JPH04373182A - Manufacture of semiconductor light emitting device - Google Patents

Manufacture of semiconductor light emitting device

Info

Publication number
JPH04373182A
JPH04373182A JP3177406A JP17740691A JPH04373182A JP H04373182 A JPH04373182 A JP H04373182A JP 3177406 A JP3177406 A JP 3177406A JP 17740691 A JP17740691 A JP 17740691A JP H04373182 A JPH04373182 A JP H04373182A
Authority
JP
Japan
Prior art keywords
layer
cap layer
film
conductivity type
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3177406A
Other languages
Japanese (ja)
Inventor
Kunihiko Isshiki
邦彦 一色
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3177406A priority Critical patent/JPH04373182A/en
Publication of JPH04373182A publication Critical patent/JPH04373182A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a current construction section which is coincident with the bent section of an active layer through a relatively simple process which does not require any alignment. CONSTITUTION:After a doped oxide 11 is applied to the surface of an n-type cap layer 5 provided with a groove formed coincidentally with the bent shape of an active layer 3 and the oxide 11 is removed so as to leave the oxide only in the groove of the layer 5, a current flowing route is formed by partially inverting the type of conductivity of a cap layer 3 to type (p) by diffusing impurities from the oxide 11 into the cap layer 4 so that the impurities can reach a p-type clad layer 4.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は半導体発光装置の製造
方法に関し、特に、活性層の一部に基板側に屈曲した凹
状の屈曲部を有し該屈曲部を活性領域とする半導体発光
装置の電流狭窄構造を高精度に形成できる半導体発光装
置の製造方法に関するものである。
FIELD OF INDUSTRIAL APPLICATION This invention relates to a method for manufacturing a semiconductor light emitting device, and more particularly to a semiconductor light emitting device in which a part of an active layer has a concave bent portion bent toward a substrate, and the bent portion serves as an active region. The present invention relates to a method of manufacturing a semiconductor light emitting device that can form a current confinement structure with high precision.

【0002】0002

【従来の技術】図3はアプライド  フィジックス  
レターズ, 31巻,466 ページ(1977年)に
記載された従来の半導体レーザ装置を示す断面図であり
、図において、1はn型GaAs基板、2はn型Al0
.3Ga0.7 As下クラッド層、3はアンドープG
aAs活性層、4はp型Al0.3 Ga0.7 As
上クラッド層、5はp型GaAsオーミックコンタクト
層、7は金属電極、8はSiO2 膜、9はSiO2 
膜8のストライプ状開口部、10は活性層3の屈曲部(
活性領域)である。そして、図3(a) はSiO2 
膜8の開口部9が活性領域10と一致した理想的な場合
、図3(b) はSiO2 膜8の開口部9と活性領域
10との位置がずれた場合を示している。
[Prior art] Figure 3 shows applied physics
This is a sectional view showing a conventional semiconductor laser device described in Letters, Volume 31, Page 466 (1977). In the figure, 1 is an n-type GaAs substrate, 2 is an n-type Al0
.. 3Ga0.7As lower cladding layer, 3 is undoped G
aAs active layer, 4 is p-type Al0.3 Ga0.7 As
Upper cladding layer, 5 p-type GaAs ohmic contact layer, 7 metal electrode, 8 SiO2 film, 9 SiO2
The striped openings in the film 8, 10 are the bent portions of the active layer 3 (
active area). And, Fig. 3(a) shows SiO2
In an ideal case where the opening 9 of the SiO2 film 8 coincides with the active region 10, FIG. 3(b) shows a case where the opening 9 of the SiO2 film 8 and the active region 10 are misaligned.

【0003】次に製造方法について説明する。一主面上
にストライプ状の溝を形成した基板1上に、MOCVD
法等により下クラッド層2,活性層3,上クラッド層4
,及びコンタクト層5を順次結晶成長する。この後、コ
ンタクト層5上にSiO2 膜8を形成し、写真製版と
エッチング技術を用いてSiO2 膜8の活性領域10
に対向する位置にストライプ状の開口部9を形成する。 そして、該開口部に露出したコンタクト層7上及びSi
O2 膜8上、及び基板1裏面にスパッタ等により金属
電極7を形成した後、チップを分離してレーザ装置が完
成する。
Next, the manufacturing method will be explained. On the substrate 1 with striped grooves formed on one main surface, MOCVD
Lower cladding layer 2, active layer 3, and upper cladding layer 4 are formed by
, and contact layer 5 are sequentially crystal-grown. Thereafter, a SiO2 film 8 is formed on the contact layer 5, and the active region 10 of the SiO2 film 8 is etched using photolithography and etching techniques.
A striped opening 9 is formed at a position opposite to. Then, the contact layer 7 exposed in the opening and the Si
After forming the metal electrode 7 on the O2 film 8 and the back surface of the substrate 1 by sputtering or the like, the chips are separated to complete the laser device.

