JP2010023706A - Vehicle body structure - Google Patents

Vehicle body structure Download PDF

Info

Publication number
JP2010023706A
JP2010023706A JP2008188443A JP2008188443A JP2010023706A JP 2010023706 A JP2010023706 A JP 2010023706A JP 2008188443 A JP2008188443 A JP 2008188443A JP 2008188443 A JP2008188443 A JP 2008188443A JP 2010023706 A JP2010023706 A JP 2010023706A
Authority
JP
Japan
Prior art keywords
vehicle body
body skeleton
impact energy
vehicle
skeleton part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008188443A
Other languages
Japanese (ja)
Inventor
Yasushi Kageyama
裕史 影山
Shinya Kawamura
信也 河村
Tetsuya Oda
哲也 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008188443A priority Critical patent/JP2010023706A/en
Publication of JP2010023706A publication Critical patent/JP2010023706A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicle body structure having improved protection effect for an occupant when impact energy is applied to a vehicle body. <P>SOLUTION: The vehicle body structure 100 includes a vehicle body skeleton part 2 and a cabin part 8 formed independently from the vehicle body skeleton part 2. The vehicle body skeleton part 2 is formed by a fiber reinforcing composite material and includes an elliptical shape having a minor axis in the vehicle width direction. In the inside of the vehicle body skeleton part 2, reinforcing members 4a-4d and support members 10a, 10b are jointed with a predetermined tension. The cabin part 8 is supported on the vehicle body skeleton part 2 by the support members 10a, 10b. When the impact energy is applied to the vehicle body, the impact is dispersed to whole of the elliptical shaped vehicle body skeleton part and the whole of the elliptical shaped vehicle body skeleton part is deformed. The impact energy is absorbed by the whole part of the elliptical shaped vehicle body skeleton part. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、車体構造に関する。   The present invention relates to a vehicle body structure.

車体に衝撃エネルギーが加えられたときの乗員の保護効果を高める車体構造が種々に開発されている。   Various vehicle body structures have been developed that enhance the occupant's protective effect when impact energy is applied to the vehicle body.

特許文献1に、車体に衝撃エネルギーが加えられたときに乗員に伝わる衝撃エネルギーを緩和する車体構造が開示されている。この技術では、乗員が乗車する車室部を、車体の下部を構成する車体骨格部から独立して形成し、車室部を車体骨格部に対して相対移動可能にすることにより、車体に衝撃エネルギーが加えられたときに乗員に伝わる衝撃エネルギーを緩和する。   Patent Document 1 discloses a vehicle body structure that alleviates impact energy transmitted to an occupant when impact energy is applied to the vehicle body. In this technology, the passenger compartment is formed independently of the vehicle body skeleton that forms the lower part of the vehicle body, and the vehicle compartment is made movable relative to the vehicle body skeleton, thereby impacting the vehicle body. Mitigates impact energy transmitted to passengers when energy is applied.

特開2004−338421号公報JP 2004-338421 A

しかしながら特許文献1に記載の車体構造は、車体に衝撃エネルギーが加えられた場合に、衝撃エネルギーが加えられた近傍の車体骨格部が局所的に変形することによって衝撃エネルギーを吸収する方式であるために、衝撃エネルギーが過大な場合には、車体骨格部が局所的に大きく変形する。   However, since the vehicle body structure described in Patent Document 1 is a system that absorbs impact energy by locally deforming a vehicle body skeleton portion to which the impact energy is applied when impact energy is applied to the vehicle body. In addition, when the impact energy is excessive, the vehicle body skeleton is greatly deformed locally.

本発明は、車体に衝撃エネルギーが加えられた場合に、車体が局所的に大きく変形することを防止し、乗員の保護効果をさらに高めた車体構造を提供することを目的とする。
本発明は、衝撃エネルギーが加えられた近傍の車体骨格部のみならず、車体骨格部の全体が変形することによって衝撃エネルギーを吸収する。車体骨格部の全体が変形することによって、車体が局所的に大きく変形する現象が生じないようにする。安全に衝撃エネルギーを吸収する車体構造を提供する。
An object of the present invention is to provide a vehicle body structure that prevents the vehicle body from being greatly deformed locally when impact energy is applied to the vehicle body and further enhances the occupant protection effect.
The present invention absorbs impact energy by deforming not only the vehicle body skeleton in the vicinity where the impact energy is applied, but also the entire vehicle body skeleton. The entire body skeleton is deformed so that the phenomenon that the body is largely deformed locally does not occur. A vehicle body structure that safely absorbs impact energy is provided.

