JPH043740B2 - - Google Patents

Info

Publication number
JPH043740B2
JPH043740B2 JP19495783A JP19495783A JPH043740B2 JP H043740 B2 JPH043740 B2 JP H043740B2 JP 19495783 A JP19495783 A JP 19495783A JP 19495783 A JP19495783 A JP 19495783A JP H043740 B2 JPH043740 B2 JP H043740B2
Authority
JP
Japan
Prior art keywords
layer
pressure
resin
container according
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19495783A
Other languages
Japanese (ja)
Other versions
JPS6085937A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58194957A priority Critical patent/JPS6085937A/en
Publication of JPS6085937A publication Critical patent/JPS6085937A/en
Publication of JPH043740B2 publication Critical patent/JPH043740B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Tubes (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、エチレン−酢酸ビニル共重合体けん
化物(以下EVOH樹脂と記す)を中間層とする
多層容器であつて、特定の層構成を与えることに
よつて加圧状態で水性混合物を充填するに際し最
も効果的にEVOH樹脂のガスバリヤー性を発揮
させた耐圧バリヤー容器に関するものである。 従来EVOH樹脂は、ガスバリヤー性に優れた
熱可塑性樹脂としてポリ塩化ビニリデン樹脂、ポ
リアクリロニトリル系樹脂とともに食品その他の
包装用途にひろく用いられている。しかし
EVOH樹脂の1つの欠点としてバリヤー性能の
湿度感受性がある。すなわち、EVOH樹脂は水
分を吸収することにより、酸素、炭酸ガス等のバ
リヤー性能が低下するという欠点を有し、他の熱
可塑性バリヤー樹脂のいづれにおいても該低下の
度合は小さく、かかる現象は実用段階で問題とな
る程度には認められず、EVOH樹脂に特有のも
のである。またEVOH樹脂は比較的大きな水蒸
気透過性を有する。これらの欠点を避けるために
EVOH樹脂層の両側にポリエチレン,ポリプロ
ピレン等の疎水性樹脂を積層して実用に供せられ
る場合がほとんどである。この場合両側に積層さ
れた疎水性樹脂層はEVOH樹脂層を水分から遮
断する役目を果すと同時に力学的性質、ヒートシ
ール性、外観等の性質を併せ付与するのである。 ガスバリヤー性、とくに酸素バリヤー性を必要
とするプラスチツク容器は食品包装に多く用いら
れており、身近かな例としてマヨネーズ、ケチヤ
ツプ、削りカツオ、タクアン、ミソ、シヨウユ、
食用油、チーズ、ふりかけ、スナツク食品、ジヤ
ム、プリン等があげられる。これらの例は、いず
れもほとんど内外の圧力差のない包装形態のもの
であるが、酸素のみならず炭酸ガスについてもバ
リヤー性が要求される。ビール、コーラの如き少
くとも0.5Kg/cm2Gの内圧を併う水性液体飲料の
容器としては、ガラス、金属缶が主体であり、プ
ラスチツク容器はコーラの大型びんの一部に使用
されているに過ぎない。プラスチツク容器が耐圧
容器の分野で使用されない最大の理由は、プラス
チツクが、ガラス、金属に比してガスバリヤー性
に劣るためである。プラスチツク容器のこのよう
な欠点をカバーするためにバリヤー性樹脂を他の
熱可塑性樹脂と複合化した耐圧容器をつくろうと
する試みが種々提案されているが、充分満足出来
るものは得られていない。EVOH樹脂は、塩化
ビニリデン系樹脂等の他の熱可塑性バリヤー樹脂
に比して加工性、熱安定性がよく、他の熱可塑性
樹脂と複合化するに当つて多重マニホルド式ダイ
装置に配分する場合、一層高い溶融押出成形温度
で処理しなければならない隣接する他の樹脂から
の熱によつて比較的高温にさらされることがあつ
ても塩化ビニリデン樹脂等の他のバリヤー性樹脂
の如く分解などによるガス状生成物等を発生する
こともなく極めて好ましい樹脂である。反面要因
は明かではないが、その一つには容器構成材に張
力がかかること、更には内容物が水性混合物であ
ることと関連するバリヤー性へ影響を及ぼす要因
に由来するものを考えられるが、ビール、コーラ
の如き少くとも0.5Kg/cm2G(特に1Kg/cm2G)の
内圧を伴う水性液体飲料の容器としてEVOH樹
脂を中間層として複合化された容器であつても従
来から使用されている前記湿潤状態にある食品の
ほとんど圧力差のない包装形態の容器ほどのバリ
ヤー性を発揮しない欠点があることがわかつた。 このような状況に鑑み、本発明者らはEVOH
樹脂を中間バリヤー層として使用した多層容器に
ついて種々検討を行つた結果、容器構成材に張力
のかかる加圧水性混合物用の多層耐圧バリヤー容
器の一素材としてEVOH樹脂を用いるときの諸
欠点を大幅に排除した容器を完成するに至つた。 すなわち本発明は、エチレン含量25〜55モル
%、酢酸ビニル成分のけん化度が96%以上の
EVOH樹脂を主体として形成された中間バリヤ
ー層Bを少くとも1つの層として含む多層容器で
あつて、Bよりも内側に形成された1もしくは2
以上の層よりなる内層群AnおよびBより外側に
形成された1もしくは2以上の層よりなる外層群
Cnを有し、かつ下記()式を満足するように
構成された耐圧バリヤー容器であり、ビール、コ
ーラ等の少くとも0.5Kg/cm2G(特に1Kg/cm2G)
の内圧を伴う水性液体飲料、特に内圧水性炭酸含
有飲料に用いても酸素及び炭酸ガスバリヤー性の
低下の少い耐圧バリヤー容器を提供せんとするも
のである。従来該加圧水性液体容器のガスバリヤ
ー性と層構成の関係についてはほとんど知られて
おらず、容器構成材に張力のかからない非加圧系
水性液体の容器と同様に考えられているのが実情
であるが、本発明者らは特に湿度感受性、含水率
感受性の高いEVOH樹脂について該加圧水性液
体容器の一素材として複合化して用いる場合、容
器構成材に張力のかからない水性液体充填時の非
加圧系とは異なるバリヤー挙動を示すことを見出
し、加圧水性混合物充填時の圧力と水分が
EVOH樹脂層を少くとも1つの層として含む多
層容器のバリヤー性に及ぼす影響を検討した結
果、特定の条件を満足する層構成にすることによ
つて水性混合物充填時で、かつ容器構成材に張力
がかかる際にも優れた酸素および炭酸ガスバリヤ
ー性をもつ該加圧水性混合物用の耐圧バリヤー容
器を完成したものである。 k≦0.75 () k=alc/cla ここでla,lcはそれぞれAn,Cnの合計層厚さ
でありa,cはそれぞれAn,Cnの複合層の
透湿係数である。 前述の如くエチレン25〜55モル%、酢酸ビニル
成分のけん化度が96%以上のEVOH樹脂を主体
とする中間バリヤー層Bを中心として内層群An
と外層群CnとをP/lに関して非対称的に配置
し、その非対称性が()式で規定される特定の
範囲にある時に、はじめて充填物が水性混合物で
あつて、かつ少くとも0.5Kg/cm2G(特に1Kg/cm2
G)の内圧を伴う容器構成材に張力のかかる加圧
系であるという実用条件におけるEVOH樹脂層
のバリヤー性能の低下を極めて顕著に抑制するこ
とが出来る。該効果は塩化ビニリデン系樹脂、ア
クリロニトリル系樹脂などの他のバリヤー性熱可
塑性樹脂を中間層として用いる場合には得られ
ず、かつ該効果の顕著性はEVOH樹脂について
もエチレン55モル%以下のEVOH樹脂を中間層
Bとして用いてはじめて認められる特異的なもの
である。 本発明における透湿係数aおよびcは、そ
れぞれ内層群An全体および外層群Cn全体につい
ての値であり、前者については一方の面を高湿度
側100%RH(RHは相対湿度を表わす)におき、
他方の面を低湿度側75%RHにおき30℃で測定し
た値であり、後者については一方の面を高湿度側
75%RHにおき、他方の面を低湿度側50%RHの
条件下に30℃で測定された値であり、該a,
cについて()式を満足せしめる該非対称性を
付与してはじめて本発明の効果を享受することが
できる。a/la,c/lcに関しては、容器を
構成する内層群An、外層群Cnの各層と使用樹脂
の種別、密度および厚さを同じくするシートを作
製し、該シートについて、前記条件下に測定した
透湿係数から求めることができる。透湿係数は透
湿度を求めて算出されるのが通常であり、該透湿
度は、ASTME96−63Tに準じて測定することが
できる。 本発明において()式におけるkの値は0.75
以下であり、好ましくは0.005〜0.5、より好まし
くは0.3以下である。すなわち、kの値が該領域
にある如く/lに関し非対称の程度を増加せし
めて該容器を構成してはじめて本発明の顕著な効
果を享受することができる。すなわちkの値が
0.75を越えると酸素および炭酸ガスに対するバリ
ヤー性改善の度合は小さくなり、本発明の効果は
減殺される。またEVOH樹脂層が最外部に位置
するときは該容器が取扱われる途上の摩擦、擦過
傷等に起因する物理的損傷等を排除し、該バリヤ
ー層を保護するためのkの値が少くとも0.005と
なる如く保護層を設けることがより望ましい。ま
た本発明の効果は外層群Cnの最外層が接する雰
囲気の相対湿度の影響をうけ該湿度が減少するほ
ど該効果は顕著である。しかしながら該効果の相
対湿度依存性は、本発明の有用性を損う程度に及
ぶものではなく、後述の実施例において示すよう
に該相対湿度が85%においても本発明の耐圧バリ
ヤー容器のバリヤー性は、実用上望ましい領域を
出るものではない。しかし本発明の効果をより顕
著に発揮させるためには、少くとも相対湿度は95
%以下であることが望ましい。 本発明に用いられるEVOH樹脂は、エチレン
含量25〜55モル%、酢酸ビニル成分のけん化度96
モル%以上の該樹脂であり、本発明の効果は、エ
チレン含量の低い領域においてより大きいが、エ
チレン含量25モル%未満になると成形加工性が劣
り、満足な成形加工が困難となる。またエチレン
含量が55モル%を越えると湿度感受性が小さくな
り、本発明の効果も低下するとともにエチレン含
量の増加に起因してガスバリヤー性が低下し、満
足するバリヤー性を維持することができなくな
る。また該けん化度が96モル%未満となるとガス
バリヤー性に劣り、本発明に好適に使用すること
ができなくなる。該EVOH樹脂にはエチレン、
ビニルアルコール、酢酸ビニルの単位以外の第3
成分等をバリヤー性能、湿度感受性等に著しい影
響を及ぼさない範囲で含ませることができる。中
間バリヤー層Bは上記のEVOH樹脂単独よりな
る1つの層である場合が基本であるが、EVOH
樹脂単独層の他にEVOH樹脂と他の樹脂とのブ
レンド層とすることも、バリヤー性能を損わない
範囲内で可能であるし、両者の積層された多層と
することもできる。 本発明の効果が顕著に発揮されるためには、中
間バリヤー層の層厚は、少くとも1μ以上でなけ
ればならない。1μ以下では成型加工時、特に延
伸成形時におけるEVOH樹脂層に発生するピン
ホール、亀裂等の発生によるものとみられるが、
本発明の効果が実質的に発現されず、本発明の効
果を享受できない場合が多い。実用的には、中間
バリヤー層であるEVOH樹脂層は、2〜3μ以上
であることが好ましい。 内層群Anに用いられる樹脂としてはポリエチ
レンテレフタレート、ポリブチレンテレフタレー
ト等の芳香族ポリエステル系樹脂、ポリエチレ
ン、ポリプロピレン等のポリオレフイン系樹脂、
6−ナイロン、66−ナイロン、12−ナイロン等の
ポリアミド系樹脂、ポリカーボネート、ポリスチ
レン、ポリ塩化ビニル等の疎水性熱可塑性樹脂の
1種または2種以上の積層物および/または混合
物の組合せがあげられるが、最内層に用いる樹脂
は本発明が内圧水性混合物用容器であることに鑑
みて吸水性、透湿性がより小さいことが好まし
く、このために二軸配向結晶化させて用いること
がより好ましい。また最内層A1に用いる樹脂と
しては内容物が食品である場合には衛生的見地か
ら芳香族ポリエステル系樹脂、ポリオレフイン系
樹脂から選ぶのが適当である。就中ポリエチレン
テレフタレート系樹脂は、パリソンなどの予備成
形物の二軸延伸吹込成形によつて機械的性質、特
に耐衝撃性および内圧抵抗性にすぐれたびんを形
成するので好ましく、またポリプロピレン系樹脂
も二軸配向結晶化させて好適な疎水性熱可塑性樹
脂として最内層A1に用いられる。また回収樹脂
を含む層を内層群Anの1層として用いる場合に
は該樹脂中に多少に拘らずEVOH系樹脂が含ま
れるので最内層A1以外の層に使用することが好
ましい。内層群Anのうち中間バリヤー層Bに接
する層には通常該層に使用される熱可塑性樹脂お
よびEVOH樹脂の両者に接着性を有する接着性
樹脂層を存在させることが好ましい。接着性樹脂
としては、内層群に使用する疎水性熱可塑性樹脂
の種類に応じてカルボキシル基変性ポリオレフイ
ン、カルボキシル変性エチレン−アクリル酸エチ
ル共重合体、カルボキシル基変性エチレン−酢酸
ビニル共重合体、変性SBR、ポリアクリレート、
ポリウレタン、軟質ポリアミド、軟質ポリエステ
ル等の中から適宜選択することができる。多層容
器の成形方法としては共押出、共押出ラミネー
ト、コーテイング、ドライラミネーシヨン、等の
1種又は2種以上の組合せがいづれも使用できる
ので成形方法に応じて接着性樹脂も適宜選択する
ことが出来る。 外層群Cnに用いる樹脂としては内層群Anに用
いる樹脂と同様の疎水性熱可塑性樹脂及び接着性
樹脂が使用出来る他、各樹脂の溶液あるいはエマ
ルジヨンをEVOH樹脂層の上に、必要に応じて
コロナ処理等の接着性向上のための表面処理を行
つた後、直接またはアンカーコート剤を介してコ
ートすることも可能である。外層群Cnが最外層
に位置する該コート層と場合によつてはアンカー
コート層とからなる構成をもつことは外層群を所
望の薄さに容易になし得ること、内層群が二軸配
向、結晶化した疎水性熱可塑性樹脂からなる場合
において外層群Cn中の該層が二軸配向結晶化し
ていない層となし得る簡便な方法であること、従
つてkの値をより小さい領域に保持出来ること等
の観点から好ましい態様の1つである。最外層は
その上に印刷、ラベル貼付等を施す場合もあり、
また外観光沢、相互摩擦、擦過傷等の性能を決め
る重要な役割をはたすとともにEVOH樹脂層を
外部の水から保護する役割も併せ持つ。上述の観
点からより好ましい樹脂としては、ポリエチレン
テレフタレート、アイオノマー樹脂、ポリフツ化
ビニル、ポリ塩化ビニリデン、ポリアクリレート
等があげられるが、これらに限定されるものでは
ない。 内層群Anおよび外層群Cnに用いられる樹脂は
酸化防止剤、紫外線吸収剤、帯電防止剤、着色
剤、充填剤、滑剤その他の添加剤を含むことがで
きる。たとえばビール容器の場合には紫外線を遮
断する必要があるので、酸化鉄等の着色顔料ある
いは紫外線吸収剤をいづれかの層に添加すること
ができる。 また容器の製造工程で生じる樹脂層および容器
の不合格品等は、それらを単独の層としてあるい