【0004】次に動作について説明する。電極7間に、
活性層3のpn接合に対して順方向となる電圧を印加す
ると、SiO2 膜8の開口部9に狭窄された電流が流
れ、活性層3内で発光再結合が生じる。発生した光は、
クラッド層2,4と活性層3との間の屈折率段差、及び
活性層の屈曲に起因する実効的屈折率分布で構成される
光導波路によって導波され、対向する劈開面で構成され
るファブリ・ペロー共振器内でレーザ発振に至る。ここ
で、図3(a) の場合には、電流分布で決まる利得分
布と、活性層の屈曲による屈折率分布が一致しているの
で、高出力まで安定に動作するのに対し、図3(b) 
のように位置のずれた場合、例えば光出力−電流特性の
直線性が損なわれるなどの性能劣化が発生する。
Next, the operation will be explained. Between the electrodes 7,
When a forward voltage is applied to the pn junction of the active layer 3, a constricted current flows through the opening 9 of the SiO2 film 8, and radiative recombination occurs within the active layer 3. The light generated is
The fabric is guided by an optical waveguide composed of a refractive index step between the cladding layers 2 and 4 and the active layer 3 and an effective refractive index distribution caused by the bending of the active layer, and is composed of opposing cleavage planes. - Laser oscillation occurs within the Perot cavity. Here, in the case of Fig. 3(a), the gain distribution determined by the current distribution and the refractive index distribution due to the bending of the active layer match, so the device operates stably up to high output; b)
If the position shifts as in the above case, performance deterioration occurs, such as loss of linearity of optical output-current characteristics.

【0005】[0005]

【発明が解決しようとする課題】従来の半導体レーザ装
置は以上のように、電流を活性層の屈曲部に集中させる
ための電流狭窄構造をSiO2 膜と該SiO2 膜に
設けられたストライプ状開口部により構成しており、こ
のストライプ状開口部を写真製版とエッチングにより形
成しているので、この写真製版の際に開口部と屈曲部と
の位置合わせに高精度を必要とし、かつ位置合わせのバ
ラツキによって、素子特性のバラツキが発生する問題点
があった。
[Problems to be Solved by the Invention] As described above, the conventional semiconductor laser device has a current confinement structure for concentrating the current at the bent portion of the active layer using a SiO2 film and a striped opening provided in the SiO2 film. Since the striped openings are formed by photolithography and etching, high precision is required to align the openings and the bends during photolithography, and variations in alignment are required. Therefore, there was a problem that variations in device characteristics occurred.

【0006】この発明は上記のような問題点を解消する
ためになされたもので、位置合わせを必要としない比較
的簡単な工程で、活性層屈曲部と一致した電流狭窄部を
形成することができ、良好、かつ揃った特性を有する半
導体発光装置を得ることのできる半導体発光装置の製造
方法を提供することを目的とする。
The present invention was made to solve the above-mentioned problems, and it is possible to form a current confinement portion that coincides with a bent portion of an active layer using a relatively simple process that does not require alignment. It is an object of the present invention to provide a method for manufacturing a semiconductor light emitting device, which allows a semiconductor light emitting device to be manufactured, which is suitable, and has uniform characteristics.

【0007】[0007]

【課題を解決するための手段】この発明に係る半導体発
光装置の製造方法は、一主面上にストライプ状の溝を形
成した第1導電型の半導体基板上に、少なくとも第1導
電型のクラッド層,活性層,第2導電型のクラッド層及
び第1導電型のキャップ層から構成される半導体発光装
置用多層膜を、各層の形状が上記基板の一主面形状に沿
った形状となり最表面のキャップ層に上記基板と略同一
形状のストライプ状溝が形成されるように結晶成長した
後、上記キャップ層表面に第2導電型を与える不純物原
子を含む膜を塗布し、この膜を上記キャップ層の上記溝
内部にのみ残るように除去した後、溝内の上記膜から第
2のクラッド層に達するように上記不純物原子を拡散し
、キャップ層の一部を第2導電型に反転させるようにし
たものである。
[Means for Solving the Problems] A method for manufacturing a semiconductor light emitting device according to the present invention includes forming at least a cladding of a first conductivity type on a semiconductor substrate of a first conductivity type in which striped grooves are formed on one principal surface. A multilayer film for a semiconductor light emitting device is composed of an active layer, a cladding layer of a second conductivity type, and a cap layer of a first conductivity type. After crystal growth is performed so that striped grooves having substantially the same shape as the substrate are formed in the cap layer, a film containing impurity atoms imparting a second conductivity type is applied to the surface of the cap layer, and this film is applied to the cap layer. After removing the layer so that it remains only inside the groove, the impurity atoms are diffused from the film in the groove to reach the second cladding layer, so that a part of the cap layer is inverted to the second conductivity type. This is what I did.

