JPH0437231A - Differential transmitter - Google Patents

Differential transmitter

Info

Publication number
JPH0437231A
JPH0437231A JP14132290A JP14132290A JPH0437231A JP H0437231 A JPH0437231 A JP H0437231A JP 14132290 A JP14132290 A JP 14132290A JP 14132290 A JP14132290 A JP 14132290A JP H0437231 A JPH0437231 A JP H0437231A
Authority
JP
Japan
Prior art keywords
signal
phase
output
transmission
phase signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14132290A
Other languages
Japanese (ja)
Inventor
Shigeaki Ono
茂昭 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14132290A priority Critical patent/JPH0437231A/en
Publication of JPH0437231A publication Critical patent/JPH0437231A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dc Digital Transmission (AREA)

Abstract

PURPOSE:To surely detect a fault state in which a signal level becomes lower by detecting a difference of level of an A phase signal and that of a B-phase signal in a data transmission circuit and discriminating it to be a transmission fault when the level difference is lower than a prescribed level. CONSTITUTION:If a phase A transmission line 201 and a phase B transmission line 202, that is, being transmission lines for a phase A signal 201S and a phase B signal 202S being outputs of a differential driver 2, that is, inputs of a differential receiver 3 are short-circuited or at least, either of both the transmission lines 201,202 is broken, the level difference between the phase A signal 201S and the phase B signal 202S is decreased. A fault detection circuit 11 detects it that the level difference gets small and discriminates the fault state. Thus, even when a level of an output signal of the differential driver is uncertain, the fault of the transmission system is detected.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、差動伝送装置、特にその差動伝送路におけ
る信号異常、短絡等の伝送路の異常等を検出する異常検
出回路を有した差動伝送装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a differential transmission device, particularly a differential transmission device having an abnormality detection circuit for detecting abnormalities in the transmission path such as signal abnormalities and short circuits in the differential transmission path. The present invention relates to a differential transmission device.

[従来の技術] 第3図は従来の差動伝送装置を示す接続図、第4図は正
常状態及び異常状態を第3図における各部の信号波形で
示す動作説明図で、第3図において、(1)はデータ送
信回路で、その出力伝送路(101)に矩形波状の出力
信号(1015)を出力する。
[Prior Art] Fig. 3 is a connection diagram showing a conventional differential transmission device, and Fig. 4 is an operation explanatory diagram showing normal states and abnormal states by signal waveforms of each part in Fig. 3. In Fig. 3, (1) is a data transmission circuit which outputs a rectangular waveform output signal (1015) to its output transmission line (101).

(2)は前記出力信号(IOIs)を受信する差動ドラ
イバで、前記出力信号(1015)と同じA相信号(2
015)をA相伝送路(201)に送出すると共に、前
記A相信号(2015)と逆極性のB相信号(2025
)をB相伝送路(202)に送出する。(3)は前記A
相信号(201S)と前記B相信号(2025)とを受
信する差動レシーバで、これら両受信信号(2015)
 (2025)から前記データ送信回路(1)の出力信
号(1015)を復元して出力信号(3015)を出力
伝送路(301)に出力する。(4)は前記差動レシー
バ(3)の出力信号(301S)を受信するデータ受信
回路、(5)は前記A相信号(2015)及び前記B相
信号(202S)を入力するエクスクル−シブORゲー
トで、前記A相信号(20LS)及び前記B相信号(2
025)が共に1の場合、及び共に0の場合のみ出力0
(伝送異常の出力)となり、他の場合は出力1(伝送正
常の出力)となる出力信号(sots)を状態伝送路(
501)に送出する。(6)は差動伝送路の終端抵抗で
ある。
(2) is a differential driver that receives the output signals (IOIs), and is the same A-phase signal (2) as the output signal (1015).
015) to the A-phase transmission line (201), and at the same time sends the B-phase signal (2025) with the opposite polarity to the A-phase signal (2015).
) is sent to the B-phase transmission line (202). (3) is the above A
A differential receiver that receives the phase signal (201S) and the B-phase signal (2025), and receives both received signals (2015).
The output signal (1015) of the data transmission circuit (1) is restored from (2025) and the output signal (3015) is output to the output transmission path (301). (4) is a data receiving circuit that receives the output signal (301S) of the differential receiver (3), and (5) is an exclusive OR that receives the A-phase signal (2015) and the B-phase signal (202S). At the gate, the A phase signal (20LS) and the B phase signal (2
025) are both 1 and 0, the output is 0.
(transmission abnormal output), otherwise the output signal (sots) is output 1 (transmission normal output).
501). (6) is the terminating resistance of the differential transmission line.