本発明は、車体の下部を構成する車体骨格部と、車体骨格部と独立して形成されている車室部を備えている車体構造に関する。
本発明の車体構造では、車体骨格部が繊維強化複合材料で形成されているとともに車幅方向を短軸とする楕円形状である。
The present invention relates to a vehicle body structure including a vehicle body skeleton portion that forms a lower portion of a vehicle body, and a vehicle compartment portion that is formed independently of the vehicle body skeleton portion.
In the vehicle body structure of the present invention, the vehicle body skeleton is formed of a fiber-reinforced composite material and has an elliptical shape with the vehicle width direction as the short axis.

繊維強化複合材料(以下、FRP(Fiber Reinforced Plastics)と記載する)は、例えばガラス繊維等の強化繊維に流動性樹脂を含浸して硬化することによって成形される材料である。車体骨格部を楕円形状のFRPで形成すると、車体骨格部にばね特性を持たせることができる。すなわち、車体骨格部を楕円形状のFRPで形成すると、車体骨格部に衝撃エネルギーが加わったときに、その衝撃エネルギーが楕円形状のFRPの全体を変形させることに費やされる。楕円形状のFRPの全体が変形することによって楕円形状のFRPの全体で衝撃エネルギーを吸収する。車体の一部を局所的に変形させて衝撃エネルギーを吸収する従来の技術に比して、より安全に衝撃エネルギーを吸収することが可能となる。   A fiber reinforced composite material (hereinafter referred to as FRP (Fiber Reinforced Plastics)) is a material formed by impregnating and hardening a reinforced fiber such as glass fiber with a fluid resin. When the vehicle body skeleton is formed of an elliptical FRP, the vehicle body skeleton can have spring characteristics. That is, when the vehicle body skeleton part is formed of an elliptical FRP, when impact energy is applied to the vehicle body skeleton part, the impact energy is consumed to deform the entire elliptical FRP. When the entire elliptical FRP is deformed, the entire elliptical FRP absorbs impact energy. It is possible to absorb the impact energy more safely than the conventional technique in which a part of the vehicle body is locally deformed to absorb the impact energy.

例えば車体の前面から衝撃エネルギーが加えられた場合には、楕円形状の車体骨格部の前面側のみならず、車体骨格部の両側面部と後面部でも変形して衝撃エネルギーを吸収する。すなわち、楕円形状のFRPのばね特性によって、楕円形状のFRPの全体が車幅方向へ広がるように変形し、衝撃エネルギーを吸収する。
車体の側面から衝撃エネルギーが加えられた場合には、楕円形状の車体骨格部の側面側のみならず、車体骨格部の前面側、後面側、ならびに衝撃エネルギーを受けていない側面側でも変形して衝撃エネルギーを吸収する。すなわち、楕円形状のFRPのばね特性によって、楕円形状のFRPの全体が車長方向へ広がるように変形し、衝撃エネルギーを吸収する。
いずれの方向からの衝撃に対しても楕円形状のFRPの全体が変形して衝撃エネルギーを吸収する。衝撃箇所の近傍が局所的に変形して衝撃エネルギーを吸収する場合に比して車体構成部材の変形量の最大量を小さく抑えることができる。
また、車室部は車体骨格部と独立して形成されているため、衝撃によって車体骨格部が変形しても車室部は影響を受けにくい。本発明の車体構造によると、車体に加わった衝撃エネルギーを楕円形状のFRPの全体に分散して吸収することができる。車体に衝撃エネルギーが加わったときの乗員の保護効果をさらに高めることができる。
For example, when impact energy is applied from the front surface of the vehicle body, the impact energy is absorbed by deformation not only on the front surface side of the elliptical vehicle body skeleton portion but also on both side surfaces and the rear surface portion of the vehicle body skeleton portion. That is, due to the spring characteristics of the elliptical FRP, the entire elliptical FRP is deformed so as to spread in the vehicle width direction and absorbs impact energy.
When impact energy is applied from the side of the car body, it deforms not only on the side of the oval car body skeleton but also on the front and rear sides of the car body skeleton and the side that is not receiving impact energy. Absorbs impact energy. That is, due to the spring characteristics of the elliptical FRP, the entire elliptical FRP is deformed so as to spread in the vehicle length direction and absorbs impact energy.
In response to an impact from any direction, the entire elliptical FRP is deformed to absorb the impact energy. The maximum amount of deformation of the vehicle body constituent member can be reduced as compared with the case where the vicinity of the impact location is locally deformed to absorb impact energy.
In addition, since the vehicle compartment is formed independently of the vehicle body skeleton, the vehicle compartment is not easily affected even if the vehicle skeleton is deformed by an impact. According to the vehicle body structure of the present invention, the impact energy applied to the vehicle body can be dispersed and absorbed throughout the elliptical FRP. A passenger's protective effect when impact energy is applied to the vehicle body can be further enhanced.