は新樹脂と混合して1つの層として内層群Anあ
るいは外層群Cnの1部に使用することができる。 以下実施例にもとづいて本発明を詳細に説明す
るがその範囲を限定するものではない。 実施例1〜3および比較例1〜3 エチレン含量32モル%、酢酸ビニル成分のけん
化度99.5%のEVOH樹脂、0.85dl/gの固有粘度
をもつポリエチレンテレフタレートおよび接着性
樹脂として酢酸ビニル含量24重量%、無水マレイ
ン酸変性度1.1重量%の変性エチレン−酢酸ビニ
ル樹脂を3台の押出機に供給し、EVOH樹脂は
220℃、ポリエチレンテレフタレートは278℃、接
着性樹脂は215℃の温度条件下に溶融混練し、温
度250℃のダイ内で溶融樹脂を互に接合させて、
外層群Cnが該接着性樹脂(層厚0.038mm)とポリ
エチレンテレフタレート、中間層BがEVOH樹
脂(層厚0.52mm)および内層群が該接着性樹脂層
(層厚0.038mm)とポリエチレンテレフタレートで
あり、かつCnおよびAnのポリエチレンテレフタ
レート層の層厚の合計が4.7mmの内径9.5mmの複合
されたパイプを押出し、このパイプを11.4cmの長
さに切断し、その両端を加熱し、まず片側の端を
溶接して盲とし、ついで他端に圧縮成形によりネ
ジ山を設け、首部を形成させた。かくして得たパ
リソンをブロー金型内にセツトし、パリソンを約
90℃に予熱したのち約100℃で二軸延伸ブロー成
形を行つた。得られた中空体の外径は約6.4cmで
あり、接着樹脂層の厚さはAnおよびCnにおいて
両者共に約4μ、中間層Bは約55μ、AnおよびCn
におけるポリエチレンテレフタレート層の合計は
350μであつた。内層群Anと外層群Cnの層構成を
変えて得た、6個のkの異る中空体について、そ
れぞれに炭酸ガス飽和水を充填して酸素透過量を
測定し、その結果を第1表に示した。最内層及び
最外層の該測定時に接する雰囲気はそれぞれ20
℃、4atm・abs.、相対湿度100%および20℃大気
圧、相対湿度65%である。本発明に属する中空体
は良好な酸素バリヤー性を示す。
The present invention is a multilayer container having a saponified ethylene-vinyl acetate copolymer (hereinafter referred to as EVOH resin) as an intermediate layer, and is filled with an aqueous mixture under pressure by providing a specific layer configuration. The present invention relates to a pressure-resistant barrier container that most effectively demonstrates the gas barrier properties of EVOH resin. Conventionally, EVOH resin has been widely used as a thermoplastic resin with excellent gas barrier properties in food and other packaging applications, along with polyvinylidene chloride resin and polyacrylonitrile resin. but
One drawback of EVOH resins is the humidity sensitivity of their barrier performance. In other words, EVOH resin has the disadvantage that its barrier performance against oxygen, carbon dioxide, etc. decreases when it absorbs water, and the degree of this decrease is small for all other thermoplastic barrier resins, so this phenomenon is not practical. It is not observed to the extent that it becomes a problem at the stage, and is unique to EVOH resin. EVOH resin also has relatively high water vapor permeability. To avoid these drawbacks
In most cases, hydrophobic resins such as polyethylene and polypropylene are laminated on both sides of the EVOH resin layer for practical use. In this case, the hydrophobic resin layers laminated on both sides serve to shield the EVOH resin layer from moisture, and at the same time provide properties such as mechanical properties, heat sealability, and appearance. Plastic containers that require gas barrier properties, especially oxygen barrier properties, are often used for food packaging, and familiar examples include mayonnaise, ketchup, shaved bonito, takuan, miso, syouyu, and so on.
Examples include edible oil, cheese, furikake, snack food, jam, pudding, etc. All of these examples are packaged with almost no pressure difference between the inside and outside, but barrier properties are required not only against oxygen but also against carbon dioxide gas. Glass and metal cans are the main containers for aqueous liquid drinks with an internal pressure of at least 0.5 kg/cm 2 G, such as beer and cola, and plastic containers are used for some large cola bottles. It's nothing more than that. The main reason why plastic containers are not used in the field of pressure containers is that plastic has inferior gas barrier properties compared to glass and metal. In order to overcome these drawbacks of plastic containers, various attempts have been made to create pressure-resistant containers by combining barrier resins with other thermoplastic resins, but none have been fully satisfactory. EVOH resin has better processability and thermal stability than other thermoplastic barrier resins such as vinylidene chloride resin, and when distributed to a multi-manifold die device when compounding with other thermoplastic resins. As with other barrier resins such as vinylidene chloride resins, they may be exposed to relatively high temperatures due to heat from other adjacent resins, which must be processed at higher melt extrusion temperatures. It is an extremely preferable resin that does not generate gaseous products or the like. On the other hand, the reasons for this are not clear, but one possibility is that tension is applied to the container's constituent materials, and furthermore, it is thought that the content is an aqueous mixture and factors that affect the barrier properties. Composite containers with an intermediate layer of EVOH resin have traditionally been used as containers for aqueous liquid beverages with an internal pressure of at least 0.5 Kg/cm 2 G (especially 1 Kg/cm 2 G) such as beer, cola, etc. It has been found that these containers do not exhibit the barrier properties as well as containers that are used to package foods in a wet state with almost no pressure difference. In view of this situation, the inventors have developed an EVOH
As a result of various studies on multilayer containers that use resin as an intermediate barrier layer, we have largely eliminated various drawbacks when using EVOH resin as a material for multilayer pressure-resistant barrier containers for pressurized aqueous mixtures where the container components are subject to tension. This led to the completion of a new container. That is, the present invention has an ethylene content of 25 to 55 mol% and a saponification degree of vinyl acetate component of 96% or more.
A multilayer container including at least one intermediate barrier layer B formed mainly of EVOH resin, wherein 1 or 2 layers formed on the inner side of B
Inner layer group consisting of the above layers An and outer layer group consisting of one or more layers formed outside of B
A pressure-resistant barrier container having Cn and configured to satisfy the following formula (), and containing at least 0.5Kg/cm 2 G (especially 1Kg/cm 2 G) of beer, cola, etc.
It is an object of the present invention to provide a pressure-resistant barrier container in which the oxygen and carbon dioxide gas barrier properties are less deteriorated even when used for an aqueous liquid beverage with an internal pressure of 2,000 yen, especially an internal pressure aqueous carbonated beverage. Until now, little has been known about the relationship between the gas barrier properties and layer structure of pressurized aqueous liquid containers, and the reality is that they are considered to be the same as containers for non-pressurized aqueous liquids where no tension is applied to the container components. However, when the present inventors use EVOH resin, which is particularly sensitive to humidity and water content, in a composite form as a material for the pressurized aqueous liquid container, the present inventors found that when the EVOH resin is particularly sensitive to humidity and water content, it can be used in a composite manner as a material for the pressurized aqueous liquid container. We found that the pressure and water content during filling of pressurized aqueous mixtures were
