
量%の非晶質シリカ原料と、残炭量で0.5〜3重量%
のカーボン質原料とを含有することを特徴とするカーボ
ン含有キャスタブル耐火物。
An alumina-based raw material is mainly composed of an aggregate having a particle size of more than 0.3 mm and a matrix having a particle size of 0.3 mm or less, and 2 to 8% by weight of an alumina cement as a matrix component; Magnesia material, 0.3 to 2% by weight of amorphous silica material, and 0.5 to 3% by weight of residual carbon
A castable refractory containing carbon, characterized by containing:
【請求項2】 アルミナ質原料を粒径が0.3mmを超え
る骨材と0.3mm以下のマトリックスの主成分とし、マ
トリックス成分として2〜8重量%のアルミナセメント
と、2〜8重量%のマグネシア質原料と、0.3〜2重
量%の非晶質シリカ原料と、残炭量で0.5〜3重量%
のカーボン質原料と、さらに0.5〜5重量%の無機炭
化物原料とを含有することを特徴とするカーボン含有キ
ャスタブル耐火物。
2. An alumina-based raw material comprising an aggregate having a particle size of more than 0.3 mm and a matrix having a size of 0.3 mm or less, 2 to 8% by weight of alumina cement as a matrix component, and 2 to 8% by weight of Magnesia material, 0.3 to 2% by weight of amorphous silica material, and 0.5 to 3% by weight of residual carbon
A castable refractory containing carbon, characterized in that the castable refractory further comprises 0.5 to 5% by weight of an inorganic carbide material.
JP10352874A 1998-12-11 1998-12-11 Castable refractory containing carbon Pending JP2000178075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10352874A JP2000178075A (en) 1998-12-11 1998-12-11 Castable refractory containing carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10352874A JP2000178075A (en) 1998-12-11 1998-12-11 Castable refractory containing carbon

Publications (1)

Publication Number Publication Date
JP2000178075A true JP2000178075A (en) 2000-06-27

Family

ID=18427048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10352874A Pending JP2000178075A (en) 1998-12-11 1998-12-11 Castable refractory containing carbon

Country Status (1)

Country Link
JP (1) JP2000178075A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041086A (en) * 2019-05-13 2019-07-23 中冶武汉冶金建筑研究院有限公司 A kind of flexible carbonaceous castable for furnace bottom screed-coat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041086A (en) * 2019-05-13 2019-07-23 中冶武汉冶金建筑研究院有限公司 A kind of flexible carbonaceous castable for furnace bottom screed-coat

Similar Documents

Publication Publication Date Title
KR101561989B1 (en) A sintered refractory material based on silicon carbide with a silicon nitride binder
KR100297091B1 (en) Chrome-free brick
JP6259643B2 (en) High chromia castable refractory, precast block using the same, and waste melting furnace lined with one or both of them
CA2242243C (en) Nozzle for use in continuous casting of steel
JPH09202667A (en) Castable refractory for slide gate
JP2000219575A (en) Castable refractory
JP2004131310A (en) Castable refractory for lining tundish
JP2012192430A (en) Alumina carbon-based slide gate plate
JP2020050572A (en) Castable refractory
JP2002274959A (en) Refractory material for aluminum and aluminum alloy
JP2000203953A (en) Castable refractory for trough of blast furnace
JP4408552B2 (en) Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source
JPH08259340A (en) Magnesia-carbon-based castable refractory
JP2000178075A (en) Castable refractory containing carbon
JP3920950B2 (en) Lance irregular refractory for hot metal pretreatment
JP2021147275A (en) Magnesia-spinel refractory brick
JP2009242122A (en) Brick for blast furnace hearth and blast furnace hearth lined with the same
JPH01167268A (en) Carbon-containing uncalcined refractory
JP7228733B1 (en) Magnesia carbon brick and its manufacturing method
JP2002012911A (en) Castable brick-lining structure of molten steel ladle
KR100373702B1 (en) Block Molding Using Alumina-Spinel Waste Castable
JPH11157927A (en) Zirconia amorphous refractory
JP4704263B2 (en) Amorphous refractory molding material and Amorphous refractory molding
JP2003171182A (en) Carbon-containing unburned brick
KR900008589B1 (en) Refractory

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050927