楕円形状の周方向に伸びる繊維束を樹脂で固めたFRPで車体骨格部を形成することが好ましい。
この場合、車体に加わった衝撃エネルギーを楕円形状のFRPの全体に分散して吸収することができる。さらに、平行に伸びる繊維と繊維の間にせん断力を作用させ、周方向に走るクラックを発生させることによって衝撃エネルギーを吸収することができる。極めて安全に衝撃エネルギーを吸収することができる。
It is preferable that the vehicle body skeleton is formed of FRP in which an elliptical fiber bundle extending in the circumferential direction is solidified with resin.
In this case, the impact energy applied to the vehicle body can be dispersed and absorbed throughout the elliptical FRP. Further, impact energy can be absorbed by applying a shearing force between the fibers extending in parallel and generating cracks running in the circumferential direction. Impact energy can be absorbed very safely.

強化繊維で形成されている補強部材をさらに備えていることが好ましい。この場合、補強部材の両端が、楕円形状の前記車体骨格部に所定の張力をもって接合されている。
ここでいう所定の張力は、補強部材に撓みが生じない程度の張力をいう。補強部材は、車幅方向に接合されていてもよいし、車長方向に接合されていてもよいし、両方向に接合されていてもよい。補強部材は複数本形成されていてもよい。補強部材は、強化繊維の束がロープ状に編みこまれたものであってもよいし、強化繊維の束が樹脂で固められたものであってもよい。
It is preferable to further include a reinforcing member formed of reinforcing fibers. In this case, both ends of the reinforcing member are joined to the oval body frame with a predetermined tension.
The predetermined tension here refers to a tension that does not cause the reinforcing member to bend. The reinforcing member may be joined in the vehicle width direction, may be joined in the vehicle length direction, or may be joined in both directions. A plurality of reinforcing members may be formed. The reinforcing member may be one in which a bundle of reinforcing fibers is knitted in a rope shape, or may be one in which a bundle of reinforcing fibers is hardened with a resin.

車幅方向に補強部材が接合されていると、車体骨格部が車幅方向に広がるように変形するときに、補強部材に強い張力が作用する。このとき補強部材の一部が破断することによって衝撃エネルギーが吸収される。
車長方向に補強部材が接合されていると、車体骨格部が車長方向に広がるように変形するときに、補強部材に強い張力が作用する。このとき補強部材の一部が破断することによって衝撃エネルギーが吸収される。
補強部材を付加することによって、エネルギー吸収特性を調整することができる。
When the reinforcing member is joined in the vehicle width direction, a strong tension acts on the reinforcing member when the vehicle body skeleton is deformed so as to expand in the vehicle width direction. At this time, a part of the reinforcing member is broken to absorb the impact energy.
When the reinforcing member is joined in the vehicle length direction, strong tension acts on the reinforcing member when the vehicle body skeleton is deformed so as to spread in the vehicle length direction. At this time, a part of the reinforcing member is broken to absorb the impact energy.
Energy absorption characteristics can be adjusted by adding a reinforcing member.

強化繊維で形成されている支持部材をさらに備えていることも好ましい。この場合、その支持部材の両端が楕円形状の車体骨格部に接合されており、支持部材の張力によって、車室部を車体骨格部に支持する。
支持部材の張力は、支持部材に撓みが生じない程度の張力であればよい。支持部材は複数本形成されていてもよい。支持部材は、強化繊維の束がロープ状に編みこまれていてもよいし、強化繊維の束が樹脂で固められたものであってもよい。
It is also preferable to further include a support member formed of reinforcing fibers. In this case, both ends of the support member are joined to the elliptical vehicle body skeleton, and the vehicle compartment is supported on the vehicle skeleton by the tension of the support member.
The tension | tensile_strength of a support member should just be a tension | tensile_strength of the grade which a support member does not produce. A plurality of support members may be formed. The support member may be a bundle of reinforcing fibers knitted in a rope shape, or a bundle of reinforcing fibers hardened with a resin.

車体が急停止する場合、車室部に対して慣性力が働くため、車体骨格部の停止後も車室部は移動し続けようとする。上記の車体構造によると、衝撃エネルギーによって車体骨格部が車幅方向に広がるように変形するときに、支持部材の両端が強い張力で引き付けられる。その結果、衝撃によって車室部が車体骨格部から離れてしまうことがない。   When the vehicle body suddenly stops, an inertial force acts on the vehicle compartment, so that the vehicle compartment continues to move even after the vehicle body skeleton stops. According to the above vehicle body structure, both ends of the support member are attracted with a strong tension when the vehicle body skeleton is deformed so as to expand in the vehicle width direction by impact energy. As a result, the vehicle compartment is not separated from the vehicle body skeleton by impact.

本発明によると、車体に衝撃エネルギーが加えられたときに車体骨格部の全体で衝撃エネルギーを吸収し、乗員の保護効果が極めて高い車体構造を提供することができる。   According to the present invention, when impact energy is applied to the vehicle body, the vehicle body skeleton can absorb the impact energy as a whole and provide a vehicle body structure with a very high occupant protection effect.