As a result of studying the effect on the barrier properties of multilayer containers containing at least one layer of EVOH resin, we found that by creating a layer structure that satisfies specific conditions, it is possible to increase the tension in the container components when filling with an aqueous mixture. The present invention has completed a pressure-resistant barrier container for the pressurized aqueous mixture that has excellent oxygen and carbon dioxide gas barrier properties even when exposed to water. k≦0.75 () k= P alc/ P cla Here, la and lc are the total layer thicknesses of An and Cn, respectively, and P a and P c are the moisture permeability coefficients of the composite layer of An and Cn, respectively. As mentioned above, the inner layer group An is centered on the intermediate barrier layer B, which is mainly composed of EVOH resin with 25 to 55 mol% ethylene and a saponification degree of vinyl acetate component of 96% or more.
and the outer layer group Cn are disposed asymmetrically with respect to P/l, and the asymmetry is within a specific range defined by the formula (), only when the filling is an aqueous mixture and at least 0.5 kg/l cm 2 G (especially 1Kg/cm 2
G) It is possible to significantly suppress the deterioration of the barrier performance of the EVOH resin layer under the practical conditions of a pressurized system in which tension is applied to the container constituent materials with internal pressure. This effect cannot be obtained when other barrier thermoplastic resins such as vinylidene chloride resins and acrylonitrile resins are used as the intermediate layer, and the effect is noticeable even for EVOH resins when the EVOH resin contains 55 mol% or less of ethylene. This is a unique property that can only be recognized when a resin is used as the intermediate layer B. The moisture permeability coefficients P a and P c in the present invention are values for the entire inner layer group An and the entire outer layer group Cn, respectively, and for the former, one side is 100% RH on the high humidity side (RH represents relative humidity). smell,
The value was measured at 30℃ with the other side set at 75% RH on the low humidity side, and for the latter, one side was set at the high humidity side.
This is a value measured at 30℃ with the other side at 75% RH and 50% RH on the low humidity side, and the P a, P
The effects of the present invention can only be enjoyed by providing the asymmetry that satisfies the expression () with respect to c. Regarding P a/la and P c/lc, a sheet with the same type of resin, density, and thickness as each layer of the inner layer group An and outer layer group Cn constituting the container was produced, and the sheet was subjected to the above conditions. It can be determined from the moisture permeability coefficient measured in The moisture permeability coefficient is usually calculated by determining the moisture permeability, and the moisture permeability can be measured according to ASTME96-63T. In the present invention, the value of k in equation () is 0.75
or less, preferably 0.005 to 0.5, more preferably 0.3 or less. That is, the remarkable effects of the present invention can only be enjoyed by configuring the container by increasing the degree of asymmetry with respect to P /l so that the value of k falls within the range. In other words, the value of k is
If it exceeds 0.75, the degree of improvement in barrier properties against oxygen and carbon dioxide gases will be reduced, and the effects of the present invention will be diminished. In addition, when the EVOH resin layer is located on the outermost side, the value of k is at least 0.005 to eliminate physical damage caused by friction, scratches, etc. during handling of the container and protect the barrier layer. It is more desirable to provide a protective layer. Further, the effect of the present invention is influenced by the relative humidity of the atmosphere with which the outermost layer of the outer layer group Cn is in contact, and the effect becomes more pronounced as the humidity decreases. However, the dependence of the effect on relative humidity does not impair the usefulness of the present invention, and as shown in the examples below, the barrier properties of the pressure-resistant barrier container of the present invention even at a relative humidity of 85%. is not out of the practically desirable range. However, in order to bring out the effects of the present invention more markedly, the relative humidity must be at least 95%.
% or less. The EVOH resin used in the present invention has an ethylene content of 25 to 55 mol% and a saponification degree of vinyl acetate component of 96.
The effect of the present invention is greater when the ethylene content is lower than 25 mol%, but when the ethylene content is less than 25 mol%, moldability deteriorates and satisfactory molding becomes difficult. Furthermore, if the ethylene content exceeds 55 mol%, the humidity sensitivity decreases, the effect of the present invention decreases, and the gas barrier properties decrease due to the increased ethylene content, making it impossible to maintain satisfactory barrier properties. . Furthermore, if the degree of saponification is less than 96 mol%, the gas barrier properties will be poor and it will not be possible to use it suitably in the present invention. The EVOH resin contains ethylene,
tertiary units other than vinyl alcohol and vinyl acetate units
Components and the like may be included within a range that does not significantly affect barrier performance, humidity sensitivity, etc. Intermediate barrier layer B is basically a single layer consisting of the above EVOH resin alone, but EVOH
In addition to a single resin layer, a blend layer of EVOH resin and other resins can be used within a range that does not impair the barrier performance, or a multi-layered layer of both can be used. In order for the effects of the present invention to be significantly exhibited, the layer thickness of the intermediate barrier layer must be at least 1 μm or more. If it is less than 1μ, it seems to be due to the occurrence of pinholes, cracks, etc. in the EVOH resin layer during molding, especially during stretch molding.
In many cases, the effects of the present invention are not substantially realized and the effects of the present invention cannot be enjoyed. Practically speaking, the EVOH resin layer serving as the intermediate barrier layer preferably has a thickness of 2 to 3 microns or more. Resins used for the inner layer group An include aromatic polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyolefin resins such as polyethylene and polypropylene,