【0008】[0008]

【作用】この発明においては、活性層の屈曲形状を反映
して形成された溝を有するキャップ層表面に不純物を含
む膜を形成し、この膜を上記キャップ層の上記溝内部に
のみ残るように除去した後、この膜よりクラッド層に達
するように上記不純物をキャップ層中に拡散してキャッ
プ層の導電型を部分的に反転させることにより電流経路
を形成するようにしたから、活性層の屈曲部直上に自己
整合的に電流狭窄構造を形成することができ、位置合わ
せ工程を不要とでき、位置ずれによる特性のバラツキを
防止できる。
[Operation] In the present invention, a film containing impurities is formed on the surface of the cap layer having grooves formed to reflect the curved shape of the active layer, and this film is made to remain only inside the grooves of the cap layer. After removal, the impurity is diffused into the cap layer so as to reach the cladding layer from this film, partially inverting the conductivity type of the cap layer to form a current path. A current confinement structure can be formed in a self-aligned manner directly above the part, an alignment process is not necessary, and variations in characteristics due to positional deviation can be prevented.

【0009】[0009]

【実施例】以下、この発明の一実施例を図について説明
する。図1及び図2は本発明の一実施例による半導体発
光装置の製造方法を示す断面工程図であり、図において
、図3と同一符号は同一又は相当部分であり、11は不
純物を含むドープドオキサイドである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 and 2 are cross-sectional process diagrams showing a method for manufacturing a semiconductor light emitting device according to an embodiment of the present invention. In the figures, the same reference numerals as in FIG. It is oxide.

【0010】次に、本実施例の工程を図に沿って説明す
る。まず、n型GaAs基板1に写真製版の手法を用い
た選択エッチングによってストライプ状の溝を形成した
後、有機金属気相結晶成長(MOCVD)あるいは分子
線エピタキシー(MBE)等の気相結晶成長法によって
、図1(a) に示すように基板の溝に対応した屈曲部
10を有するAlGaAs多層膜2〜5を順次結晶成長
する。
Next, the steps of this embodiment will be explained with reference to the drawings. First, stripe-shaped grooves are formed on the n-type GaAs substrate 1 by selective etching using a photolithography method, and then a vapor phase crystal growth method such as metal organic vapor phase crystal growth (MOCVD) or molecular beam epitaxy (MBE) is performed. As shown in FIG. 1A, AlGaAs multilayer films 2 to 5 having bent portions 10 corresponding to the grooves of the substrate are successively crystal-grown.

【0011】次に、図1(b) に示すように、ウエハ
表面にZn原子を含んだドープドオキサイド11(例え
ば、東京応化工業(株)製OCD(製品名))をウエハ
の突起が反映されず、平坦となるように塗布する。そし
て、ドライエッチングによって、図1(c) に示すよ
うに、ウエハの突起部が露出し、溝内部には残るように
ドープドオキサイド膜11を部分的に除去する。この状
態で、溝内のドープドオキサイド11より、上クラッド
層4に達するようにZn原子を拡散し、図2(a) に
示すようにキャップ層5の拡散部15をp型に反転させ
る。この後、図2(b) に示すように、ウエハの表・
裏両面にオーミック金属電極7を形成してから、各チッ
プに分離して素子が完成する。
Next, as shown in FIG. 1(b), the protrusions of the wafer reflect doped oxide 11 (for example, OCD (product name) manufactured by Tokyo Ohka Kogyo Co., Ltd.) containing Zn atoms on the wafer surface. Apply it so that it is flat and not stained. Then, by dry etching, the doped oxide film 11 is partially removed so that the protrusions of the wafer are exposed and remain inside the grooves, as shown in FIG. 1(c). In this state, Zn atoms are diffused from the doped oxide 11 in the trench so as to reach the upper cladding layer 4, and the diffused portion 15 of the cap layer 5 is inverted to p-type as shown in FIG. 2(a). After this, as shown in Figure 2(b), the wafer surface and
After forming ohmic metal electrodes 7 on both back surfaces, each chip is separated to complete the device.