下記に説明する実施例の好ましい特徴を列記する。
(第1特徴) 車体の両側面における車体骨格部の上下間の幅が、車体の前面および後面における車体骨格部の上下間の幅よりも小さい幅で形成されている。
(第2特徴) 車体骨格部の周方向に伸びる強化繊維が連続配向されて車体骨格部が形成されている。
(第3特徴) 補強部材および支持部材の材料としてアラミド繊維を用いる。
(第4特徴) 車室部の材料としてポリカーボネートを用いる。
Preferred features of the embodiments described below are listed.
(First Feature) The width between the upper and lower sides of the vehicle body frame portion on both side surfaces of the vehicle body is smaller than the width between the upper and lower sides of the vehicle body frame portion on the front surface and the rear surface of the vehicle body.
(Second feature) Reinforcing fibers extending in the circumferential direction of the body skeleton are continuously oriented to form the body skeleton.
(3rd characteristic) Aramid fiber is used as a material of a reinforcement member and a supporting member.
(Fourth feature) Polycarbonate is used as a material for the passenger compartment.

(第1実施例)
図1に、本発明の第1実施例である車体構造100の模式的な斜視図を示す。
車体構造100は、車体の下部を構成する車体骨格部2を備えている。車体骨格部2はFRPを材料として形成されている。車体骨格部2は、車幅方向を短軸とする楕円形状に形成されている。車体骨格部2には、補強部材4a〜4dが接合されている。車長方向には1本の補強部材4aが接合されている。車幅方向には3本の補強部材4b〜4dが接合されている。車体骨格部2には、支持部材10a、10bが接合されている。支持部材10aは、車室部8の後部上方を経由している。支持部材10aの両端は、車体骨格部2に接合されている。支持部材10aの両端は、車体骨格部2に接合されている。支持部材10bは、車室部8の前方を経由している。支持部材10bの両端は、車体骨格部2に接合されている。車室部8は、支持部材10a、10bの張力によって車体骨格部2に支持されている。図示6a〜6dは、車体骨格部2に搭載される車輪を示す。車体構造100は、車体骨格部2と独立して形成されている車室部8を備えている。なお明瞭化のため、車輪6a〜6dおよび車室部8は透明視して図示している。車室部8は乗員が乗降することができる空間を備えている。車室部8の底面は補強部材4a〜4dによって支持されている。なお本実施例では車室部8の形状が卵型であるが、箱型等であってもよい。
(First embodiment)
FIG. 1 shows a schematic perspective view of a vehicle body structure 100 according to a first embodiment of the present invention.
The vehicle body structure 100 includes a vehicle body skeleton portion 2 that constitutes a lower portion of the vehicle body. The vehicle body skeleton 2 is made of FRP. The vehicle body skeleton 2 is formed in an elliptical shape with the vehicle width direction as the short axis. Reinforcing members 4 a to 4 d are joined to the vehicle body skeleton portion 2. One reinforcing member 4a is joined in the vehicle length direction. Three reinforcing members 4b to 4d are joined in the vehicle width direction. Support members 10 a and 10 b are joined to the vehicle body skeleton part 2. The support member 10 a passes through the upper rear part of the vehicle compartment 8. Both ends of the support member 10 a are joined to the vehicle body skeleton part 2. Both ends of the support member 10 a are joined to the vehicle body skeleton part 2. The support member 10 b passes through the front of the passenger compartment 8. Both ends of the support member 10 b are joined to the vehicle body skeleton part 2. The vehicle compartment portion 8 is supported by the vehicle body skeleton portion 2 by the tension of the support members 10a and 10b. 6 a to 6 d shown in the figure show wheels mounted on the vehicle body skeleton part 2. The vehicle body structure 100 includes a vehicle compartment portion 8 that is formed independently of the vehicle body skeleton portion 2. For the sake of clarity, the wheels 6a to 6d and the passenger compartment 8 are shown transparently. The vehicle compartment 8 has a space where passengers can get on and off. The bottom surface of the passenger compartment 8 is supported by the reinforcing members 4a to 4d. In this embodiment, the shape of the passenger compartment 8 is an egg shape, but may be a box shape or the like.

車体骨格部2は、例えばフィラメントワインディング工法によって製造することができる。具体的には、長尺の炭素繊維、あるいは長尺のガラス繊維を、楕円形状の型に巻き取る。次に、巻き取った強化繊維の間に流動性を有する熱硬化性樹脂を含浸した後、熱硬化する。熱硬化性樹脂にはエポキシ樹脂等を用いることができる。次に、樹脂で硬化させた強化繊維を楕円形状の型から抜き取ることによって、楕円形状の車体骨格部2を形成することができる。   The vehicle body skeleton part 2 can be manufactured by, for example, a filament winding method. Specifically, a long carbon fiber or a long glass fiber is wound around an elliptical mold. Next, after the impregnated reinforcing fiber is impregnated with a thermosetting resin having fluidity, it is thermoset. An epoxy resin or the like can be used as the thermosetting resin. Next, the oval body skeleton 2 can be formed by extracting the reinforcing fiber cured with the resin from the oval mold.