Examples include combinations of one or more laminates and/or mixtures of polyamide resins such as 6-nylon, 66-nylon, and 12-nylon, and hydrophobic thermoplastic resins such as polycarbonate, polystyrene, and polyvinyl chloride. However, in view of the fact that the present invention is a container for an internally pressured aqueous mixture, the resin used for the innermost layer preferably has lower water absorption and moisture permeability, and for this reason, it is more preferable to use the resin after biaxial orientation crystallization. Furthermore, when the content is food, the resin used for the innermost layer A1 is suitably selected from aromatic polyester resins and polyolefin resins from a hygienic standpoint. Among these, polyethylene terephthalate resin is preferred because it forms a bottle with excellent mechanical properties, particularly impact resistance and internal pressure resistance, by biaxial stretch blow molding of a preform such as a parison, and polypropylene resin is also preferred. Biaxially oriented crystallized hydrophobic thermoplastic resin is suitable for use in the innermost layer A1 . Furthermore, when a layer containing recovered resin is used as one layer of the inner layer group An, it is preferable to use it as a layer other than the innermost layer A 1 because the resin contains EVOH resin regardless of the amount. It is preferable that the layer in contact with the intermediate barrier layer B of the inner layer group An includes an adhesive resin layer that has adhesive properties to both the thermoplastic resin and the EVOH resin that are normally used in the layer. Depending on the type of hydrophobic thermoplastic resin used for the inner layer group, the adhesive resin may be carboxyl-modified polyolefin, carboxyl-modified ethylene-ethyl acrylate copolymer, carboxyl-modified ethylene-vinyl acetate copolymer, or modified SBR. , polyacrylate,
It can be appropriately selected from polyurethane, flexible polyamide, flexible polyester, and the like. Coextrusion, coextrusion lamination, coating, dry lamination, etc. can be used as a molding method for multilayer containers, and any combination of two or more of them can be used, so the adhesive resin can also be selected appropriately depending on the molding method. I can do it. As the resin used for the outer layer group Cn, hydrophobic thermoplastic resins and adhesive resins similar to those used for the inner layer group An can be used. In addition, solutions or emulsions of each resin can be used on the EVOH resin layer, and if necessary corona After surface treatment for improving adhesion such as treatment, it is also possible to coat directly or via an anchor coating agent. The fact that the outer layer group Cn is composed of the outermost coat layer and optionally an anchor coat layer means that the outer layer group can be easily made to a desired thickness, and that the inner layer group is biaxially oriented. In the case of a crystallized hydrophobic thermoplastic resin, this is a simple method to make the layer in the outer layer group Cn a biaxially oriented non-crystallized layer, and therefore the value of k can be kept in a smaller region. This is one of the preferred embodiments from the viewpoints of the above. The outermost layer may be printed, labeled, etc.
It also plays an important role in determining performance such as appearance gloss, mutual friction, and scratches, and also protects the EVOH resin layer from external water. More preferable resins from the above point of view include, but are not limited to, polyethylene terephthalate, ionomer resins, polyvinyl fluoride, polyvinylidene chloride, and polyacrylate. The resin used in the inner layer group An and the outer layer group Cn can contain antioxidants, ultraviolet absorbers, antistatic agents, colorants, fillers, lubricants, and other additives. For example, in the case of beer containers, it is necessary to block ultraviolet rays, so colored pigments such as iron oxide or ultraviolet absorbers can be added to one of the layers. In addition, resin layers and rejected containers generated during the container manufacturing process can be used as a single layer or mixed with new resin to form a single layer as part of the inner layer group An or outer layer group Cn. can. The present invention will be explained in detail below based on Examples, but the scope thereof is not limited. Examples 1 to 3 and Comparative Examples 1 to 3 EVOH resin with an ethylene content of 32 mol% and a saponification degree of vinyl acetate component of 99.5%, polyethylene terephthalate with an intrinsic viscosity of 0.85 dl/g, and a vinyl acetate content of 24% by weight as an adhesive resin. %, modified ethylene-vinyl acetate resin with maleic anhydride modification degree of 1.1% by weight was fed to three extruders, and the EVOH resin was
The molten resin is melted and kneaded at 220℃, 278℃ for polyethylene terephthalate, and 215℃ for adhesive resin, and the molten resins are bonded together in a die at a temperature of 250℃.
The outer layer group Cn is the adhesive resin (layer thickness 0.038 mm) and polyethylene terephthalate, the intermediate layer B is the EVOH resin (layer thickness 0.52 mm), and the inner layer group is the adhesive resin layer (layer thickness 0.038 mm) and polyethylene terephthalate. , and a composite pipe with an inner diameter of 9.5 mm and a total layer thickness of 4.7 mm of polyethylene terephthalate layers of Cn and An, cut this pipe into a length of 11.4 cm, heated both ends, and first cut one side. The end was welded blind and the other end was compression molded to form a thread to form the neck. The parison thus obtained is set in a blow mold, and the parison is approximately
After preheating to 90°C, biaxial stretch blow molding was performed at about 100°C. The outer diameter of the obtained hollow body is approximately 6.4 cm, the thickness of the adhesive resin layer is approximately 4μ for both An and Cn, the thickness of intermediate layer B is approximately 55μ, and the thickness of the adhesive resin layer is approximately 55μ for An and Cn.
The total polyethylene terephthalate layer in is
It was 350μ. Six hollow bodies with different k values were obtained by changing the layer configurations of the inner layer group An and the outer layer group Cn, and the oxygen permeation amount was measured by filling each hollow body with carbon dioxide saturated water. The results are shown in Table 1. It was shown to. The atmosphere in contact with the innermost layer and the outermost layer during the measurement is 20°C, respectively.
℃, 4atm・abs., relative humidity 100% and 20℃ atmospheric pressure, relative humidity 65%. The hollow bodies belonging to the invention exhibit good oxygen barrier properties.

