JPH04372436A - Fiber-reinforced composite material and energy absorbing member for bumper - Google Patents

Fiber-reinforced composite material and energy absorbing member for bumper

Info

Publication number
JPH04372436A
JPH04372436A JP30805791A JP30805791A JPH04372436A JP H04372436 A JPH04372436 A JP H04372436A JP 30805791 A JP30805791 A JP 30805791A JP 30805791 A JP30805791 A JP 30805791A JP H04372436 A JPH04372436 A JP H04372436A
Authority
JP
Japan
Prior art keywords
fibers
fiber
energy absorbing
load
absorbing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30805791A
Other languages
Japanese (ja)
Other versions
JP3544994B2 (en
Inventor
Naohiro Tada
直弘 多田
Akiji Anahara
穴原 明司
Yoshiharu Yasui
義治 安居
Yasumi Miyashita
康己 宮下
Toshiro Kondo
利郎 近藤
Hiroshi Omori
大森 裕志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyoda Automatic Loom Works Ltd filed Critical Toyota Motor Corp
Priority to JP30805791A priority Critical patent/JP3544994B2/en
Publication of JPH04372436A publication Critical patent/JPH04372436A/en
Application granted granted Critical
Publication of JP3544994B2 publication Critical patent/JP3544994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide an energy absorbing member for a bumper having a high impact absorbing ability to a diagonally applied alod, having only a small stress fluctuation for compression deformation, and having a large energy absorbing ability to a constant quantity of deformation CONSTITUTION:An energy absorbing member 1 comprises two cylinder parts 2 disposed in parallel to be applied to each other, and an oval cylinder part 3 is integrally formed on their outer side to be circumscribed with the cylinder parts 2. For the cylinder parts 2 and the oval cylinder parts 3, mixed fibers of glass fibers and polyethylene fibers or polyester fibers are used for reinforcement fibers, and they are formed of fiber-reinforced composite material where the fibers (or fila-ments) are wound along the circumference and which is hardened by resin.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は繊維強化複合材料及び自
動車に装備されるバンパの衝撃吸収部材として使用され
る繊維強化複合材料製のバンパ用エネルギー吸収部材に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced composite material and an energy-absorbing member for a bumper made of a fiber-reinforced composite material used as a shock-absorbing member for a bumper installed in an automobile.

【0002】0002

【従来の技術】近年、軽量化による運動機能の向上、エ
ネルギー消費の低減が強く要望されている。繊維強化プ
ラスチック(FRP)等の繊維強化複合材料による金属
部材の代替はその中の花形といってもよく、非常に多く
の分野でFRPが多用されつつあり、この傾向は益々拡
がる様相を呈している。
BACKGROUND OF THE INVENTION In recent years, there has been a strong desire to improve exercise function and reduce energy consumption by reducing weight. The replacement of metal components with fiber-reinforced composite materials such as fiber-reinforced plastics (FRP) can be said to be the star of this process, and FRP is being used extensively in a large number of fields, and this trend appears to be expanding more and more. There is.

【0003】FRPには種々のグレードがあり、強化繊
維として切断された繊維いわゆる短繊維が樹脂中に混入
され、短繊維が全くランダムに配列されたものは、汎用
グレードで一般家庭用として用いられる。一方、繊維が
切断されずにフィラメントとして補強樹脂と一体化され
たものは高強度、高弾性を要求される工業用品用として
ハイグレードにランクされる。フィラメントを強化繊維
として使用する場合の通例は、繊維をシート状に積層し
、樹脂で含浸・硬化するもので積層複合材とよばれてい
る。そして、従来は強化繊維として複数種類の繊維を混
合して使用することはなかった。
[0003] There are various grades of FRP, and the one in which cut fibers called short fibers are mixed into the resin as reinforcing fibers and the short fibers are arranged completely randomly is a general-purpose grade and is used for general household use. . On the other hand, fibers in which the fibers are not cut but are integrated with reinforcing resin as filaments are ranked as high grade for use in industrial products that require high strength and high elasticity. When filaments are used as reinforcing fibers, the fibers are usually laminated into sheets, impregnated with resin, and cured, which is called a laminated composite material. Conventionally, a mixture of multiple types of fibers has not been used as reinforcing fibers.

【0004】前記積層複合材は繊維の配列された面内の
荷重に対して極めて高い強度及び剛性を示すが、曲げ応
力や剪断応力を発生するような面外の荷重が加わると、
層間が容易に剥離して弱い力で分離・破壊する欠点を有
する。強化繊維としてガラスフィラメントを使用した場
合と、カーボンフィラメントを使用した場合の板状積層
複合材の曲げ及び剪断破壊時の応力−変位量曲線を図7
及び図8にそれぞれ示す。ただし(a)は曲げ応力が、
(b)は剪断応力が作用した場合を示す。いずれも荷重
の増加に対応してある応力まではほぼ直線的に増大する
が、その後は急激に応力が低下し、破壊に至る。すなわ
ち、強化繊維として1種類の繊維を使用した従来の積層
複合材では、層間の剥離が微小に起きるとそれが一挙に
成長して層間の分離となり、複合材の破壊となる。そし
て、その間のエネルギー吸収(応力−変位量曲線と変位
量を表す軸との間の面積)が極めて小さく、脆い素材と
言える。
[0004] The laminated composite material exhibits extremely high strength and rigidity against loads in the plane where the fibers are arranged, but when an out-of-plane load that generates bending stress or shear stress is applied,
It has the disadvantage that the layers easily peel off, causing separation and destruction with weak force. Figure 7 shows stress-displacement curves during bending and shear failure of plate-like laminated composite materials when glass filaments are used as reinforcing fibers and when carbon filaments are used.
and FIG. 8, respectively. However, in (a), the bending stress is
(b) shows the case where shear stress is applied. In both cases, the stress increases almost linearly in response to an increase in load up to a certain point, but after that the stress decreases rapidly, leading to failure. That is, in conventional laminated composite materials that use one type of fiber as reinforcing fibers, when minute peeling occurs between layers, it grows all at once, resulting in separation between the layers, resulting in destruction of the composite material. The energy absorption (area between the stress-displacement curve and the axis representing the displacement) is extremely small, and it can be said to be a brittle material.

【0005】又、自動車には衝突時における車体及び搭
乗者の保護のため、一般に車体の前後に衝突時の衝撃エ
ネルギーを吸収するバンパが取り付けられている。バン
パは自動車が障害物と衝突した際に加わる大きな負荷に
対して非可逆的にエネルギーを吸収する必要がある。そ
して、吸収エネルギーを大きくするため、従来からバン
パ本体を支持する支持部材の材質や構造の改良が種々な
されている。
[0005] Furthermore, in order to protect the vehicle body and passengers in the event of a collision, bumpers are generally attached to the front and rear of the vehicle body to absorb impact energy in the event of a collision. Bumpers need to irreversibly absorb energy from the large load that is applied when a car collides with an obstacle. In order to increase absorbed energy, various improvements have been made to the materials and structures of the support members that support the bumper body.