補強部材4a〜4d、支持部材10a、10bの材料には、炭素繊維、アラミド繊維等を用いることができる。ロープ状に撚ったものでもよいし、熱硬化性樹脂等で硬化することによって強度を向上させてもよい。
車室部8の材料には、鉄、アルミ等を用いることができるが、車体の軽量化を図るべくCFRP(Carbon Fiber Reinforced Plastics)等の材料を用いることが好ましい。
Carbon fiber, aramid fiber, etc. can be used for the material of the reinforcing members 4a to 4d and the supporting members 10a and 10b. It may be twisted in a rope shape, or may be improved in strength by curing with a thermosetting resin or the like.
Iron, aluminum, or the like can be used as the material of the compartment 8, but a material such as CFRP (Carbon Fiber Reinforced Plastics) is preferably used to reduce the weight of the vehicle body.

車体構造100によると、車体の前面から衝撃エネルギーが加えられた場合には、車体骨格部2の前面から車体骨格部2の全体に衝撃エネルギーが伝播し、車幅方向へ広がるように車体骨格部2が変形する。このとき補強部材4b〜4dの一部が破断することによって衝撃エネルギーが吸収され、車室部8に加わる衝撃エネルギーが緩和される。車体の側面に衝撃エネルギーが加えられた場合にも、車体骨格部2の全体に衝撃エネルギーが伝播し、車長方向へ広がるように車体骨格部2が変形する。このとき補強部材4aの一部が破断することによって衝撃エネルギーが吸収され、車室部8に加わる衝撃エネルギーが緩和される。なお車体構造100では、通常走行中は、車体骨格部2のばね特性が働かないため、安定して走行することができる。さらに車体構造100では、FRPを車体骨格部2の材料とすることによって、車体の軽量化を図ることができ、軽量相当分の衝撃エネルギーを減少させることができる。   According to the vehicle body structure 100, when impact energy is applied from the front surface of the vehicle body, the impact energy propagates from the front surface of the vehicle body skeleton portion 2 to the entire vehicle body skeleton portion 2, and spreads in the vehicle width direction. 2 is deformed. At this time, a part of the reinforcing members 4b to 4d is broken, so that the impact energy is absorbed and the impact energy applied to the passenger compartment 8 is alleviated. Even when impact energy is applied to the side surface of the vehicle body, the impact energy is propagated to the entire vehicle body skeleton portion 2, and the vehicle body skeleton portion 2 is deformed so as to spread in the vehicle length direction. At this time, when a part of the reinforcing member 4a is broken, the impact energy is absorbed, and the impact energy applied to the passenger compartment 8 is alleviated. The vehicle body structure 100 can travel stably during normal traveling because the spring characteristics of the vehicle body skeleton 2 do not work. Furthermore, in the vehicle body structure 100, by using FRP as the material of the vehicle body skeleton part 2, the vehicle body can be reduced in weight, and the impact energy corresponding to the light weight can be reduced.

図2に、車体構造100の模式的な上面図を示す。車体の前面に衝撃エネルギーが加えられた場合、図示A方向の向きで車体骨格部2に衝撃エネルギーが加わる。車体骨格部2に加わった衝撃エネルギーは、車体骨格部2の全体に伝播し、車幅方向へ広がる方向(図示B方向)に車体骨格部2が変形する。衝撃エネルギーが加えられた近傍の車体骨格部2が局所的に変形することがない。
車体の側方に衝撃エネルギーが加えられた場合、車体骨格部2に加わった衝撃エネルギーは、車体骨格部2の全体に伝播し、車長方向へ広がる方向に車体骨格部2が変形する。衝撃エネルギーが加えられた近傍の車体骨格部2が局所的に変形することがない。
FIG. 2 shows a schematic top view of the vehicle body structure 100. When impact energy is applied to the front surface of the vehicle body, the impact energy is applied to the vehicle body skeleton portion 2 in the direction of A in the figure. The impact energy applied to the vehicle body skeleton part 2 propagates throughout the vehicle body skeleton part 2, and the vehicle body skeleton part 2 is deformed in a direction (B direction in the drawing) extending in the vehicle width direction. There is no local deformation of the vehicle body skeleton portion 2 to which the impact energy is applied.
When impact energy is applied to the side of the vehicle body, the impact energy applied to the vehicle body skeleton portion 2 is propagated throughout the vehicle body skeleton portion 2, and the vehicle body skeleton portion 2 is deformed in a direction spreading in the vehicle length direction. There is no local deformation of the vehicle body skeleton portion 2 to which the impact energy is applied.