【表】 実施例4〜7および比較例4〜5 実施例1〜4、比較例1〜3において内層群
Anに用いたポリエチレンテレフタレートの代り
にポリプロピレン樹脂を用い、該溶融混練温度と
して200℃を採用した以外は実施例1等に準じて
行い、ポリプロピレン樹脂層とポリエチレン樹脂
層厚さの合計が360μ、接着剤層およびEVOH樹
脂層の厚さは実施例1等とほぼ同じ中空体を得
た。 内層群Anと外層群Cnの層構成を変えて得た6
箇のkの異る中空体についてそれぞれに炭酸ガス
飽和水を充填して酸素透過量を測定して、その結
果を第2表に示した。該測定時最内層および最外
層の接する雰囲気はそれぞれ20℃、2.5atm.abs、
相対湿度100%および20℃大気圧、相対湿度50%
である。 本発明に属する中空体は良好な酸素バリヤー性
を示す。
[Table] Examples 4 to 7 and Comparative Examples 4 to 5 Inner layer group in Examples 1 to 4 and Comparative Examples 1 to 3
The procedure was as in Example 1, except that polypropylene resin was used instead of polyethylene terephthalate used in An, and 200°C was adopted as the melt-kneading temperature.The total thickness of the polypropylene resin layer and the polyethylene resin layer was 360μ, and the adhesive A hollow body was obtained in which the thicknesses of the agent layer and the EVOH resin layer were approximately the same as in Example 1, etc. 6 obtained by changing the layer composition of the inner layer group An and the outer layer group Cn
The hollow bodies with different numbers of k were each filled with carbon dioxide saturated water and the amount of oxygen permeation was measured, and the results are shown in Table 2. During this measurement, the atmosphere in contact with the innermost layer and the outermost layer was 20℃, 2.5atm.abs,
100% relative humidity and 20℃ atmospheric pressure, 50% relative humidity
It is. The hollow bodies belonging to the invention exhibit good oxygen barrier properties.