【0006】例えば、1988年2月18日公開のドイ
ツ特許(3626150)には、図9に示すように楕円
環状の減衰成形体21を介してバンパ22を車体のステ
イ23に取り付けたものが開示されている。減衰成形体
21は周方向に繊維が配列されたFRP(繊維強化プラ
スチック)により形成され、楕円形の長手側面がバンパ
22及びステイ23にそれぞれ接触するように取り付け
られている。
For example, a German patent (3626150) published on February 18, 1988 discloses a bumper 22 attached to a stay 23 of a vehicle body via an elliptical annular damping molded body 21, as shown in FIG. has been done. The damping molded body 21 is formed of FRP (fiber-reinforced plastic) in which fibers are arranged in the circumferential direction, and is attached so that its long elliptical side surfaces are in contact with the bumper 22 and the stay 23, respectively.

【0007】又、特開昭57−124142号公報には
バンパに使用するエネルギー吸収用構造材として、図1
0に示すように繊維強化複合材料(例えばエポキシ樹脂
含浸ガラス繊維)製の条帯24からなる網状組織で円筒
状に形成された構造体25が提案されている。構造体2
5は筒の軸方向に圧縮負荷が加わる状態で使用され、構
造体25に軸方向の荷重が作用すると網状組織の対向す
る結節点26において層間剥離を起こし、剪断降伏が繊
維とマトリックスとの界面で生ずることによりエネルギ
ーを段階的に吸収するようになっている。又、各結節点
26は約10層の繊維複合材料製の条帯24で形成され
ている。
[0007] In addition, Japanese Patent Application Laid-Open No. 57-124142 discloses a structural material for absorbing energy used in a bumper as shown in FIG.
As shown in FIG. 0, a structure 25 formed into a cylindrical shape with a network structure consisting of strips 24 made of a fiber-reinforced composite material (for example, epoxy resin-impregnated glass fiber) has been proposed. Structure 2
5 is used with a compressive load applied in the axial direction of the cylinder, and when the axial load is applied to the structure 25, delamination occurs at opposing node points 26 of the network structure, and shear yield occurs at the interface between the fibers and the matrix. It is designed to absorb energy step by step. Additionally, each node 26 is formed of approximately ten layers of fiber composite material strips 24.

【0008】[0008]

【発明が解決しようとする課題】前記のように積層複合
材は曲げ応力や剪断応力が作用した場合、層間剥離が突
発的に発生するとともに金属のような降伏挙動がなく、
破壊が瞬時に起こってそのまま応力0に至る。すなわち
、破壊が発生すると短時間で形状保持が不能となる。 従って、限界荷重を超えない充分に余裕を持った範囲で
積層複合材を使用するのが一般的な使い方である。しか
し、余裕の取り方を大きくすると安全性は高いが軽量化
効果が失われ、余裕が少なければ破壊の危険が常につき
まとうという問題がある。
[Problems to be Solved by the Invention] As mentioned above, when a laminated composite material is subjected to bending stress or shear stress, delamination occurs suddenly, and it does not exhibit yielding behavior like metals.
Fracture occurs instantaneously and the stress reaches zero. That is, when destruction occurs, it becomes impossible to maintain the shape in a short period of time. Therefore, it is common practice to use laminated composite materials within a range that does not exceed the limit load. However, if the margin is increased, safety is high, but the weight reduction effect is lost, and if the margin is small, there is always a risk of destruction.

【0009】又、前記ドイツ特許には周方向に繊維が配
列されたFRP製の減衰成形体21をエネルギー吸収部
材として使用することは開示されているが、その部材に
荷重が加わった際に発生する応力、その変動、吸収エネ
ルギー等については全く触れられていない。周方向に長
繊維が配列されたFRP製の環状構造体の製法としては
、フィラメントに樹脂を含浸(付着)させながらマンド
レル(芯材)に多層に巻き付けた後、加熱硬化するフィ
ラメントワインディング(FW)法が一般に用いられる
。FW法で作製した均質な構造体をその側面からの荷重
で圧縮していくと、破壊のきっかけがないため、圧縮エ
ネルギーが蓄積され、耐えきれなくなると一挙に繊維の
層間剥離を起こして破壊し、変形応力が瞬時に激減する
。圧縮の初期段階ではこの激しい応力変動を繰り返して
層間剥離が進行し、次第に応力が低下する傾向をとる。 更に変形が大きくなり、繊維の破断限界を越えると応力
は更に減衰する。この圧縮変形過程で発生する応力と変
形量の積(具体的には圧縮荷重−変位量曲線と変位量を
表す軸との間の面積)がそのときの吸収エネルギーとな
る。バンパ支持部材のように人体への衝撃を小さくする
という条件がある場合には、応力の最大値を人体への影
響の低いレベルに抑える必要があり、応力変動の激しい
場合には全体としてのエネルギー吸収量が小さくなる。 従って、人体への衝撃を小さく、しかも変形時のエネル
ギー吸収量を大きくするという要求を満たすためには、
圧縮荷重−変位量曲線をできるだけ低いレベルで一定に
保つことが重要なポイントとなる。
[0009]Also, the German patent discloses the use of a damping molded body 21 made of FRP in which fibers are arranged in the circumferential direction as an energy absorbing member, but when a load is applied to the member, There is no mention of the stress caused, its fluctuation, absorbed energy, etc. The manufacturing method for an annular structure made of FRP in which long fibers are arranged in the circumferential direction is filament winding (FW), which involves impregnating (adhering) filaments with resin and winding them around a mandrel (core material) in multiple layers, and then heating and curing them. The law is commonly used. When a homogeneous structure fabricated using the FW method is compressed by a load applied from its side, the compression energy accumulates because there is no trigger for fracture, and when it can no longer withstand, the fibers suddenly delaminate and fracture. , the deformation stress is drastically reduced instantly. At the initial stage of compression, this severe stress fluctuation is repeated, delamination progresses, and the stress tends to gradually decrease. When the deformation becomes larger and exceeds the breaking limit of the fiber, the stress is further attenuated. The product of the stress generated in this compressive deformation process and the amount of deformation (specifically, the area between the compressive load-displacement curve and the axis representing the amount of displacement) becomes the absorbed energy at that time. If there is a condition to reduce the impact on the human body, such as with bumper support members, it is necessary to suppress the maximum value of stress to a level that has a low impact on the human body, and if stress fluctuations are severe, the overall energy Absorption amount becomes smaller. Therefore, in order to satisfy the requirements of reducing the impact on the human body and increasing the amount of energy absorbed during deformation,
The important point is to keep the compressive load-displacement curve constant at the lowest possible level.