第4図において、(イ)は前記データ送信回路(1)の
出力信号(101S)を、(ロ)は前記差動ドライバ(
2)の一方の出力信号であるA相信号(2015)を、
(ハ)は前記差動ドライバ(2)の他方の出力信号であ
るB相信号(2025)を、(ニ)は前記差動レシーバ
(3)の出力信号(301S)を、(ホ)は前記エクス
クル−シブORゲート(5)の出力信号(5015)を
、夫々示している。(T1)は伝送が正常に行われてい
る期間、(丁2)〜(T4)は伝送が異常である期間で
、(T2)はデータ送信回路(1)の出力信号(101
S)と無関係に1となった場合を、(T3)はデータ送
信回路(1)の出力信号(1015)と無関係Oとなっ
た場合を、(T4)はA相伝送路(201)とB相伝送
路(202)とが短絡した場合を、夫々示している。
In FIG. 4, (a) shows the output signal (101S) of the data transmitting circuit (1), and (b) shows the differential driver (101S).
The A phase signal (2015), which is one output signal of 2), is
(C) is the B-phase signal (2025) which is the other output signal of the differential driver (2), (D) is the output signal (301S) of the differential receiver (3), and (E) is the other output signal of the differential driver (2). The output signals (5015) of the exclusive OR gate (5) are shown, respectively. (T1) is a period when transmission is normally performed, (T2) to (T4) are periods when transmission is abnormal, and (T2) is an output signal (101) of data transmission circuit (1).
(T3) is the case where it becomes O regardless of the output signal (1015) of the data transmitting circuit (1), and (T4) is the case where it becomes 1 regardless of the output signal (1015) of the data transmitting circuit (1). The cases in which the phase transmission line (202) is short-circuited are shown.

次に伝送路の状態の検出を行なう動作について説明する
Next, the operation for detecting the state of the transmission path will be explained.

伝送が正常に行われている状態(第4図の期間(丁1)
の状態)では、データ送信回路(1)は第4図(イ)に
示すようなデータ信号(1015)を出力伝送路(10
1)に送出し、このデータ信号(1015)を受けて、
差動ドライバ(2)がA相伝送路(201)に、第4図
(ロ)に示すような前記データ信号(1015)と同じ
A相信号(2015)を送出すると共に、B相伝送路(
202)に、第4図(ハ)に示すような前記データ信号
(1015)即ちA相信号(2015)と逆極性のB相
信号(2025)を送出する。これらA相信号(201
S)及びB相信号(202S)は差動レシーバ(3)に
入力され、この差動レシーバ(3)により前記データ送
信回路(1)の出力データ信号(1015)が復元され
出力伝送路(301)に出力信号(3015) (第4
図(ニ))として出力され、データ受信回路(4)に入
力される。一方、エクスクル−シブORゲート(5)は
、その一方の入力信号(2015)が1で且つ他方の入
力信号(2025)が0であるか又は一方の入力信号(
2015)がOで且つ他方の入力信号(2025)が1
であるので、その出力は常に1となって伝送が正常であ
ることを表わしている。
State where transmission is being performed normally (period (1) in Figure 4)
state), the data transmitting circuit (1) outputs the data signal (1015) as shown in FIG.
1), and upon receiving this data signal (1015),
The differential driver (2) sends out the A-phase signal (2015), which is the same as the data signal (1015) shown in FIG.
202), the data signal (1015) as shown in FIG. 4(C), that is, the B-phase signal (2025) having the opposite polarity to the A-phase signal (2015) is sent out. These A-phase signals (201
S) and B-phase signal (202S) are input to a differential receiver (3), which restores the output data signal (1015) of the data transmission circuit (1) and sends it to the output transmission line (301). ) to the output signal (3015) (4th
The data is output as (d) in the figure and input to the data receiving circuit (4). On the other hand, the exclusive OR gate (5) has one input signal (2015) of 1 and the other input signal (2025) of 0, or one input signal (2025) of the exclusive OR gate (5).
2015) is O and the other input signal (2025) is 1
Therefore, its output is always 1, indicating that the transmission is normal.

次に、第4図の期間(T2)に示すように、A相信号(
201S)が0となるへき時に1となっている(第4図
(ロ))異常状態の場合、エクスクル−シブORゲート
(5)の入力信号(2015) (2025)が共に1
となる状態が生じ、この場合その出力(501S)は○
となり、伝送系が異常であることを示す出力となる。
Next, as shown in period (T2) in FIG.
In the case of an abnormal state in which the signal (201S) becomes 1 when it becomes 0 (Fig. 4 (b)), the input signals (2015) and (2025) of the exclusive OR gate (5) both become 1.
In this case, the output (501S) is ○
This is an output indicating that the transmission system is abnormal.