【表】 実施例8〜11および比較例6〜7 実施例4〜7においてエチレン含量43モル%、
酢酸ビニル成分のけん化度99.3モル%のEVOH樹
脂を用いた以外は実施例4〜7に準じて行い、同
様の中空体を得た。該層構成を変えて得たkの異
なる6箇の中空体についてそれぞれに炭酸ガス飽
和水を充填して酸素透過量を測定し、その結果を
第3表に示した。最内層および最外層の該測定時
に接する雰囲気はそれぞれ20℃、3atm・abs.、
相対湿度100%及び20℃大気圧、相対湿度50%で
ある。 本発明に属する中空体は良好な酸素バリヤー性
を示した。
[Table] Examples 8 to 11 and Comparative Examples 6 to 7 In Examples 4 to 7, the ethylene content was 43 mol%,
A similar hollow body was obtained by carrying out the same procedure as in Examples 4 to 7 except that an EVOH resin whose vinyl acetate component had a saponification degree of 99.3 mol % was used. Six hollow bodies with different k obtained by changing the layer structure were each filled with carbon dioxide saturated water and the amount of oxygen permeation was measured, and the results are shown in Table 3. The atmosphere in contact with the innermost layer and the outermost layer during the measurement was 20℃, 3atm・abs., respectively.
100% relative humidity and 20°C atmospheric pressure, 50% relative humidity. The hollow bodies belonging to the present invention exhibited good oxygen barrier properties.