【0010】ドイツ特許に開示されたものと同様に周方
向にガラス繊維が配列されたFRP製で厚さが一定な楕
円環状の構造体を作製し、楕円形の長手方向側面からの
荷重で圧縮した時の荷重と変位量の関係を測定したとこ
ろ図11に示すような結果が得られた。この場合は最初
に剥離の始まる点で荷重の突発的な変化が発生し、その
変動が非常に激しいため、荷重の最大値を人体への影響
の低いレベルに抑えようとすると、エネルギー吸収量が
小さくなり、バンパのエネルギー吸収部材としては不十
分である。
Similar to the one disclosed in the German patent, an elliptical annular structure made of FRP with glass fibers arranged in the circumferential direction and having a constant thickness was produced, and compressed by a load from the longitudinal side of the ellipse. When the relationship between the load and the amount of displacement was measured, the results shown in FIG. 11 were obtained. In this case, a sudden change in load occurs at the point where separation first begins, and the fluctuation is very drastic. It becomes small and is insufficient as an energy absorbing member of a bumper.

【0011】一方、特開昭57−124142号公報に
開示された筒状のエネルギー吸収用構造材は、筒の軸方
向に圧縮荷重が加わる場合はその機能が発揮されるが、
斜め方向からの荷重に対してはほとんど対応できない。 又、前記のように吸収エネルギーを大きくするには変位
量が増加しても荷重が一定レベルに保たれることが重要
であるが、このエネルギー吸収用構造材は変位量の増加
に伴って荷重が激しく変動し、エネルギー吸収量が大き
くなり難いという問題がある。
On the other hand, the cylindrical energy absorbing structural material disclosed in JP-A-57-124142 exhibits its function when a compressive load is applied in the axial direction of the cylinder.
It can barely handle loads from diagonal directions. In addition, as mentioned above, in order to increase the absorbed energy, it is important that the load is kept at a constant level even when the amount of displacement increases, but this energy absorbing structural material There is a problem that the amount of energy absorbed fluctuates drastically and it is difficult to increase the amount of energy absorbed.

【0012】本発明は前記の問題点に鑑みてなされたも
のであって、第1の目的は層間剥離が突発的に発生する
ことがなく、破壊の際の応力の激変が抑制されて金属に
近い挙動を示し、大きなエネルギーを吸収するすること
ができる繊維強化複合材料を提供することにある。
The present invention has been made in view of the above-mentioned problems, and the first object is to prevent the sudden occurrence of delamination, suppress the drastic change in stress at the time of fracture, and improve the quality of the metal. The objective is to provide a fiber-reinforced composite material that exhibits similar behavior and can absorb large amounts of energy.

【0013】又、第2の目的は自動車の衝突時の衝撃を
抑え、人体への衝撃の伝達を緩和するため、衝突変形時
にある一定以上の応力を発生せず、一定量の変形に対し
て吸収するエネルギーが大きく、しかも斜め方向からの
荷重に対しても高い衝撃吸収能力を持ち、金属に比較し
て軽量化されたバンパ用エネルギー吸収部材を提供する
ことにある。
[0013] The second purpose is to suppress the impact when a car collides and to reduce the transmission of the impact to the human body, so that stress above a certain level is not generated during collision deformation, and when the deformation exceeds a certain amount. To provide an energy absorbing member for a bumper that absorbs a large amount of energy, has a high shock absorbing ability even for loads applied in an oblique direction, and is lighter in weight than metal.

【0014】[0014]

【課題を解決するための手段】前記第1の目的を達成す
るため請求項1に記載の発明では、繊維強化複合材料の
マトリックス内に積層状態で配列する繊維素材として少
なくとも2種の繊維を使用し、それらの繊維を混在する
状態で配列した。
[Means for Solving the Problem] In order to achieve the first object, the invention according to claim 1 uses at least two types of fibers as fiber materials arranged in a laminated state within the matrix of the fiber reinforced composite material. Then, these fibers were arranged in a mixed state.

【0015】繊維の組合せとしては無機繊維と有機繊維
との組合せや、マトリックスに対する表面結合力の異な
る素材の組合せが好ましい。又、繊維の混合状態として
は2種の繊維が細かい分散状態で、均等に混合されてい
ることが好ましく、実質的に無撚の繊維束が全層に亘っ
て各層内で引き揃え状に配列された状態、交絡糸状に束
ねられた状態、一層単位に異なる種類の繊維が交互に配
列されているが、層間を含めて見れば、2種の織物が全
体に均整に分布された状態などがある。
The combination of fibers is preferably a combination of inorganic fibers and organic fibers, or a combination of materials having different surface bonding strengths to the matrix. In addition, as for the mixed state of the fibers, it is preferable that the two types of fibers are finely dispersed and evenly mixed, and substantially non-twisted fiber bundles are arranged in a uniform manner in each layer throughout the entire layer. In some cases, fibers of different types are arranged alternately in each layer, but if you look at the interlayers, the two types of fabric are evenly distributed throughout the fabric. be.

【0016】又、第2の目的を達成するため請求項2に
記載の発明のエネルギー吸収部材は、断面円環状をなす
ようにフィラメントが周方向に巻き付けられるとともに
樹脂で硬化された繊維強化複合材料で筒状に形成され、
前記フィラメントとして少なくとも2種の繊維が混在し
ている。
Further, in order to achieve the second object, the energy absorbing member of the invention according to claim 2 is a fiber reinforced composite material in which filaments are wound in the circumferential direction so as to have an annular cross section and are cured with a resin. It is formed into a cylindrical shape,
At least two types of fibers are mixed as the filament.

【0017】繊維の混合状態は細分化されている方が圧
縮変形時の応力変動が少なくなるため、使用される複数
種の繊維のロービングを引き揃えた状態に巻き取ること
で各繊維をランダムに混合、配列することができる。し
かし、実質的に異なる種類の繊維相互が混在化されるよ
うな薄い層に分割されるのであれば、層毎に異種の繊維
が配列されるように積層されていてもよい。
[0017] The finer the fiber mixture, the less the stress fluctuation during compressive deformation, so by winding the rovings of the multiple types of fibers in a uniform state, each fiber can be randomly distributed. Can be mixed and arranged. However, as long as the fibers are divided into thin layers in which substantially different types of fibers are mixed, they may be laminated so that different types of fibers are arranged in each layer.

【0018】繊維素材の組合せとしてはカーボン繊維と
ガラス繊維のように近似の無機繊維同士の組合せよりも
、無機繊維と有機繊維のように異質な繊維の組合せが好
ましい。特に、無機繊維としてガラス繊維を、有機繊維
としてポリエチレン繊維又はポリエステル繊維を使用す
る組合せが好ましい。
As for the combination of fiber materials, a combination of dissimilar fibers such as an inorganic fiber and an organic fiber is preferable to a combination of similar inorganic fibers such as a carbon fiber and a glass fiber. In particular, a combination of using glass fiber as the inorganic fiber and polyethylene fiber or polyester fiber as the organic fiber is preferred.