また、第4図の期間(T3)に示すように、B相信号(
202S)が1となるべき時に0となっている(第4図
(ハ))異常状態の場合、エクスクル−シブORゲート
(5)の入力信号(201S) (2025)は共にO
となる状態が生じ、この場合その出力(5015)はO
となり、伝送系が異常であることを示す出力となる。
In addition, as shown in period (T3) in FIG. 4, the B-phase signal (
202S) is 0 when it should be 1 (Fig. 4 (c)), the input signals (201S) and (2025) of the exclusive OR gate (5) are both O.
A situation arises in which the output (5015) is O
This is an output indicating that the transmission system is abnormal.

第4図の期間(T4)はA相伝送路(201)及びB相
伝送路(202)が相互に短絡した場合あるいは両伝送
路(201)(202)の少なくとも一方が断線した場
合であり、この場合はエクスクル−シブORゲート(5
)の入力信号(2015) (2025)の論理レベル
が不確定となり、伝送系が異常であるにも拘らず、エク
スクル−シブORゲート(5)の出力は異常出力。
The period (T4) in FIG. 4 is when the A-phase transmission line (201) and the B-phase transmission line (202) are short-circuited to each other, or when at least one of the transmission lines (201) and (202) is disconnected. In this case, an exclusive OR gate (5
) input signals (2015) (2025) are uncertain, and even though the transmission system is abnormal, the output of the exclusive OR gate (5) is an abnormal output.

つまり図示のようにOとなるへきところが、正常出力、
つまり1となって誤出力する場合が生じる。
In other words, as shown in the diagram, the cleavage point where the value is O is the normal output.
In other words, it may become 1 and result in an erroneous output.

[発明が解決しようとする課題] 従来の差動伝送装置は前述のように、差動ドライバ(2
)の出力信号の一方であるA相信号(201s)と他方
であるB相信号(202s)とをエクスクル−シブOR
ゲート(5)に入力する構成することにより、伝送系の
異常を検出していたので、差動ドライバ(2)の両伝送
路(201) (202)が相互に短絡した場合あるい
は両伝送路(201)(202)の少なくとも一方が断
線した場合は、伝送系が異常であるにも拘らず。
[Problem to be solved by the invention] As mentioned above, the conventional differential transmission device uses a differential driver (two
), one of the output signals of the A phase signal (201s) and the other of the output signals of the B phase signal (202s) are exclusively ORed.
By configuring the input to the gate (5), abnormalities in the transmission system were detected. If at least one of 201) and 202 is disconnected, even though the transmission system is abnormal.

エクスクル−シブORゲート(5)が正常出力を出して
しまう場合が生じるという課題があった。
There is a problem in that the exclusive OR gate (5) sometimes outputs a normal output.

この発明はこのような従来の課題を解決するためになさ
れたもので、前述のような差動ドライバの出力伝送路が
短絡したり断線した場合のように、差動ドライバの出力
信号のレベルが不確定な状態となった場合でも伝送系の
異常を検出することを目的とする。
This invention was made in order to solve such conventional problems, and as in the case where the output transmission line of the differential driver is short-circuited or disconnected as described above, the level of the output signal of the differential driver may change. The purpose is to detect abnormalities in the transmission system even when it is in an uncertain state.

[課題を解決するための手段] この発明に係る差動伝送装置は、データ送信回路、この
データ送信回路の出力をA相信号とこのA相信号と逆極
性のB相信号とに分けて送信する差動ドライバ、前記A
相信号と前記B相信号とを受信しこれら両受信信号から
前記データ送信回路の出力信号を復元して出力する差動
レシーバ、この差動レシーバの出力を受けるデータ受信
回路、及び前記A相信号と前記B相信号との電位差を検
出しこの電位差が所定レベルより低い場合に伝送異常と
判定する異常検出回路を備えたものである。
[Means for Solving the Problems] A differential transmission device according to the present invention includes a data transmission circuit, and an output of the data transmission circuit is divided into an A-phase signal and a B-phase signal having a polarity opposite to the A-phase signal and transmitted. differential driver, said A
a differential receiver that receives a phase signal and the B-phase signal, restores and outputs the output signal of the data transmitting circuit from both received signals, a data receiving circuit that receives the output of the differential receiver, and the A-phase signal. The apparatus is equipped with an abnormality detection circuit that detects the potential difference between the signal and the B-phase signal and determines that there is a transmission abnormality when this potential difference is lower than a predetermined level.