【0012】次に動作について説明する。電極7間に、
活性層3のpn接合に対して順方向となる電圧を印加す
ると、電流はキャップ層5のp型領域のみに狭窄されて
流れ、活性層3内で発光再結合が生じる。発生した光は
、クラッド層2,4と活性層3との間の屈折率段差、及
び活性層の屈曲に起因する実効的屈折率分布で構成され
る光導波路によって導波され、対向する劈開面で構成さ
れるファブリ・ペロー共振器内でレーザ発振に至る。
Next, the operation will be explained. Between the electrodes 7,
When a forward voltage is applied to the pn junction of the active layer 3, current flows in a confined manner only in the p-type region of the cap layer 5, and radiative recombination occurs within the active layer 3. The generated light is guided by an optical waveguide composed of an effective refractive index distribution caused by the refractive index step difference between the cladding layers 2 and 4 and the active layer 3 and the bending of the active layer, and is guided by an optical waveguide formed by an effective refractive index distribution caused by the refractive index step between the cladding layers 2 and 4 and the active layer 3, and is guided by an optical waveguide formed by an effective refractive index distribution caused by the bending of the active layer. Laser oscillation occurs within a Fabry-Perot resonator composed of

【0013】この場合、本実施例の工程によって作製す
ると、電流狭窄部が活性層の屈曲部と自動的(自己整合
的)に一致した位置に形成されるため、高出力動作時ま
で良好、かつ揃った特性を有するレーザを実現できる。
In this case, when fabricated by the process of this example, the current confinement part is formed at a position that automatically (self-aligns) coincides with the bending part of the active layer, so that the current confinement part is good and stable even during high output operation. A laser with uniform characteristics can be realized.

【0014】なお、上記実施例ではGaAs及びAl0
.3 Ga0.7 Asを材料として用いたが、AlA
s組成はこれに限定するものではない。また、半導体レ
ーザ装置を構成できる他の半導体材料、例えばInGa
AsP,InGaP,(AlGa)InP等を用いても
良い。また、p,n反対の導電型でも構成可能である。 さらに、本発明は、上記実施例に示す半導体レーザに限
らず、活性層の一部に基板側に屈曲した凹状の屈曲部を
有し該屈曲部を活性領域とする半導体発光装置であれば
、端面発光型LED,スーパールミネッセント・ダイオ
ード等の他の半導体発光装置にも適用できる。
[0014] In the above embodiment, GaAs and Al0
.. 3 Ga0.7 As was used as the material, but AlA
The s composition is not limited to this. In addition, other semiconductor materials that can constitute a semiconductor laser device, such as InGa
AsP, InGaP, (AlGa)InP, etc. may also be used. Further, it is also possible to configure the conductivity type with p and n opposite. Furthermore, the present invention is not limited to the semiconductor laser shown in the above embodiments, but can be applied to any semiconductor light emitting device in which a part of the active layer has a concave bent portion bent toward the substrate side and the bent portion serves as an active region. It can also be applied to other semiconductor light emitting devices such as edge emitting LEDs and superluminescent diodes.

【0015】[0015]

【発明の効果】以上のように、この発明によれば、活性
層の屈曲形状を反映して形成された溝を有するキャップ
層表面に不純物を含む膜を形成し、この膜を上記キャッ
プ層の上記溝内部にのみ残るように除去した後、この膜
よりクラッド層に達するように上記不純物をキャップ層
中に拡散してキャップ層の導電型を部分的に反転させる
ことにより電流経路を形成するようにしたから、活性層
の屈曲部直上に自己整合的に電流狭窄構造を形成するこ
とができ、良好な特性が再現性よく得られる効果がある
As described above, according to the present invention, a film containing impurities is formed on the surface of the cap layer having grooves formed to reflect the curved shape of the active layer, and this film is applied to the surface of the cap layer. After removing the impurity so that it remains only inside the groove, the impurity is diffused into the cap layer so as to reach the cladding layer from this film to partially invert the conductivity type of the cap layer, thereby forming a current path. Therefore, a current confinement structure can be formed in a self-aligned manner directly above the bent portion of the active layer, and good characteristics can be obtained with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の一実施例による半導体発光装置の製
造方法の一部を示す断面工程図である。
FIG. 1 is a cross-sectional process diagram showing a part of a method for manufacturing a semiconductor light emitting device according to an embodiment of the present invention.

【図2】この発明の一実施例による半導体発光装置の製
造方法の一部を示す断面工程図である。
FIG. 2 is a cross-sectional process diagram showing a part of a method for manufacturing a semiconductor light emitting device according to an embodiment of the present invention.

【図3】従来の半導体レーザ装置を示す断面図である。FIG. 3 is a cross-sectional view showing a conventional semiconductor laser device.

