JPH04192486A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device

Info

Publication number
JPH04192486A
JPH04192486A JP2324237A JP32423790A JPH04192486A JP H04192486 A JPH04192486 A JP H04192486A JP 2324237 A JP2324237 A JP 2324237A JP 32423790 A JP32423790 A JP 32423790A JP H04192486 A JPH04192486 A JP H04192486A
Authority
JP
Japan
Prior art keywords
layer
contact layer
wafer
photoresist
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2324237A
Other languages
Japanese (ja)
Inventor
Kunihiko Isshiki
邦彦 一色
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2324237A priority Critical patent/JPH04192486A/en
Publication of JPH04192486A publication Critical patent/JPH04192486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a good and uniform characteristic by forming an electrode which comes into contact with the top part of a protrusion part on an ohmic contact layer and with the surface of a Schottky contact layer. CONSTITUTION:An AlGaAs layer 6 is formed additionally on a GaAs contact layer 5; a photoresist 11 is coated so as to make the surface flat; the photoresist 11 is removed partially, by a dry etching operation, so as to reveal a protrusion part on a wafer. Then, the AlGaAs layer 6 in the protrusion part on the wafer is etched and removed by making use of the photoresist 11 as a mask so as to reveal the GaAs contact layer 5; one part of the GaAs contact layer 6 is revealed; most parts form an electrode 7 on the surface of the wafer as AlGaAs. Consequently, an electric current route which coincides highly accurately with a bent active region can be formed by a Schottky barrier by using a comparatively simple process. Thereby, a good characteristic can be obtained with good reproducibility, and a flat element surface can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体発光装置に関し、特に、シシットキー
バリアを利用した電流狭窄を高精度化てきるものを実現
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a semiconductor light emitting device, and in particular, to realizing a device that can achieve highly accurate current confinement using a Schittky barrier.

〔従来の技術〕[Conventional technology]

第2図は文献人pplied Physics Let
ters、 31巻。
Figure 2 is a reference person pplied Physics Let
ters, vol. 31.

466ページ、 1977年に記載された従来の半導体
レーザ装置を示す断面図で、 図において、(1)はn型GaAs基板、(2)はn型
A l o−3c”o−7人Sクラッド層、(3)はア
ンドープGa人s活性層、(4)はp聖人10−、Ga
人sクラッド層、(5)はp型GaAsオーミック・コ
ンタクト層、(7)は金属電極、(8)は 5iOz膜
、(9)は sro、 M(8)のストライプ状開口部
、(IOA)は活性層(3)の屈曲部(活性領域)であ
る。そして、第2図(a)は、開口部(9)が活性領域
(IOA)と一致した理想的な場合、第2図(b)は開
口部(9)と活性領域(IOA)との位置がずれた場合
を示している。
Page 466 is a cross-sectional view showing a conventional semiconductor laser device described in 1977. In the figure, (1) is an n-type GaAs substrate, (2) is an n-type Alo-3c"o-7 S cladding. layer, (3) is the undoped Ga active layer, (4) is the p Saint 10-, Ga
cladding layer, (5) is p-type GaAs ohmic contact layer, (7) is metal electrode, (8) is 5iOz film, (9) is sro, M(8) striped opening, (IOA) is a bent portion (active region) of the active layer (3). FIG. 2(a) shows the ideal case where the opening (9) coincides with the active area (IOA), and FIG. 2(b) shows the position of the opening (9) and the active area (IOA). This shows a case where the

次に動作について説明する。金属電極(7)間に、活性
層(3)のPn接合に対して順方向となる電圧を印加す
ると 5102の開口部(9)に狭窄された電流が流れ
、活性層(3)内で発光再結合が生じる。この発生した
光はクラッド層[21,(41と活性層(3)との間の
屈折率段差、及び、活性層(3)の屈曲に起因する実効
的屈折率分布で構成される光導波路によって導波され、
対向する襞襞面で構成されるファブリ・ベロー共振器内
てレーザ発振に至る。ここで第2図(a)の場合にζよ
、電流分布で決まる利得分布と、活性層(3)の屈曲に
よる屈折率分布が一致しているので、高出力まで安定に
動作するのに対し、第2図(b)のように位置のずれた
場合、例えば光出力−電流特性の直線性が損われるなど
の性能劣化が発生する。
Next, the operation will be explained. When a voltage is applied between the metal electrodes (7) in a forward direction to the Pn junction of the active layer (3), a constricted current flows through the opening (9) of 5102, and light is emitted within the active layer (3). Recombination occurs. This generated light is transmitted through an optical waveguide consisting of an effective refractive index distribution due to the refractive index step between the cladding layer [21, (41) and the active layer (3), and the bending of the active layer (3). wave guided,
Laser oscillation occurs within a Fabry-Bello resonator made up of opposing fold surfaces. In the case of Fig. 2(a), the gain distribution determined by the current distribution and the refractive index distribution due to the bending of the active layer (3) match, so the operation is stable up to high output. , if the position shifts as shown in FIG. 2(b), performance deterioration occurs, such as loss of linearity of the optical output-current characteristic, for example.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体レーザ装置は思上のように形成されていた
ので、開口部と屈曲部との位置合わせに高精度を必要と
し、かつ、乙の位置合わせのばらつきによって、素子特
性のばらつきが発生する問題点があった。
Conventional semiconductor laser devices are formed in an imaginary manner, requiring high precision in alignment between the aperture and the bent portion, and variations in alignment can cause variations in device characteristics. There was a problem.