図3に、車体構造100の模式的な側面図を示す。走行中の車体骨格部2に対して図示A方向の向きの衝撃エネルギーが加わって車体が停止すると、停止後も車室部8は慣性力によって図示C方向の向きに移動しようとする。一方、衝撃エネルギーによって車体骨格部2が車幅方向へ広がるように変形すると、支持部材10a、10bの両端が強い張力で引き付けられる。このとき支持部材10bによって、車室部8の前方が走行中よりも強い力で支持されるため、車室部8が図示C方向に移動しようとする力が抑制される。さらに、衝撃エネルギーによって車室部8が上方へ移動する方向に力が加わった場合でも、車室部8の上方を支持している支持部材10aが強い張力で引き付けられることによって、車室部8が上方へ移動しようとする力が抑制される。そのため、衝撃エネルギーによって車室部8が車体骨格部2から離れてしまうことがない。   FIG. 3 shows a schematic side view of the vehicle body structure 100. When impact energy in the direction of A in the figure is applied to the traveling vehicle body skeleton part 2 and the vehicle body stops, the vehicle compartment part 8 tries to move in the direction of C direction in the figure by inertial force even after stopping. On the other hand, when the vehicle body skeleton part 2 is deformed so as to spread in the vehicle width direction by impact energy, both ends of the support members 10a and 10b are attracted with a strong tension. At this time, the support member 10b supports the front of the compartment portion 8 with a stronger force than when traveling, so that the force that the compartment portion 8 tries to move in the direction C is suppressed. Further, even when force is applied in the direction in which the vehicle compartment 8 moves upward due to impact energy, the support member 10a supporting the upper portion of the vehicle compartment 8 is attracted with a strong tension, so that the vehicle compartment 8 The force to move upward is suppressed. For this reason, the vehicle compartment portion 8 is not separated from the vehicle body skeleton portion 2 by impact energy.

また図3に示すように、車体の両側面における車体骨格部2の上下間の幅W2を、車体の前面および後面における車体骨格部2の上下間の幅W1、W3よりも小さい幅で形成することが好ましい。車体の両側面における車体骨格部2の上下間の幅が小さい幅で形成されていると、乗員が車室部8へ容易に乗降することができる。   Further, as shown in FIG. 3, the width W2 between the upper and lower sides of the vehicle body skeleton part 2 on both side surfaces of the vehicle body is formed to be smaller than the widths W1 and W3 between the upper and lower sides of the vehicle body skeleton part 2 on the front and rear surfaces of the vehicle body. It is preferable. If the width between the upper and lower sides of the vehicle body skeleton part 2 on both side surfaces of the vehicle body is formed with a small width, the passenger can easily get on and off the vehicle compartment part 8.

図4に、車体骨格部2の簡略図を示す。車体骨格部2では過度な衝撃エネルギーを受けたときにクラック12が発生することがある。クラック12が発生することによって衝撃エネルギーが吸収される。FRPは金属等のように均一な材料ではないため、脆性破壊を生じる。車体骨格部2に加わる衝撃は厚み方向の中立軸で最大となる。従って、図4に示すように、車体骨格部2の厚みW4の中立軸に沿ってクラック12が発生し、車体骨格部2の周方向Dに沿ってクラック12が進行する。クラック12は周方向Dに伸びる繊維と繊維の間に生じるせん断力によって発生する。過度な衝撃エネルギーを受けた場合でも、車体骨格部2の周方向Dに沿って発生するクラック12によって衝撃エネルギーが吸収されるために、車室部8は衝撃エネルギーの影響を受けにくい。   FIG. 4 shows a simplified diagram of the vehicle body skeleton part 2. The vehicle body skeleton part 2 may generate cracks 12 when it receives excessive impact energy. The impact energy is absorbed by the occurrence of the crack 12. Since FRP is not a uniform material such as metal, it causes brittle fracture. The impact applied to the vehicle body skeleton part 2 becomes maximum at the neutral axis in the thickness direction. Therefore, as shown in FIG. 4, the crack 12 is generated along the neutral axis of the thickness W <b> 4 of the vehicle body skeleton portion 2, and the crack 12 advances along the circumferential direction D of the vehicle body skeleton portion 2. The crack 12 is generated by a shearing force generated between fibers extending in the circumferential direction D. Even when excessive impact energy is received, the impact energy is absorbed by the crack 12 generated along the circumferential direction D of the vehicle body skeleton portion 2, so that the vehicle compartment portion 8 is not easily affected by the impact energy.

本発明の車体構造では、車体骨格部の周方向に伸びる強化繊維が連続配向されて車体骨格部が形成されていることが好ましい。周方向に沿って伸びるクラックを発生させることによって衝撃エネルギーを吸収することができる。車室部は衝撃エネルギーの影響を受けにくい。   In the vehicle body structure according to the present invention, it is preferable that the reinforcing fiber extending in the circumferential direction of the vehicle body skeleton part is continuously oriented to form the vehicle body skeleton part. Impact energy can be absorbed by generating cracks extending along the circumferential direction. The passenger compartment is less susceptible to impact energy.