【0019】[0019]

【作用】請求項1に記載の発明の繊維強化複合材料は、
マトリックス内に異なる種類の繊維が配列されているた
め、伸長、圧縮など外部から荷重が加えられると、それ
ぞれの繊維物性の違いにより、同一の変形によっても発
生応力が異なり、更にマトリックス樹脂との界面の結合
力の違いもあって、それぞれの剥離挙動に差異を生じ、
多数の微細な部位で逐次微量ずつのエネルギー放出が行
われつつ破壊が進行するため、複合材に最大許容応力を
超える応力が発生した後も、多数個所で徐々に起こる微
小な剥離によって応力を持ちこたえつつ変形し、金属材
料のように吸収エネルギーが大きくなってねばりのある
材料となる。
[Operation] The fiber-reinforced composite material of the invention according to claim 1 has the following features:
Since different types of fibers are arranged in the matrix, when an external load such as elongation or compression is applied, the stress generated by the same deformation will differ due to the difference in the physical properties of each fiber, and the stress at the interface with the matrix resin will vary. Due to the difference in the bonding strength of the two, there are differences in the peeling behavior of each,
As fracture progresses as small amounts of energy are released one after another in many minute locations, even after stress exceeding the maximum allowable stress occurs in the composite material, it withstands the stress through minute peeling that gradually occurs at many locations. The material absorbs more energy and becomes sticky, like a metal material.

【0020】請求項2に記載の発明のバンパ用エネルギ
ー吸収部材は筒部の側面から圧縮荷重を受けるように取
り付けられ、斜め方向からの荷重に対しても高い衝撃吸
収能力を持ち、圧縮荷重を受けた際に発生する応力変動
が、1種類の繊維を強化繊維として使用した場合に比較
して著しく減少し、極めて穏やかな圧縮荷重−変位量曲
線となる。従って、最大荷重に対する吸収エネルギーが
非常に大きくなり、自動車の衝突による衝撃的な荷重が
人体に加わらず搭乗者に与える影響が極めて穏やかにな
る。
The energy absorbing member for a bumper according to the invention described in claim 2 is attached so as to receive a compressive load from the side surface of the cylindrical portion, and has a high impact absorption ability even against a load from an oblique direction. The stress fluctuations that occur when subjected to stress are significantly reduced compared to when one type of fiber is used as the reinforcing fiber, resulting in an extremely gentle compressive load-displacement curve. Therefore, the absorbed energy with respect to the maximum load becomes very large, and the impact load caused by the collision of the automobile is not applied to the human body, and the impact on the occupant is extremely mild.

【0021】前記のような現象が起こる理由ははっきり
しないが、エネルギー吸収部材に使用される強化繊維の
種類が1種類の場合は繊維と樹脂との接着力(界面結合
力)が均一で、エネルギー吸収部材が圧縮変形を受けた
際に破壊のきっかけが無いため、圧縮エネルギーが蓄積
され、耐えきれなくなった時点で一挙に繊維の層間剥離
が起こり、直ちに大きな剥離に進展することにより突発
的に激しい応力変動が生じるのに対して、複数の繊維が
混在する場合は繊維の種類によって樹脂に対する接着効
果が異なるため、接着効果の低いレベルの繊維の界面に
微細な剥離が容易に発生し、変形時のエネルギーが過大
に蓄積されず、徐々に放出されるためと推定される。
The reason why the above phenomenon occurs is not clear, but if only one type of reinforcing fiber is used in the energy absorbing member, the adhesive force (interfacial bonding force) between the fiber and the resin is uniform, and the energy absorption Because there is no trigger for destruction when the absorbent material undergoes compression deformation, the compression energy accumulates, and when it can no longer withstand, fiber delamination occurs all at once, and the delamination immediately progresses to large deformation, resulting in a sudden and severe delamination. On the other hand, when multiple fibers are mixed, the adhesion effect to the resin differs depending on the type of fiber, so minute peeling easily occurs at the interface of fibers with low adhesion effect, and when deformed. This is presumed to be due to the fact that the energy is not accumulated excessively and is gradually released.

【0022】ポリエチレン繊維とガラス繊維とを混合し
た場合、ポリエチレン繊維の混合比率を高めていくと、
圧縮荷重−変位量曲線の荷重変動は次第に収まり、ポリ
エチレン繊維を約10%(容積比)程度混合すると、荷
重の突発的な変動はほとんど発生しなくなる。しかし、
ポリエチレン繊維の混合比率を高めた場合は同時に荷重
レベルそのものも低下し、吸収エネルギーも減少する傾
向をもつため、混合比率をあまり高めることは好ましく
ない。従って、異種繊維の組合せとして有機繊維と無機
繊維とを組み合わせる場合、有機繊維の混合比率は繊維
の種類によっても異なるが、30%以下程度がよい。
When polyethylene fibers and glass fibers are mixed, as the mixing ratio of polyethylene fibers is increased,
Load fluctuations in the compression load-displacement curve gradually subside, and when about 10% (volume ratio) of polyethylene fibers are mixed, sudden fluctuations in load almost no longer occur. but,
When the mixing ratio of polyethylene fibers is increased, the load level itself also tends to decrease and the absorbed energy also tends to decrease, so it is not preferable to increase the mixing ratio too much. Therefore, when combining organic fibers and inorganic fibers as a combination of different types of fibers, the mixing ratio of organic fibers varies depending on the type of fibers, but is preferably about 30% or less.

【0023】[0023]

【実施例】【Example】

(実施例1)次に板状積層複合材に具体化した第1実施
例を図1に従って説明する。実質無撚のガラス繊維のロ
ービング(フィラメント)と高強度ポリエチレン繊維(
商品名;ダイニーマ、東洋紡績株式会社製)とを混合し
て引き揃えた繊維束を積層配列した後、エポキシ樹脂で
含浸・硬化して板状積層複合材を形成した。ガラス繊維
とポリエチレン繊維の混合比率を容積比で90/10と
した板状積層複合材に、剪断荷重を作用させた場合の荷
重と変位量との関係を測定した結果を図1に示す。
(Example 1) Next, a first example embodied in a plate-shaped laminated composite material will be described with reference to FIG. Virtually untwisted glass fiber roving (filament) and high strength polyethylene fiber (
After mixing and aligning fiber bundles with Dyneema (trade name: Dyneema, manufactured by Toyobo Co., Ltd.) and arranging them in layers, they were impregnated and cured with epoxy resin to form a plate-like laminated composite material. Figure 1 shows the results of measuring the relationship between load and displacement when a shear load is applied to a plate-like laminated composite material in which the volume ratio of glass fibers and polyethylene fibers is 90/10.