この発明は上記のような問題点を解消するためになされ
たもので、位置合わせを必要としない比較的簡単な工程
で電流狭窄部と活性層屈曲部を一致させることが可能で
あることから、良好でかっ揃った特性を有する半導体発
光装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and since it is possible to align the current confinement part and the active layer bent part with a relatively simple process that does not require alignment, An object of the present invention is to obtain a semiconductor light emitting device having good and consistent characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体発光装置は、活性層の屈曲に対応
して、ウェハ最表面に突起部を有するL7−ザウエハに
おいて、 fil: GaAsコンタクト層の上にさらにAI G
aAs 層を設け、 (2):表面が平たんとなるようにフォトレジス)・を
塗布し、 (3):  ドライエツチングによって、ウェハ突起部
が露出するように部分的にフォトレジストを除去し、 (4): フォトレジストをマスクとして、ウェハ突起
部のAlGaAs層をエツチングして除去し、GaAs
コンタクト層が露出するようにし、 (5)ニ一部G1Asコンタクト層が露出し、大部分が
人IGa人Sであるウェハ表面に金属電極を形成するよ
うにしてものである。
In the semiconductor light emitting device according to the present invention, in the L7-wafer having a protrusion on the outermost surface of the wafer corresponding to the bending of the active layer, an AI G layer is further formed on the fil: GaAs contact layer.
An aAs layer is provided, (2): a photoresist is applied so that the surface is flat, (3) the photoresist is partially removed by dry etching to expose the wafer protrusions, (4): Using the photoresist as a mask, the AlGaAs layer on the wafer protrusion is etched and removed.
(5) Metal electrodes are formed on the wafer surface where the contact layer is partially exposed and most of the G1As contact layer is exposed.

〔作用〕[Effect]

この発明における表面電極は、活性層凸部に一致した 
GaAsに接触する部分はオーミック電極となり電流が
流れ、それ以外のAlGaAsに接触する部分はンヨッ
)・キー電極となり電流が阻止される。
The surface electrode in this invention corresponds to the convex portion of the active layer.
The part in contact with GaAs becomes an ohmic electrode, through which current flows, and the other part in contact with AlGaAs becomes a key electrode, blocking current flow.

従って、電流の流れる部分が活性層凸部位置に自己整合
的に形成されるので位置合わせの工程を必要としない。
Therefore, since the portion through which the current flows is formed in a self-aligned manner at the position of the active layer convex portion, there is no need for an alignment step.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例による半導体レーザ装置の製造
工程を示す断面図で、図中符号(1)〜(5]、[71
は前記従来のものと−につきその説明は省略する。図に
おいて、(6)はn型あるいはp型あるいは絶縁圧のA
j 6−3Gal)−7As層、(IOB)は上に凸の
活性層屈曲部である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a cross-sectional view showing the manufacturing process of a semiconductor laser device according to an embodiment of the present invention, with reference numbers (1) to (5) and [71] in the figure.
is the same as the conventional one, so the explanation thereof will be omitted. In the figure, (6) is n-type, p-type, or insulation voltage A.
j 6-3Gal)-7As layer, (IOB) is an upwardly convex bent portion of the active layer.

次に、製造工程について説明する。初めに(11図にお
いて、n型G1As基板(1)に写真製版の手法を用い
た選択エツチングによって突起部を形成した後、有機金
属気相結晶成長(MOCV−D)あるいは分子線エピタ
キシー(MBE)等の気相結晶成長法によって、基板(
1)の突起に対応した屈曲部(IOB)を有する Ga
As、人lGa人s゛多層膜(21〜(61を成長する
Next, the manufacturing process will be explained. First (in Figure 11, protrusions are formed on the n-type G1As substrate (1) by selective etching using a photolithography technique, and then metal organic vapor phase crystal growth (MOCV-D) or molecular beam epitaxy (MBE) is performed. The substrate (
1) has a bent part (IOB) corresponding to the protrusion of Ga
As, Ga and S multilayer films (21 to 61) are grown.