本発明の車体構造では、補強部材および支持部材の材料としてアラミド繊維を用いることが好ましい。アラミド繊維を用いることによって補強部材および支持部材の強度を向上させることができる。   In the vehicle body structure of the present invention, it is preferable to use an aramid fiber as a material for the reinforcing member and the supporting member. By using an aramid fiber, the strength of the reinforcing member and the supporting member can be improved.

本発明の車体構造では、車室部の材料としてポリカーボネートを用いることが好ましい。車室部を軽量化することができ、軽量相当分の衝撃エネルギーを減少させることができる。   In the vehicle body structure of the present invention, it is preferable to use polycarbonate as the material for the compartment. The vehicle compartment can be reduced in weight, and the impact energy corresponding to the lightweight can be reduced.

以上、本発明の実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
As mentioned above, although the Example of this invention was described in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

本発明の第1実施例である車体構造100の模式的な斜視図を示す。1 is a schematic perspective view of a vehicle body structure 100 according to a first embodiment of the present invention. 車体構造100の模式的な上面図を示す。A schematic top view of the vehicle body structure 100 is shown. 車体構造100の模式的な側面図を示す。A schematic side view of the vehicle body structure 100 is shown. 車体骨格部2の簡略図を示す。A simplified view of the vehicle body skeleton part 2 is shown.

符号の説明Explanation of symbols

2:車体骨格部
4a〜4d:補強部材
6a〜6d:車輪
8:車室部
10a、10b:支持部材
12:クラック
W1〜W3:車体骨格部の幅
W4:車体骨格部の厚み
A:車体前面からの衝撃エネルギーが加わる方向
B:車体前面からの衝撃エネルギーで車体骨格部が変形する方向
C:車体前面からの衝撃エネルギーで車室部が移動しようとする方向
D:車体骨格部の周方向
2: Vehicle body frame portions 4a to 4d: Reinforcing members 6a to 6d: Wheels 8: Vehicle compartment portions 10a, 10b: Support members 12: Cracks W1 to W3: Vehicle body frame portion width W4: Vehicle body frame portion thickness A: Front surface of vehicle body Direction B: Impact direction from which the vehicle body skeleton part is deformed by impact energy from the front surface of the vehicle body C: Direction in which the vehicle compartment portion moves due to impact energy from the front surface of the vehicle body D: Circumferential direction of the vehicle body skeleton portion

Claims (4)

車体の下部を構成する車体骨格部と、その車体骨格部と独立して形成されている車室部を備えている車体構造であり、
前記車体骨格部が、繊維強化複合材料で形成されているとともに車幅方向を短軸とする楕円形状であることを特徴とする車体構造。
A vehicle body structure comprising a vehicle body skeleton part that forms the lower part of the vehicle body, and a vehicle compartment part formed independently of the vehicle body skeleton part,
The vehicle body structure is characterized in that the vehicle body skeleton is formed of a fiber reinforced composite material and has an elliptical shape with the vehicle width direction as a short axis.
前記車体骨格部が、前記楕円形状の周方向に伸びる繊維束を樹脂で固めた繊維強化複合材料で形成されていることを特徴とする請求項1の車体構造。   2. The vehicle body structure according to claim 1, wherein the vehicle body skeleton is formed of a fiber reinforced composite material in which a fiber bundle extending in the circumferential direction of the elliptical shape is solidified with a resin. 強化繊維で形成されている補強部材をさらに備えており、
その補強部材の両端が、前記楕円形状の前記車体骨格部に所定の張力をもって接合されていることを特徴とする請求項1または2の車体構造。
It further comprises a reinforcing member formed of reinforcing fibers,
3. The vehicle body structure according to claim 1, wherein both ends of the reinforcing member are joined to the elliptical vehicle body skeleton portion with a predetermined tension.
強化繊維で形成されている支持部材をさらに備えており、
その支持部材の両端が、前記楕円形状の前記車体骨格部に接合されており、
前記車室部が、前記支持部材の張力によって、前記車体骨格部に支持されていることを特徴とする請求項1から3のいずれか1項に記載の車体構造。
Further comprising a support member formed of reinforcing fibers;
Both ends of the support member are joined to the oval body skeleton,
The vehicle body structure according to any one of claims 1 to 3, wherein the vehicle compartment portion is supported by the vehicle body skeleton portion by a tension of the support member.
JP2008188443A 2008-07-22 2008-07-22 Vehicle body structure Pending JP2010023706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008188443A JP2010023706A (en) 2008-07-22 2008-07-22 Vehicle body structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008188443A JP2010023706A (en) 2008-07-22 2008-07-22 Vehicle body structure

Publications (1)