【0024】強化繊維がガラス繊維100%の場合と異
なり、最大荷重に至った後も、応力をほぼ一定レベルに
保持した状態で変形が続き、最大荷重に対する吸収エネ
ルギーが非常に大きくなる。又、破壊が徐々に進行する
ため、破損部にトゲ(ささくれ)が発生しない。
Unlike the case where the reinforcing fibers are 100% glass fibers, even after the maximum load is reached, the deformation continues while the stress is maintained at a substantially constant level, and the absorbed energy against the maximum load becomes very large. In addition, since the destruction progresses gradually, no thorns (hangnails) occur in the damaged area.

【0025】このような板状積層複合材の用途としては
自動車のボディ、船体、ガードレール等があり、フィラ
メントワインディングで作る円筒の場合は自転車のフレ
ームとしての用途がある。これらの部材は衝突時におけ
る人体への被害を最小限に止めることが重要であり、衝
突時のエネルギー吸収が大きく、破損部にトゲが発生し
ない前記板状積層複合材はその要求を満たす。又、航空
機の翼等の部材に使用した場合は、飛行中に許容範囲を
超える衝撃荷重が作用するトラブルがあっても破壊が突
発的に起こらず形状保持される。従って、着陸まで持ち
こたえられて帰還率が高くなり、大事故に至るのが防止
される。 (実施例2)実質無撚のガラス繊維のロービングとカー
ボン繊維のロービングとを、一層ごとに交互に配列した
後、エポキシ樹脂で含浸・硬化して板状積層複合材を形
成した。その板状積層複合材に剪断荷重を作用させた場
合の荷重と変位量との関係を測定した結果を図2に示す
[0025] Applications of such plate-shaped laminated composite materials include automobile bodies, ship hulls, guardrails, etc. Cylindrical materials made by filament winding are used as bicycle frames. It is important for these members to minimize damage to the human body in the event of a collision, and the plate-like laminated composite material, which absorbs a large amount of energy in the event of a collision and does not generate splinters in the damaged portion, satisfies this requirement. Furthermore, when used in a member such as an aircraft wing, the shape is maintained without sudden breakage even if there is a problem in which an impact load exceeding the permissible range is applied during flight. Therefore, the aircraft can survive until landing, increasing the return rate and preventing major accidents. (Example 2) Substantially untwisted glass fiber rovings and carbon fiber rovings were alternately arranged layer by layer, and then impregnated with epoxy resin and cured to form a plate-like laminated composite material. FIG. 2 shows the results of measuring the relationship between load and displacement when a shear load is applied to the plate-like laminated composite material.

【0026】この実施例の場合もカーボン繊維100%
の場合と異なり、最大荷重に至った後も、応力の変化が
小さな状態で変形が続き、最大荷重に対する吸収エネル
ギーが大きくなる。しかし、前記実施例の場合と異なり
、最大荷重に至った後、応力が一定に保持されず次第に
低下している。これは2種類の繊維の物性上及び混合状
態の違いの両方によるためと考えられる。すなわち、こ
の実施例の場合は2種類の繊維ともに、複合材用素材と
して表面活性化されており、樹脂との接着効果がいずれ
も高いものであること、及び2種類の繊維が層毎に交互
に配列されているため、積層繊維層の各層が2種類の繊
維を引き揃え状にして構成された前記実施例の場合に比
較して両繊維の混合単位が細かくなく、層間の剥離箇所
の細分化が不充分となっているためと考えられる。
[0026] In this example, 100% carbon fiber is also used.
Unlike the case of , even after the maximum load is reached, deformation continues with a small change in stress, and the absorbed energy against the maximum load increases. However, unlike the case of the previous embodiment, after reaching the maximum load, the stress is not kept constant but gradually decreases. This is considered to be due to both the physical properties of the two types of fibers and the difference in the mixing state. In other words, in this example, both the two types of fibers are surface-activated as materials for composite materials, and both have a high adhesive effect with the resin, and the two types of fibers are alternately used in each layer. Therefore, compared to the case of the above embodiment in which each layer of the laminated fiber layer was constructed by aligning two types of fibers, the mixing unit of both fibers is not fine, and the separation point between the layers is finely divided. This is thought to be due to insufficient conversion.

【0027】(実施例3)次にバンパ用エネルギー吸収
部材に具体化した第3実施例を図3に従って説明する。 ガラス繊維のロービングと高強度ポリエチレン繊維(商
品名;ダイニーマ、東洋紡績株式会社製)とを混合して
引き揃えた繊維束を強化繊維として使用し、フィラメン
ト(繊維束)に樹脂を付着しながらマンドレル上に巻き
付けた後、樹脂を加熱硬化させるフィラメントワインデ
ィング(FW)法により肉厚の一定な円筒状のエネルギ
ー吸収部材を作製した。樹脂にはエポキシ樹脂が使用さ
れ、繊維束は回転軸に対してほぼ直角に巻付けられてい
る。ポリエチレン繊維とガラス繊維の混合比率を容積比
で0%、約5%及び約10%と変更し、他は同一の条件
で作製した各エネルギー吸収部材について、その側面か
ら圧縮荷重を作用させた場合の荷重と変位量との関係を
測定した結果を図3に示す。
(Third Embodiment) Next, a third embodiment of the energy absorbing member for a bumper will be described with reference to FIG. A fiber bundle made by mixing glass fiber roving and high-strength polyethylene fiber (product name: Dyneema, manufactured by Toyobo Co., Ltd.) is used as a reinforcing fiber, and a mandrel is attached to the filament (fiber bundle) while resin is attached. A cylindrical energy absorbing member with a constant wall thickness was produced by a filament winding (FW) method in which the resin was wound on top and cured by heating. Epoxy resin is used as the resin, and the fiber bundle is wound approximately at right angles to the rotating shaft. When compressive load is applied from the side of each energy absorbing member manufactured under the same conditions except that the mixing ratio of polyethylene fiber and glass fiber is changed to 0%, approximately 5%, and approximately 10% by volume. Figure 3 shows the results of measuring the relationship between the load and the amount of displacement.