【表】 実施例 12〜14 実施例1〜3において該酸素透過量測定時の最
外層の接する雰囲気を20℃、大気圧、相対湿度85
%とした以外は実施例1〜3と同様に行つた。結
果を第4表に示すが、良好な酸素バリヤー性を示
す。
[Table] Examples 12 to 14 In Examples 1 to 3, the atmosphere in contact with the outermost layer at the time of oxygen permeation measurement was set at 20°C, atmospheric pressure, and relative humidity 85.
The same procedure as in Examples 1 to 3 was carried out except that % was used. The results are shown in Table 4 and show good oxygen barrier properties.

【表】 実施例15および比較例8 実施例1及び比較例1において最外層が接する
雰囲気を相対湿度50%とし、測定温度はいづれも
30℃とした以外は同様に実施して定常状態にある
炭酸ガス透過量を測定した。結果を第5表に示
す。但し、炭酸ガス透過量は実施例15を基準とし
た相対値で示した。
[Table] Example 15 and Comparative Example 8 In Example 1 and Comparative Example 1, the atmosphere in contact with the outermost layer was set to a relative humidity of 50%, and the measurement temperature was
The same procedure was carried out except that the temperature was 30°C, and the amount of carbon dioxide permeation in a steady state was measured. The results are shown in Table 5. However, the amount of carbon dioxide permeation is expressed as a relative value based on Example 15.

【表】 本発明に属する実施例15の場合に比し、当該発
明に属さない比較例においては前者の5.8倍の炭
酸ガス透過量を示した。 実施例16〜17および比較例9〜10 実施例1において中間バリヤー層Bの厚さを
0.19mmとした複合パイプを押出し、該中間バリヤ
ー層Bの厚さが20μである中空体を得た他は実施
例1と同様に行つた。酸素透過量の測定値をkの
値と共に第6表に示した。
[Table] Compared to the case of Example 15, which belongs to the present invention, the amount of carbon dioxide permeation in the comparative example, which does not belong to the present invention, was 5.8 times that of the former. Examples 16-17 and Comparative Examples 9-10 In Example 1, the thickness of the intermediate barrier layer B was
Example 1 was carried out in the same manner as in Example 1, except that a composite pipe having a thickness of 0.19 mm was extruded to obtain a hollow body in which the intermediate barrier layer B had a thickness of 20 μm. The measured values of oxygen permeation amount are shown in Table 6 together with the value of k.

【表】 実施例 18 実施例1において内層群Anがポリエチレンテ
レフタレート層(4.7mm層厚)および実施例1と
同じ接着性樹脂層(0.038mm層厚)からなり、中
間層BがEVOH樹脂層(0.52mm層厚)であり、外
層群のない複合パイプを押出し、他は実施例1と
同様に操作して中空体を得た。得られた中空体の
各層の厚さは内層群のポリエチレンテレフタレー
ト層が350μ、接着性樹脂層が約4μであり、
EVOH樹脂層は約55μであつた。該中空体にアイ
オノマー樹脂エマルジヨン(旭ダウ(株)製コーポレ
ンラテツクス(樹脂分40%))を用いて浸漬塗布
法によりコートし、該中空体のポリエチレンテレ
フタレート樹脂部の温度が70℃以上にならないよ
うに注意しつつ80℃の温風で乾燥した。該塗膜層
の厚さは約4μであつた。該塗膜層を付与された
中空体のkは0.02であり、実施例1に準じて測定
した酸素透過量は、0.1c.c./m2・24hrsであつた。
[Table] Example 18 In Example 1, the inner layer group An consisted of a polyethylene terephthalate layer (4.7 mm layer thickness) and the same adhesive resin layer (0.038 mm layer thickness) as in Example 1, and the intermediate layer B consisted of an EVOH resin layer ( A hollow body was obtained by extruding a composite pipe having a layer thickness of 0.52 mm and having no outer layer group, and otherwise operating in the same manner as in Example 1. The thickness of each layer of the obtained hollow body was 350μ for the inner layer group, the polyethylene terephthalate layer, and about 4μ for the adhesive resin layer.
The EVOH resin layer was approximately 55μ. The hollow body is coated with an ionomer resin emulsion (Corpolene latex (resin content: 40%) manufactured by Asahi Dow Co., Ltd.) by dip coating, and the temperature of the polyethylene terephthalate resin portion of the hollow body is raised to 70°C or higher. It was dried with warm air at 80°C, being careful not to cause any damage. The thickness of the coating layer was approximately 4μ. The k of the hollow body provided with the coating layer was 0.02, and the oxygen permeation amount measured according to Example 1 was 0.1 cc/m 2 ·24 hrs.

Claims (1)