次に、(b)図において、ウェハ表面にフォトレジスト
(1])を塗布する。この時、比較的粘度の高いレレス
1.(11)を用いることによって、レジスト表面にウ
ニへの突起が反影されず、平たんになるようにする。
Next, in figure (b), a photoresist (1]) is applied to the wafer surface. At this time, relatively high viscosity Reless 1. By using (11), the projections of the sea urchins are not reflected on the resist surface and the resist surface becomes flat.

ついて(C)図において、酸素プラズマを用いたドライ
エツチングによって、ウェハの突起部が露出し、他の部
分には残るようにフォ1−レジス1−(Illを部分的
に除去する。
In FIG. 1C, dry etching using oxygen plasma exposes the protrusions of the wafer and partially removes the photoresist 1-(Ill) so that it remains in other areas.

さらに(d )図において、フォトレジスト(11)1
eマスクとして、ウェハ表面の突起部(人I GaAs
 71の一部)をエツチング除去する。エッチャントと
しては、例えば、硫酸と過酸化水素水の混合液を用いる
ことができる。
Furthermore, in figure (d), photoresist (11) 1
As an e-mask, the protrusions on the wafer surface (I GaAs
71) is removed by etching. As the etchant, for example, a mixture of sulfuric acid and hydrogen peroxide can be used.

最後に(61図のように、フォトレジスト(11)を除
去した後、ウェハ表・裏画面に金属電極(7)を真空蒸
着等の方法で形成してから、各チップに分離して素子が
完成する。
Finally (as shown in Figure 61), after removing the photoresist (11), metal electrodes (7) are formed on the front and back surfaces of the wafer by a method such as vacuum evaporation, and then the chips are separated into individual chips. Complete.

なお、上記実施例の動作は基本的には従来例と同様であ
るが、電流狭窄の機構が異なる。すなわち、表金膜電極
の内、GaAsに接触する部分はオーミック電極が形成
され、電流が流れるのに対し、人IGa人Sに接触する
部分はショットキー電極となり電流が阻止される。そし
て、電流狭窄部は活性層の屈曲部と自動的に一致した位
置に形成されるので、高出力動作時まで、良好なかつ揃
った特性を有するレーザが実現できる。
The operation of the above embodiment is basically the same as that of the conventional example, but the mechanism of current confinement is different. That is, the part of the surface gold film electrode that contacts GaAs is formed as an ohmic electrode and current flows through it, whereas the part that contacts the person IGa person S becomes a Schottky electrode and current is blocked. Since the current confinement portion is formed at a position that automatically coincides with the bent portion of the active layer, a laser having good and uniform characteristics can be realized even during high output operation.

なお、上記実施例てはGaAs及び人l。−3Gao−
7人Sを材料として用いた場合を示したが、人4As組
成はこれに限定するものではない。また、半導体レーザ
装置を構成できる他の半導体材料、例えばInGaAs
P、 InGaP、 (人I Ga) InP等を用い
ても良い。
Note that in the above embodiments, GaAs and GaAs were used. -3Gao-
Although the case where 7As is used as the material is shown, the composition of 4As is not limited to this. In addition, other semiconductor materials that can constitute the semiconductor laser device, such as InGaAs, may also be used.
P, InGaP, (IGa) InP, etc. may be used.

また、pFn反対の導電型でも構成可能である。Further, it is also possible to configure the conductivity type opposite to pFn.