【0028】図3に示す各圧縮荷重−変位量曲線の圧縮
荷重がエネルギー吸収部材の圧縮変形時に発生する応力
に相当する。図3(a)に示すように、強化繊維として
ガラス繊維のみが使用されたエネルギー吸収部材では、
圧縮の初期段階で圧縮変形により発生する応力の変動が
激しく、しかも応力が突発的に激減する。これに対して
、強化繊維としてガラス繊維にポリエチレン繊維を混合
した場合には、圧縮変形により発生する応力の激しい変
動が減少し、ポリエチレン繊維の混合比率を約10%と
した場合には図3(c)に示すように応力の突発的な変
動はほとんど発生しなくなる。この理由は繊維の種類に
よって樹脂に対する接着効果が異なるため、接着効果の
低いレベルの繊維の界面に微細な剥離が容易に発生し、
変形時のエネルギーが充分に蓄積されないためと推定さ
れる。
The compressive loads in the respective compressive load-displacement curves shown in FIG. 3 correspond to the stress generated during compressive deformation of the energy absorbing member. As shown in Figure 3(a), in an energy absorbing member using only glass fiber as the reinforcing fiber,
At the initial stage of compression, the stress generated by compression deformation fluctuates rapidly, and the stress suddenly decreases dramatically. On the other hand, when polyethylene fibers are mixed with glass fibers as reinforcing fibers, the severe fluctuations in stress caused by compressive deformation are reduced, and when the mixing ratio of polyethylene fibers is approximately 10%, as shown in Figure 3 ( As shown in c), sudden fluctuations in stress almost no longer occur. The reason for this is that the adhesion effect to resin differs depending on the type of fiber, so minute peeling easily occurs at the interface of fibers with low adhesion effect.
It is presumed that this is because the energy during deformation is not sufficiently accumulated.

【0029】ポリエチレン繊維の混合比率を高めること
により荷重の変動が収まるが、ポリエチレン繊維の比率
をあまり高めると、荷重レベルそのものが低下して吸収
エネルギーも減少する傾向をもつため、混合比率をあま
り高めることは好ましくない。
[0029] Increasing the mixing ratio of polyethylene fibers suppresses load fluctuations, but if the ratio of polyethylene fibers is increased too much, the load level itself tends to decrease and the absorbed energy also tends to decrease, so it is not recommended to increase the mixing ratio too much. I don't like that.

【0030】(実施例4)次に第4実施例を図4、図5
に従って説明する。この実施例のエネルギー吸収部材1
は円環状の筒部が複数個組み合わされた構造となってい
る点が第1実施例のエネルギー吸収部材と大きく異なっ
ている。図4に示すようにエネルギー吸収部材1は同一
形状の2個の円筒部2が互いに当接する状態で平行に配
列され、その外側に楕円筒部3が両円筒部2に外接する
状態で一体に形成されている。又、両円筒部2及び楕円
筒部3はいずれも強化繊維にポリエステル繊維とガラス
繊維との混合繊維(容積比でポリエステル繊維が約10
%)が使用されている。
(Embodiment 4) Next, the fourth embodiment is shown in FIGS. 4 and 5.
Explain according to the following. Energy absorbing member 1 of this example
The energy absorbing member differs greatly from the energy absorbing member of the first embodiment in that it has a structure in which a plurality of annular cylindrical portions are combined. As shown in FIG. 4, the energy absorbing member 1 has two cylindrical parts 2 of the same shape arranged in parallel with each other in contact with each other, and an elliptical cylindrical part 3 outside of the cylindrical parts 2 is integrally connected with both cylindrical parts 2. It is formed. In addition, both the cylindrical portions 2 and the elliptical cylindrical portions 3 are reinforced with mixed fibers of polyester fibers and glass fibers (about 10% polyester fibers by volume).
%) is used.

【0031】エネルギー吸収部材1はまず円筒部2に相
当する円筒を、前記第3実施例と同様にしてFW法で作
製した後、2個の円筒を互いに当接する状態で平行に配
列し、その外周部にポリエステル繊維とガラス繊維との
混合繊維に樹脂を付着させながらFW方式で巻き付け、
樹脂を加熱硬化することにより作製される。
The energy absorbing member 1 is manufactured by first manufacturing a cylinder corresponding to the cylindrical portion 2 by the FW method in the same manner as in the third embodiment, and then arranging the two cylinders in parallel so as to abut each other. The resin is attached to the mixed fiber of polyester fiber and glass fiber around the outer periphery, and it is wrapped using the FW method.
Produced by heating and curing resin.

【0032】このエネルギー吸収部材1に対して、その
側面から圧縮荷重を作用させた場合の荷重と変位量との
関係を測定した結果を図5に示す。この場合荷重変動は
若干みられるが、エネルギー吸収部材の重量に対する吸
収エネルギーレベルはかなり高い。
FIG. 5 shows the results of measuring the relationship between load and displacement when a compressive load is applied to this energy absorbing member 1 from its side. In this case, although some load fluctuations are seen, the level of absorbed energy relative to the weight of the energy absorbing member is quite high.

【0033】(実施例5)次に第5実施例を図6に従っ
て説明する。この実施例ではエネルギー吸収部材1の構
造は前記第4実施例のものと同一に形成し、強化繊維に
ポリエチレン繊維とガラス繊維との混合繊維(容積比で
ポリエチレン繊維が約10%)を使用した点が第4実施
例と異なっている。このエネルギー吸収部材1に対して
、その側面から圧縮荷重を作用させた場合の荷重と変位
量との関係を測定した結果を図6に示す。この場合には
第1実施例におけるポリエチレン繊維が10%混合され
たものよりは若干荷重の変動はみられるが、ポリエチレ
ン繊維が5%混合されたものあるいはポリエステル繊維
を10%ガラス繊維と混合した前記第4実施例に比較し
て圧縮変形時における荷重の変動が大幅に減少した。 しかも互いに当接する2個の円筒部が圧縮と同時に強く
圧着されることによる破壊部位の増大に伴って荷重レベ
ルは高くなった。すなわち、単純な円筒状のエネルギー
吸収部材では荷重レベルが不充分となる程度にポリエチ
レン繊維の混合比率を高めたにもかかわらず、この実施
例のように複数の円筒部2と楕円筒部3とを組み合わせ
ることにより簡単に荷重レべルを充分高めることができ
る。従って、圧縮変形時における最大荷重に対する吸収
エネルギーを非常に大きくでき、エネルギー吸収部材の
重量当りの吸収エネルギーを充分に大きくとることがこ
とができる。又、材質が比重約2近辺のFRPであるた
め、金属のそれに比較してはるかに小さく、軽量化が図
れる。
(Embodiment 5) Next, a fifth embodiment will be explained with reference to FIG. In this example, the structure of the energy absorbing member 1 was the same as that of the fourth example, and a mixed fiber of polyethylene fiber and glass fiber (about 10% by volume polyethylene fiber) was used as the reinforcing fiber. This is different from the fourth embodiment in this point. FIG. 6 shows the results of measuring the relationship between load and displacement when a compressive load is applied to this energy absorbing member 1 from its side. In this case, there is a slight variation in the load compared to the case where 10% polyethylene fiber was mixed in the first example, but the load was slightly different from the case where 5% polyethylene fiber was mixed or the case where polyester fiber was mixed with 10% glass fiber. Compared to the fourth example, the variation in load during compressive deformation was significantly reduced. In addition, the load level increased as the number of fractured areas increased due to the two cylindrical portions in contact with each other being compressed and strongly crimped together. In other words, although the mixing ratio of polyethylene fibers has been increased to such an extent that a simple cylindrical energy absorbing member has an insufficient load level, it is possible to combine a plurality of cylindrical portions 2 and elliptical cylindrical portions 3 as in this example. By combining these, you can easily increase the load level sufficiently. Therefore, the absorbed energy with respect to the maximum load during compressive deformation can be made very large, and the absorbed energy per weight of the energy absorbing member can be made sufficiently large. Furthermore, since the material is FRP with a specific gravity of around 2, it is much smaller and lighter than metal.