[作 用] この発明の差動伝送装置においては、差動ドライバの出
力、つまり差動レシーバの入力であるA相信号及びB相
信号の伝送路、即ちA相伝送路及びB相伝送路が相互に
短絡した場合あるいは実伝送路の少なくとも一方が断線
した場合、前記A相信号と前記B相信号との電位差が小
さくなり、この電位差が小さくなったことを異常検出回
路が検出し、異常であることを判定、検出できる。
[Function] In the differential transmission device of the present invention, the output of the differential driver, that is, the transmission line of the A-phase signal and the B-phase signal that are the input of the differential receiver, that is, the A-phase transmission line and the B-phase transmission line are If they are short-circuited to each other or if at least one of the actual transmission lines is disconnected, the potential difference between the A-phase signal and the B-phase signal becomes small, and the abnormality detection circuit detects that this potential difference has become small and detects an abnormality. Can determine and detect something.

[実施例] 第1図はこの発明の一実施例を示す接続図、第2図は正
常状態及び異常状態を第1図における各部の信号波形で
示す動作説明図で、第1図において、(1)はデータ送
信回路で、その出力伝送路(101)に矩形波状の出力
信号(1015)を出力する。
[Embodiment] Fig. 1 is a connection diagram showing an embodiment of the present invention, and Fig. 2 is an operation explanatory diagram showing normal and abnormal states by signal waveforms of each part in Fig. 1. In Fig. 1, ( 1) is a data transmission circuit which outputs a rectangular waveform output signal (1015) to its output transmission line (101).

(2)は前記出力信号(lots)を受信する差動ドラ
イバで、前記出力信号(1015)と同じA相信号(2
015)をA相伝送路(2(H)に送出すると共に、前
記A相信号(201S)と逆極性のB相信号(2025
)をB相伝送路(202)に送出する。(3)は前記A
相信号(2015)と前記B相信号(2025)とを受
信する差動レシーバで、これら両受信信号(201S)
 (202S)から前記データ送信回路(1)の出力信
号(1015)を復元して出力信号(3015)を出力
伝送路(301)に出力する。(4)は前記差動レシー
バ(3)の出力信号(3015)を受信するデータ受信
回路、(7A) (7B) (8A) (8B)は抵抗
、(9A)(9B)はフォトカプラ、(10)はNAN
Dゲート、(11)は異常検出回路で、前記抵抗(7A
) (7B) (8A)(8B)とフォトカプラ(9A
) (9B)とNANDゲート(10)とで構成されて
いる。(111) (112)は異常検出回路(11)
のA相及びB相入力信号線で、A相入力信号線(111
)の一端はA相伝送路(201)に接続され、他端は抵
抗(7A)を介してフォトカプラ(9A)の発光ダイオ
ードのアノード及びフォトカプラ(9B)の発光ダイオ
ードのカソードに接続されており、B相入力信号線(1
12)の一端はB相伝送路(202)に接続され、他端
は抵抗(7B)を介してフォトカプラ(9B)の発光ダ
イオードのアノード及びフォトカプラ(9A)の発光ダ
イオードのカソードに接続されている。(113)はN
ANDゲート(10)の出力信号線で。
(2) is a differential driver that receives the output signal (lots), and is the same A-phase signal (2) as the output signal (1015).
015) to the A-phase transmission line (2(H)), and at the same time sends the B-phase signal (2025) with the opposite polarity to the A-phase signal (201S).
) is sent to the B-phase transmission line (202). (3) is the above A
A differential receiver that receives the phase signal (2015) and the B-phase signal (2025), and receives both of these received signals (201S).
The output signal (1015) of the data transmission circuit (1) is restored from (202S) and the output signal (3015) is output to the output transmission path (301). (4) is a data receiving circuit that receives the output signal (3015) of the differential receiver (3), (7A) (7B) (8A) (8B) is a resistor, (9A) (9B) is a photocoupler, ( 10) is NAN
D gate (11) is an abnormality detection circuit, and the resistor (7A
) (7B) (8A) (8B) and photocoupler (9A
) (9B) and a NAND gate (10). (111) (112) is an abnormality detection circuit (11)
The A-phase and B-phase input signal lines of the A-phase input signal line (111
) is connected to the A-phase transmission line (201), and the other end is connected to the anode of the light emitting diode of the photocoupler (9A) and the cathode of the light emitting diode of the photocoupler (9B) via a resistor (7A). B-phase input signal line (1
12) One end is connected to the B-phase transmission line (202), and the other end is connected to the anode of the light emitting diode of the photocoupler (9B) and the cathode of the light emitting diode of the photocoupler (9A) via a resistor (7B). ing. (113) is N
On the output signal line of the AND gate (10).