また、半導体レーザに限らず、端面発光型LED、スー
パールミネッセント・ダイオード等の他の半導体発光装
置にも適用できる。
Further, the present invention is not limited to semiconductor lasers, and can be applied to other semiconductor light emitting devices such as edge-emitting LEDs and superluminescent diodes.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、比較的簡単な工程で屈
曲した活性領域と高精度に一致した電流経路を、ショッ
トキーバリアによって形成できるので、良好な特性が再
現性良く得られ、さらに、ウェハ表面の突起部を無くし
、平たんな素子表面が得られるなどの効果がある。
As described above, according to the present invention, a current path that matches the curved active region with high precision can be formed using a Schottky barrier in a relatively simple process, so good characteristics can be obtained with good reproducibility, and further, This has the advantage of eliminating protrusions on the wafer surface and providing a flat element surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)はこの発明の一実施例である半導
体レーザ装置の製造工程を示す断面図、第2図(a )
 (b )は従来の半導体レーザ装置の断面図である。 図において、(1)はGaAs基板、(2)はAI G
aAsクラッド層、(3)はGaAs活性層、(4)は
人I GaAsクラッド層、(5)はGa人Sコンタク
1−層、(6)は人I GaAs層、(7)は金属電極
、(IOB)は活性層の屈曲部、(11)はホトレジス
トを示す。 なお、図中、同一符号は同一、または相当部分を示す。
FIGS. 1(a) to (e) are cross-sectional views showing the manufacturing process of a semiconductor laser device according to an embodiment of the present invention, and FIG. 2(a)
(b) is a sectional view of a conventional semiconductor laser device. In the figure, (1) is a GaAs substrate, (2) is an AI G
aAs cladding layer, (3) is GaAs active layer, (4) is GaAs cladding layer, (5) is GaAs contact layer, (6) is GaAs layer, (7) is metal electrode, (IOB) indicates a bent portion of the active layer, and (11) indicates a photoresist. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】  一主面上にストライプ状の突起部を形成した半導体基
板上に、少なくとも第1のクラッド層、活性層、第2の
クラッド層、オーミックコンタクト層が、各層の形状が
前記基板の一主面形状と略同一であるように形成された
半導体発光装置において、 前記オーミックコンタクト層の突起部の頂上部を除いた
オーミックコンタクト層に接して、ショットキーコンタ
クト層を形成し、かつ前記オーミックコンタクト層の突
起部の頂上部及び前記ショットキーコンタクト層の表面
に接した電極を形成したことを特徴とする半導体発光装
置。
[Scope of Claims] At least a first cladding layer, an active layer, a second cladding layer, and an ohmic contact layer are formed on a semiconductor substrate having stripe-shaped protrusions formed on one principal surface, each layer having the shape described above. In a semiconductor light emitting device formed to have substantially the same shape as one principal surface of the substrate, a Schottky contact layer is formed in contact with the ohmic contact layer excluding the top portion of the protrusion of the ohmic contact layer, and A semiconductor light emitting device characterized in that an electrode is formed in contact with the top of the protrusion of the ohmic contact layer and the surface of the Schottky contact layer.
JP2324237A 1990-11-26 1990-11-26 Semiconductor light-emitting device Pending JPH04192486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2324237A JPH04192486A (en) 1990-11-26 1990-11-26 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2324237A JPH04192486A (en) 1990-11-26 1990-11-26 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JPH04192486A true JPH04192486A (en) 1992-07-10

Family

ID=18163572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2324237A Pending JPH04192486A (en) 1990-11-26 1990-11-26 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JPH04192486A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156639A (en) * 2004-11-29 2006-06-15 Sharp Corp Semiconductor laser element, optical disc apparatus, and light transmission system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156639A (en) * 2004-11-29 2006-06-15 Sharp Corp Semiconductor laser element, optical disc apparatus, and light transmission system

Similar Documents

Publication Publication Date Title
US4136928A (en) Optical integrated circuit including junction laser with oblique mirror
US5658823A (en) Semiconductor laser diode and manufacturing method therefor
US20050164420A1 (en) Semiconductor laser device with a current non-injection region near a resonator end face, and fabrication method thereof
JPH09186400A (en) Fabrication of surface emission semiconductor laser
US4121177A (en) Semiconductor device and a method of fabricating the same
US5786234A (en) Method of fabricating semiconductor laser
US5149670A (en) Method for producing semiconductor light emitting device
US4514896A (en) Method of forming current confinement channels in semiconductor devices
US4447905A (en) Current confinement in semiconductor light emitting devices
JPH04192486A (en) Semiconductor light-emitting device
JP3453787B2 (en) Semiconductor laser and manufacturing method thereof
KR20010071948A (en) Electro-optic semiconductor devices and method for making the same
KR950002208B1 (en) Laser diode and manufacturing method thereof
JP2973215B2 (en) Semiconductor laser device
JPH05299760A (en) Manufacture of semiconductor light-emitting device
JPH04373182A (en) Manufacture of semiconductor light emitting device
JP3075824B2 (en) Surface emitting semiconductor laser device and method of manufacturing the same
JPH10178200A (en) Semiconductor optically integrated element
JP2000101186A (en) Semiconductor optical element
KR100239498B1 (en) Method for manufacturing semiconductor laser diode
JPS63250886A (en) Manufacture of semiconductor laser element
CN115000808A (en) VCSEL coherent array chip based on gain guidance
KR100259006B1 (en) Manufacturing method of semiconductor laser device
KR910005392B1 (en) Manufacturing method of double-hetero junction type led with junction current limited region
JP3322001B2 (en) Manufacturing method of semiconductor laser