Publication Number Publication Date
JP2010023706A true JP2010023706A (en) 2010-02-04

Family

ID=41729922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008188443A Pending JP2010023706A (en) 2008-07-22 2008-07-22 Vehicle body structure

Country Status (1)

Country Link
JP (1) JP2010023706A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245912A (en) * 2010-05-24 2011-12-08 Toyota Central R&D Labs Inc Vehicle body structure
WO2012033000A1 (en) 2010-09-06 2012-03-15 東レ株式会社 Structure for passenger vehicle interior, and manufacturing method therefor
JP2012218437A (en) * 2011-04-06 2012-11-12 Groz Beckert Kg Three-dimensional shaped textile element and method of manufacturing the same
CN103085292A (en) * 2011-10-28 2013-05-08 本特勒尔汽车技术有限公司 Hybrid part of a motor vehicle and method for production of such hybrid part of a motor vehicle
WO2013171852A1 (en) 2012-05-16 2013-11-21 東レ株式会社 Vehicle structure body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357710A (en) * 1989-07-26 1991-03-13 Mazda Motor Corp Suspension arm structure made of frp
JPH04372436A (en) * 1991-04-08 1992-12-25 Toyota Autom Loom Works Ltd Fiber-reinforced composite material and energy absorbing member for bumper
JP2001163250A (en) * 1999-12-06 2001-06-19 Honda Motor Co Ltd Automotive body structure
JP2004338421A (en) * 2003-05-12 2004-12-02 Nissan Motor Co Ltd Car body structure
JP2006315627A (en) * 2005-05-16 2006-11-24 Mazda Motor Corp Floor panel of vehicle body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357710A (en) * 1989-07-26 1991-03-13 Mazda Motor Corp Suspension arm structure made of frp
JPH04372436A (en) * 1991-04-08 1992-12-25 Toyota Autom Loom Works Ltd Fiber-reinforced composite material and energy absorbing member for bumper
JP2001163250A (en) * 1999-12-06 2001-06-19 Honda Motor Co Ltd Automotive body structure
JP2004338421A (en) * 2003-05-12 2004-12-02 Nissan Motor Co Ltd Car body structure
JP2006315627A (en) * 2005-05-16 2006-11-24 Mazda Motor Corp Floor panel of vehicle body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245912A (en) * 2010-05-24 2011-12-08 Toyota Central R&D Labs Inc Vehicle body structure
US8851558B2 (en) 2010-05-24 2014-10-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Vehicle body structure
WO2012033000A1 (en) 2010-09-06 2012-03-15 東レ株式会社 Structure for passenger vehicle interior, and manufacturing method therefor
US9096269B2 (en) 2010-09-06 2015-08-04 Toray Industries, Inc. Structure for passenger vehicle interior, and manufacturing method therefor
JP2012218437A (en) * 2011-04-06 2012-11-12 Groz Beckert Kg Three-dimensional shaped textile element and method of manufacturing the same
CN103085292A (en) * 2011-10-28 2013-05-08 本特勒尔汽车技术有限公司 Hybrid part of a motor vehicle and method for production of such hybrid part of a motor vehicle
CN103085292B (en) * 2011-10-28 2016-03-16 本特勒尔汽车技术有限公司 The manufacture method of automobile hybrid component and the automobile hybrid component made by the method
WO2013171852A1 (en) 2012-05-16 2013-11-21 東レ株式会社 Vehicle structure body

Similar Documents

Publication Publication Date Title
JP6148915B2 (en) vehicle
JP6172848B2 (en) vehicle
CN108698459B (en) Use of a structural element in a running gear of a motor vehicle, running gear and method for producing the same
US8813926B2 (en) Impact-absorbing structure and method for producing the same
WO2014034586A1 (en) Roof structure for vehicle
JP4420830B2 (en) Shock absorbing member
JP2010023706A (en) Vehicle body structure
JP2007176328A (en) Frp structure
JP2009166408A (en) Structural member
US20090039680A1 (en) Front body structure for vehicle
JP2010126067A (en) Shock-absorbing member
JP2007237944A (en) Composite structural material
JP2007015626A (en) Support structure for vehicle bumper
US9340171B2 (en) Deformation element, in particular for bumpers on motor vehicles
JP2005225364A (en) Impact absorbing member for automobile
JP4520367B2 (en) Impact structure of aircraft
JP6160843B2 (en) Vehicle floor undercover and its carbon fiber band mounting method
CN217804733U (en) Hexagonal high-performance composite material anti-creeper
JP2006027433A (en) Shock absorbing member for automobile
JP4910873B2 (en) Shock absorbing member
KR102064654B1 (en) Suspension of vehicle
JP6431410B2 (en) Bumper structure
JP7149928B2 (en) tilting vehicle
KR20190064170A (en) Imapact beam
JP6112686B2 (en) Auto body structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100923

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Effective date: 20120104

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120501