【特許請求の範囲】 1 エチレン含量25〜55モル%、酢酸ビニル成分
のけん化度が96%以上のエチレン−酢酸ビニル共
重合体けん化物を主体として形成された中間バリ
ヤー層Bを少くとも1つの層として含む多層容器
であつて、Bより内側に形成された1もしくは2
以上の層よりなる内層群AnおよびBよりも外側
に形成された1もしくは2以上の層よりなる外層
群Cnを有し、かつ下記()式を満足するよう
に構成された、少くとも0.5Kg/cm2Gの内圧を有
する加圧水性混合物用の耐圧バリヤー容器。 k≦0.75 () k=a・lc/c・la ただし、a,cは、それぞれ30℃における
An,Cnの透湿係数であり、la,lcはAn,Cnの層
厚さである。 2 kが0.005〜0.5となるように構成された特許
請求の範囲第1項記載の耐圧バリヤー容器。 3 少くとも1Kg/cm2Gの内圧を有する特許請求
の範囲第1項または第2項記載の耐圧バリヤー容
器。 4 内層群Anが二軸配向結晶化した疎水性熱可
塑性樹脂よりなる少くとも1つの層を含む特許請
求の範囲第1項ないし第3項のいづれかに記載の
耐圧バリヤー容器。 5 内層群Anのうち最内部に位置する層A1がポ
リエチレンテレフタレート樹脂である特許請求の
範囲第1項ないし第4項のいづれかに記載の耐圧
バリヤー容器。 6 内層群Anのうち最内部に位置する層A1がポ
リプロピレン系樹脂である特許請求の範囲第1項
ないし第4項のいづれかに記載の耐圧バリヤー容
器。 7 内層群Anが二軸配向結晶化した疎水性熱可
塑性樹脂よりなる層と該疎水性熱可塑性樹脂およ
び該エチレン−酢酸ビニル共重合体けん化物の両
者に接着性を有する接着性樹脂層の少くとも2層
よりなる特許請求の範囲第1項ないし第6項のい
づれかに記載の耐圧バリヤー容器。 8 内層群Anが最内層に位置するポリエチレン
テレフタレート系樹脂層A1と接着剤層A2とより
なり外層群Cnが最外層に位置するポリエチレン
テレフタレート系樹脂層C1と接着剤層C2とより
なり、中間バリヤー層Bが1層である特許請求の
範囲第1項、第2項、第3項または第7項記載の
耐圧バリヤー容器。 9 外層群Cnが最外層に位置するコーテイング
により形成された疎水性熱可塑性樹脂層と必要に
応じてアンカーコート層とよりなる特許請求の範
囲第1項ないし第7項のいづれかに記載の耐圧バ
リヤー容器。 10 加圧水性混合物が加圧水性炭酸ガス含有飲
料である特許請求の範囲、第1項ないし第9項記
載の耐圧バリヤー容器。
[Scope of Claims] 1. At least one intermediate barrier layer B formed mainly of a saponified ethylene-vinyl acetate copolymer having an ethylene content of 25 to 55 mol% and a saponification degree of vinyl acetate component of 96% or more. A multilayer container containing layers 1 or 2 formed inside B
At least 0.5 kg, having an outer layer group Cn consisting of one or more layers formed outside the inner layer group An and B consisting of the above layers, and satisfying the following formula (). Pressure barrier vessel for pressurized aqueous mixtures having an internal pressure of /cm 2 G. k≦0.75 () k= P a・lc/ P c・la However, P a and P c are each at 30℃
It is the moisture permeability coefficient of An and Cn, and la and lc are the layer thicknesses of An and Cn. 2. The pressure barrier container according to claim 1, wherein k is 0.005 to 0.5. 3. A pressure barrier container according to claim 1 or 2, having an internal pressure of at least 1 Kg/cm 2 G. 4. The pressure-resistant barrier container according to any one of claims 1 to 3, wherein the inner layer group An includes at least one layer made of a biaxially oriented crystallized hydrophobic thermoplastic resin. 5. The pressure-resistant barrier container according to any one of claims 1 to 4, wherein the innermost layer A1 of the inner layer group An is a polyethylene terephthalate resin. 6. The pressure-resistant barrier container according to any one of claims 1 to 4, wherein the innermost layer A1 of the inner layer group An is a polypropylene resin. 7. A layer in which the inner layer group An is made of a biaxially oriented crystallized hydrophobic thermoplastic resin, and an adhesive resin layer that has adhesive properties to both the hydrophobic thermoplastic resin and the saponified ethylene-vinyl acetate copolymer. A pressure-resistant barrier container according to any one of claims 1 to 6, which comprises two layers. 8. Inner layer group An consists of polyethylene terephthalate resin layer A 1 located at the innermost layer and adhesive layer A 2 , and outer layer group Cn consists of polyethylene terephthalate resin layer C 1 located at the outermost layer and adhesive layer C 2 . The pressure-resistant barrier container according to claim 1, 2, 3, or 7, wherein the intermediate barrier layer B is one layer. 9. The pressure barrier according to any one of claims 1 to 7, comprising a hydrophobic thermoplastic resin layer formed by a coating in which the outer layer group Cn is located as the outermost layer, and optionally an anchor coat layer. container. 10. A pressure-resistant barrier container according to claims 1 to 9, wherein the pressurized aqueous mixture is a pressurized aqueous carbonated beverage.
JP58194957A 1983-10-17 1983-10-17 Pressure-resistant barrier vessel Granted JPS6085937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58194957A JPS6085937A (en) 1983-10-17 1983-10-17 Pressure-resistant barrier vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58194957A JPS6085937A (en) 1983-10-17 1983-10-17 Pressure-resistant barrier vessel

Publications (2)

Publication Number Publication Date
JPS6085937A JPS6085937A (en) 1985-05-15
JPH043740B2 true JPH043740B2 (en) 1992-01-24

Family

ID=16333139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58194957A Granted JPS6085937A (en) 1983-10-17 1983-10-17 Pressure-resistant barrier vessel

Country Status (1)

Country Link
JP (1) JPS6085937A (en)

Also Published As

Publication number Publication date
JPS6085937A (en) 1985-05-15

Similar Documents

Publication Publication Date Title
US4977004A (en) Barrier structure for food packages
US6562476B2 (en) Thermoformable multilayer polymeric film
JP2615191B2 (en) Blocking stretch film
KR100674777B1 (en) Laminated packaging material and method for producing the same
EP0236099B2 (en) Oxygen barrier packaging film
US4911963A (en) Multilayer film containing amorphous nylon
EP0457598B1 (en) Use of a breathable abuse resistant film for packaging cheese
US4894267A (en) Blow-molded plastic bottle with barrier structure for food packages
JP2008540156A (en) High-strength polypropylene-based protective film for packaging, its production and use
AU616447B2 (en) Increased regrind usage in coextruded structures
JPH0617136B2 (en) Biaxially oriented container with excellent gas barrier properties
EP2164898B1 (en) Evoh blend providing improved oxygen resistance
US4675219A (en) Process for drawing plastic laminates
JPS63218352A (en) Laminating structure
US20030144402A1 (en) Blends of polyamide and polyester for barrier packaging
GB2246741A (en) Food packaging film
JPH043740B2 (en)
US9005514B2 (en) Method of making and using EVOH blends providing improved oxygen resistance
JP3145206B2 (en) Inner container for bag-in-box
JPH0217420B2 (en)
JPS6333242A (en) Oriented multilayer plastic vessel and manufacture thereof
KR0181581B1 (en) Impact absorbing multi-layer film
JPS62113526A (en) Manufacture of multi-layer molded product and multi-layer orientated film
JP3583180B2 (en) Method for producing multilayer film
JPH02113940A (en) Multilayer container