【0034】なお、本発明は前記各実施例に限定される
ものではなく、例えば、強化繊維の種類を2種以上とし
たり、強化繊維としてインタレース法などにより相互の
フィラメントが繊維単位で交絡(混織)している交絡糸
状のものを使用したり、種類の異なる繊維ごとに層状に
配列する場合は、量の多い繊維層の間に少量繊維を細分
化して配列するのがよい。又、繊維を層状に配列する代
わりに複数種の繊維が面内に分散されるよう織製された
三次元織物にマトリックス樹脂を含浸・硬化させて形成
してもよい。又、素材のFRPを構成する樹脂はエポキ
シ樹脂に限らずフェノール樹脂、不飽和ポリエステルな
どの熱硬化性樹脂を使用してもよく、強化繊維としてガ
ラス繊維に代えてカーボン繊維、アラミド繊維等の高弾
性、高強度の物性をもった各種の機能繊維が用いられる
It should be noted that the present invention is not limited to the above-mentioned embodiments; for example, the number of reinforcing fibers may be two or more, or the reinforcing fibers may be interlaced (interlaced) in fiber units. When using interlaced threads (mixed weave) or arranging different types of fibers in layers, it is best to divide and arrange a small amount of fibers between the large fiber layers. Alternatively, instead of arranging the fibers in layers, a three-dimensional fabric woven so that a plurality of types of fibers are dispersed within the plane may be impregnated with a matrix resin and cured. In addition, the resin constituting the FRP material is not limited to epoxy resin, but thermosetting resins such as phenol resin and unsaturated polyester may also be used, and as reinforcing fibers, carbon fibers, aramid fibers, etc. can be used instead of glass fibers. Various functional fibers with physical properties such as elasticity and high strength are used.

【0035】又、エネルギー吸収部材1の筒部の断面形
状としては円形、楕円形に限らず曲率の異なる円弧の組
み合わせ等実質的に円環状であればよい。又、第4実施
例のように複数の円筒部を組み合わせた構造の場合、円
筒部の数を増やしたり円筒部の径を違えてもよい。又、
エネルギー吸収部材1の場合もエポキシ樹脂以外の樹脂
が使用され、ガラス繊維以外の各種の機能繊維が使用さ
れるが、バンパ部材の場合軽量化、耐熱性などの要求レ
ベルから強化繊維としてはコスト的にガラス繊維をその
主成分とするのが好ましい。
The cross-sectional shape of the cylindrical portion of the energy absorbing member 1 is not limited to circular or elliptical shapes, but may be substantially annular, such as a combination of circular arcs with different curvatures. Furthermore, in the case of a structure in which a plurality of cylindrical parts are combined as in the fourth embodiment, the number of cylindrical parts may be increased or the diameters of the cylindrical parts may be changed. or,
In the case of the energy absorbing member 1, resins other than epoxy resins are used, and various functional fibers other than glass fibers are used, but in the case of bumper members, reinforcing fibers are cost-effective due to the required level of weight reduction and heat resistance. Preferably, the main component thereof is glass fiber.

【0036】[0036]

【発明の効果】以上詳述したように請求項1に記載の発
明によれば、強化繊維の層間剥離が突発的に発生するこ
とがなく、複合材に最大許容応力を超える応力が発生し
た後も、各層間に徐々に起こる微小な剥離によって応力
を持ちこたえつつ変形し、外部荷重に対して金属に近い
ねばり強い挙動を示す複合材が得られる。又、破壊の際
のエネルギー吸収量が大きいため衝撃荷重に対しても破
壊が急激に進行することなく、継続使用が可能で補修ま
での時間が稼げる。さらに、破壊した後も破断した繊維
の突起(トゲ)が露出せず、自動車のボディ、ガードレ
ール等に使用した場合、衝突時における人体への被害を
最小限に止めることができる。
[Effects of the Invention] As detailed above, according to the invention described in claim 1, delamination of reinforcing fibers does not occur suddenly, and even after stress exceeding the maximum allowable stress is generated in the composite material. The result is a composite material that deforms while withstanding stress due to minute peeling that gradually occurs between each layer, and exhibits tough behavior similar to that of metal against external loads. In addition, since the amount of energy absorbed during breakage is large, the breakage does not progress rapidly even under impact loads, allowing continued use and increasing the time required for repair. Furthermore, even after destruction, the protrusions (thorns) of the broken fibers are not exposed, and when used for car bodies, guardrails, etc., damage to the human body in the event of a collision can be minimized.

【0037】又、請求項2に記載の発明によれば、エネ
ルギー吸収部材が断面円環状に形成されてその側面から
圧縮荷重を受ける状態で使用されるため、斜め方向から
の荷重に対しても高い衝撃吸収能力を持つ。又、圧縮変
形時における応力変動が1種類の繊維を強化繊維として
使用した場合に比較して著しく減少し、エネルギー吸収
が安定して行われる。従って、自動車の衝突時に人体に
与える衝撃を緩和でき、しかも大きなエネルギーを吸収
することができる。
Furthermore, according to the invention as set forth in claim 2, the energy absorbing member is formed to have an annular cross section and is used while receiving a compressive load from the side surface thereof. Has high shock absorption ability. Furthermore, stress fluctuations during compressive deformation are significantly reduced compared to when one type of fiber is used as reinforcing fibers, and energy absorption is performed stably. Therefore, it is possible to reduce the impact on the human body when a car collides, and also absorb a large amount of energy.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】第1実施例の板状積層複合材の剪断変形挙動を
示す図である。
FIG. 1 is a diagram showing the shear deformation behavior of a plate-like laminated composite material of a first example.

【図2】第2実施例の板状積層複合材の剪断変形挙動を
示す図である。
FIG. 2 is a diagram showing the shear deformation behavior of the plate-like laminated composite material of the second example.

【図3】第3実施例における強化繊維を構成するポリエ
チレン繊維とガラス繊維との混合比率を変えて作製した
各エネルギー吸収部材の圧縮荷重−変位量曲線を示す図
である。
FIG. 3 is a diagram showing compressive load-displacement curves of energy absorbing members manufactured by changing the mixing ratio of polyethylene fibers and glass fibers constituting reinforcing fibers in the third example.