【符号の説明】[Explanation of symbols]

1    基板 2    クラッド層 3    活性層 4    クラッド層 5    キャップ層 7    電極 10  活性層の屈曲部 11  ドープドオキサイド 1    Substrate 2 Cladding layer 3 Active layer 4 Cladding layer 5 Cap layer 7 Electrode 10 Bent part of active layer 11 Doped oxide

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  一主面上にストライプ状の溝を形成し
た第1導電型の半導体基板上に、少なくとも第1導電型
のクラッド層,活性層,第2導電型のクラッド層及び第
1導電型のキャップ層から構成される半導体発光装置用
多層膜を、各層の形状が上記基板の一主面形状に沿った
形状であり、最表面のキャップ層に上記基板と略同一形
状のストライプ状溝が形成されるように結晶成長する工
程と、上記キャップ層表面に第2導電型を与える不純物
原子を含む膜を塗布する工程と、上記キャップ層の上記
溝内部にのみ上記膜が残るように上記膜を除去する工程
と、溝内の上記膜から第2のクラッド層に達するように
、不純物原子を拡散し、キャップ層の一部を第2導電型
に反転させる工程とを含むことを特徴とする半導体発光
装置の製造方法。
1. A semiconductor substrate of a first conductivity type in which striped grooves are formed on one main surface, at least a cladding layer of a first conductivity type, an active layer, a cladding layer of a second conductivity type, and a first conductivity type. A multilayer film for a semiconductor light emitting device consisting of a molded cap layer has a shape in which each layer follows the shape of one main surface of the substrate, and the outermost cap layer has a striped groove having approximately the same shape as the substrate. a step of growing a crystal so as to form a crystal, a step of applying a film containing impurity atoms imparting a second conductivity type to the surface of the cap layer, and a step of growing the film so that the film remains only inside the groove of the cap layer. The cap layer is characterized by comprising a step of removing the film, and a step of diffusing impurity atoms from the film in the trench to reach the second cladding layer and inverting a part of the cap layer to the second conductivity type. A method for manufacturing a semiconductor light emitting device.
JP3177406A 1991-06-21 1991-06-21 Manufacture of semiconductor light emitting device Pending JPH04373182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3177406A JPH04373182A (en) 1991-06-21 1991-06-21 Manufacture of semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3177406A JPH04373182A (en) 1991-06-21 1991-06-21 Manufacture of semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPH04373182A true JPH04373182A (en) 1992-12-25

Family

ID=16030379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3177406A Pending JPH04373182A (en) 1991-06-21 1991-06-21 Manufacture of semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH04373182A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165599A (en) * 2005-12-14 2007-06-28 Fujifilm Corp Semiconductor light emitting element, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165599A (en) * 2005-12-14 2007-06-28 Fujifilm Corp Semiconductor light emitting element, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4956844A (en) Two-dimensional surface-emitting laser array
US4136928A (en) Optical integrated circuit including junction laser with oblique mirror
US4190813A (en) Strip buried heterostructure laser
US5747366A (en) Method of fabricating a surface emitting semiconductor laser
US6044100A (en) Lateral injection VCSEL
US5604764A (en) Semiconductor laser
KR100381984B1 (en) Method of manufacturing patterned mirrors for vertical common surface emitting lasers (VCSEL) and vertical common surface emitting lasers (VCSELs)
US5149670A (en) Method for producing semiconductor light emitting device
JPH0645687A (en) Manufacture of optical semiconductor element
JPH04373182A (en) Manufacture of semiconductor light emitting device
JPH10261835A (en) Semiconductor laser device and its manufacture
EP1099283B1 (en) Electro-optic semiconductor devices and method for making the same
JP3840696B2 (en) Surface emitting semiconductor laser device and manufacturing method thereof
JP3689733B2 (en) Manufacturing method of semiconductor device
Chao et al. Low-threshold, high-power, 1.3-μm wavelength, InGaAsP-InP etched-facet folded-cavity surface-emitting lasers
CN218632788U (en) High-power and narrow-linewidth InP integrated semiconductor laser
JPH05299760A (en) Manufacture of semiconductor light-emitting device
JPH04192486A (en) Semiconductor light-emitting device
JPH03119777A (en) Buried heterostructure semiconductor laser device and manufacture thereof
JP2000101186A (en) Semiconductor optical element
JP4024319B2 (en) Semiconductor light emitting device
KR100239498B1 (en) Method for manufacturing semiconductor laser diode
JPH10178200A (en) Semiconductor optically integrated element
JPS62291194A (en) Manufacture of semiconductor laser element
JP2005072623A (en) Semiconductor device