【図4】第4実施例のエネルギー吸収部材の概略斜視図
である。
FIG. 4 is a schematic perspective view of an energy absorbing member according to a fourth embodiment.

【図5】同じくエネルギー吸収部材の圧縮荷重−変位量
曲線を示す図である。
FIG. 5 is a diagram showing a compressive load-displacement curve of the energy absorbing member.

【図6】第5実施例のエネルギー吸収部材の圧縮荷重−
変位量曲線を示す図である。
[Fig. 6] Compressive load of the energy absorbing member of the fifth embodiment -
It is a figure showing a displacement amount curve.

【図7】ガラスフィラメントを強化繊維とした積層複合
材の荷重−変位量曲線を示す図である。
FIG. 7 is a diagram showing a load-displacement curve of a laminated composite material using glass filaments as reinforcing fibers.

【図8】カーボンフィラメントを強化繊維とした積層複
合材の荷重−変位量曲線を示す図である。
FIG. 8 is a diagram showing a load-displacement curve of a laminated composite material using carbon filaments as reinforcing fibers.

【図9】従来のバンパ支持部材によるバンパ支持状態を
示す概略平面図である。
FIG. 9 is a schematic plan view showing a state in which a bumper is supported by a conventional bumper support member.

【図10】従来のエネルギー吸収用構造材を示す概略斜
視図である。
FIG. 10 is a schematic perspective view showing a conventional energy absorbing structural member.

【図11】従来のバンパ支持部材の圧縮荷重−変位量曲
線である。
FIG. 11 is a compressive load-displacement curve of a conventional bumper support member.

【符号の説明】[Explanation of symbols]

1…エネルギー吸収部材、2…円筒部、3…楕円筒部。 DESCRIPTION OF SYMBOLS 1... Energy absorption member, 2... Cylindrical part, 3... Oval cylindrical part.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  マトリックス内に積層状態で配列する
繊維素材として少なくとも2種の繊維を使用し、それら
の繊維を混在する状態で配列した繊維強化複合材料。
1. A fiber-reinforced composite material in which at least two types of fibers are used as fiber materials arranged in a layered state in a matrix, and these fibers are arranged in a mixed state.
【請求項2】  断面円環状をなすようにフィラメント
が周方向に巻き付けられるとともに樹脂で硬化された繊
維強化複合材料で筒状に形成され、前記フィラメントと
して少なくとも2種の繊維が混在しているバンパ用エネ
ルギー吸収部材。
2. A bumper in which a filament is wound in the circumferential direction so as to have an annular cross section and is formed into a cylindrical shape of a fiber-reinforced composite material cured with a resin, in which at least two types of fibers are mixed as the filament. Energy absorbing member for use.
JP30805791A 1991-04-08 1991-11-22 Fiber reinforced composite material and energy absorbing member Expired - Lifetime JP3544994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30805791A JP3544994B2 (en) 1991-04-08 1991-11-22 Fiber reinforced composite material and energy absorbing member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7536391 1991-04-08
JP3-75363 1991-04-08
JP30805791A JP3544994B2 (en) 1991-04-08 1991-11-22 Fiber reinforced composite material and energy absorbing member

Publications (2)

Publication Number Publication Date
JPH04372436A true JPH04372436A (en) 1992-12-25
JP3544994B2 JP3544994B2 (en) 2004-07-21

Family

ID=32852503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30805791A Expired - Lifetime JP3544994B2 (en) 1991-04-08 1991-11-22 Fiber reinforced composite material and energy absorbing member

Country Status (1)

Country Link
JP (1) JP3544994B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023706A (en) * 2008-07-22 2010-02-04 Toyota Motor Corp Vehicle body structure
WO2011033150A1 (en) * 2009-09-15 2011-03-24 Universidad De Alicante Device for absorbing energy from motor vehicle collisions
CN105235617A (en) * 2015-09-29 2016-01-13 中国汽车工程研究院股份有限公司 Aluminum alloy crash box for automobile
CN113335210A (en) * 2021-06-30 2021-09-03 新程汽车工业有限公司 Novel thermoforming car door anticollision board

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106081356B (en) * 2016-05-31 2018-08-31 中国空间技术研究院 A kind of cellular cushion device and design method improving energy absorbing efficiency

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023706A (en) * 2008-07-22 2010-02-04 Toyota Motor Corp Vehicle body structure
WO2011033150A1 (en) * 2009-09-15 2011-03-24 Universidad De Alicante Device for absorbing energy from motor vehicle collisions
ES2369465A1 (en) * 2009-09-15 2011-12-01 Universidad De Alicante Device for absorbing energy from motor vehicle collisions
CN105235617A (en) * 2015-09-29 2016-01-13 中国汽车工程研究院股份有限公司 Aluminum alloy crash box for automobile
CN113335210A (en) * 2021-06-30 2021-09-03 新程汽车工业有限公司 Novel thermoforming car door anticollision board
CN113335210B (en) * 2021-06-30 2024-02-23 新程汽车工业有限公司 Novel thermoforming door anticollision board

Also Published As

Publication number Publication date
JP3544994B2 (en) 2004-07-21

Similar Documents

Publication Publication Date Title
US5419416A (en) Energy absorber having a fiber-reinforced composite structure
US6830286B2 (en) Fiber composite crash structure
US4732803A (en) Light weight armor
US8376275B2 (en) Energy absorbing structure for aircraft
US3449199A (en) Helical reinforced materials and method of making same
EP2913625B1 (en) Walking floor for an armored vehicle, armored vehicle having such a walking floor, and method for producing such a walking floor
DE102014217033B4 (en) impact cushion
US4742899A (en) Fiber reinforced tubular component
US8828513B2 (en) Energy absorbing stitch ripping composite tubes containing collapsible cells
EP1357016B1 (en) Side member for use in vehicle frame and method of manufacturing the same
EP3445640B1 (en) Structural element
JPH04372436A (en) Fiber-reinforced composite material and energy absorbing member for bumper
JPS60109630A (en) Energy absorbing tool
JPS6217438A (en) Compression energy absorbing member
US5866215A (en) Composite components having felt reinforcement and method for the manufacture thereof
JP7428651B2 (en) Components for absorbing impact forces
JP3007744B2 (en) Energy absorbing material
JP2892854B2 (en) Energy absorbing material
JP2931119B2 (en) Energy absorbing member
JP2004324814A (en) Impact absorbing compound material structure, manufacturing method thereof, and travelling body or sailing body using the same
JP2552450Y2 (en) Energy absorbing material
JPH05332385A (en) Energy absorbing member
JP2975443B2 (en) Energy absorbing member
GB2477882A (en) Energy absorbing structure for an aircraft
JP3183464B2 (en) Energy absorbing member

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8