異常検出回路(1)の出力信号線でもある。前記フォト
カプラ(9A)は、A相信号(2015)の電位がB相
信号(2025)の電位より成る値以上大きくなると、
その発光ダイオードに抵抗(7A)を通して成る値以上
の大きさの電流が流れ、ON状態になる。前記フォトカ
プラ(9B)は、B相信号(2025)の電位がA相信
号(2015)の電位より成る値以上大きくなると、そ
の発光ダイオードに抵抗(7B)を通して成る値以上の
大きさの電流が流れ、ON状態になる。前記NANDゲ
ート(10)はその入力信号(9AS) (9BS)(
即ちフォトカプラ(9A)(9B)の出力信号)の両方
が論理値1のとき(フォトカプラ(9A) (9B)の
両方がOFFのとき)、論理値Oの信号(異常を示す信
号)を出力するものである。
It is also the output signal line of the abnormality detection circuit (1). The photocoupler (9A) detects that when the potential of the A-phase signal (2015) becomes larger than the potential of the B-phase signal (2025),
A current larger than the value formed by the resistor (7A) flows through the light emitting diode, and the light emitting diode becomes in an ON state. When the potential of the B-phase signal (2025) becomes larger than the potential of the A-phase signal (2015), the photocoupler (9B) generates a current greater than the value formed through the light emitting diode through the resistor (7B). flows and becomes ON state. The NAND gate (10) receives its input signals (9AS) (9BS) (
In other words, when both the output signals of photocouplers (9A) and (9B) have a logic value of 1 (when both photocouplers (9A) and (9B) are OFF), a signal with a logic value of O (a signal indicating an abnormality) is output. This is what is output.

第2図において、(イ)は前記データ送信回路(1)の
出力信号(1015)を、(ロ)は前記差動ドライバ(
2)の一方の出力信号であるA相信号(2015)を、
(ハ)は前記差動ドライバ(2)の他方の出力であるB
相信号(2025)を、(ニ)は前記差動レシーバ(3
)の出力信号(3015)を、(ホ)は前記フォトカプ
ラ(9A)の出力信号、即ち前記NANDゲー)−(1
0)の一方の入力信号(9AS)を、(へ)は前記フォ
トカプラ(9B)の出力信号、即ち前記NANDゲート
(10)の他方の入力信号(9BS)を、(ト)は前記
NANDゲート(10)の出力信号、即ち前記異常検出
回路(11)の出力信号(100S)を、夫々示してい
る。(Tl)は差動ドライバ(2)から差動レシーバ(
3)への伝送が正常に行われている期間、(T4)〜(
Tl)は差動ドライバ(2)から差動レシーバ(3)へ
の伝送が異常である期間で、(T4)は前記A相伝送路
(201)と前記B相伝送路(202)とが短絡した場
合を、(T5)は前記A相伝送路(201)が断線した
場合を、(T6)は前記B相伝送路(202)が断線し
た場合を、(T7)は前記A相伝送路(201)がアー
ス短絡した場合を、夫々示している。
In FIG. 2, (a) shows the output signal (1015) of the data transmitting circuit (1), and (b) shows the differential driver (1015).
The A phase signal (2015), which is one output signal of 2), is
(C) is the other output of the differential driver (2) B
phase signal (2025), (d) is the differential receiver (3)
) is the output signal (3015) of the photocoupler (9A), (e) is the output signal of the photocoupler (9A), that is, the NAND game) - (1
0), one input signal (9AS) of the photocoupler (9B), (g) the output signal of the photocoupler (9B), that is, the other input signal (9BS) of the NAND gate (10), and (g) the NAND gate The output signals of (10), that is, the output signals (100S) of the abnormality detection circuit (11) are shown, respectively. (Tl) is from the differential driver (2) to the differential receiver (
3) during which transmission to (T4) to (T4) is normally performed.
Tl) is the period when the transmission from the differential driver (2) to the differential receiver (3) is abnormal, and (T4) is the period when the A-phase transmission line (201) and the B-phase transmission line (202) are short-circuited. (T5) is the case where the A-phase transmission line (201) is disconnected, (T6) is the case where the B-phase transmission line (202) is disconnected, and (T7) is the case where the A-phase transmission line (201) is disconnected. 201) is short-circuited to ground.

次に伝送路の状態の検出を行なう動作について説明する
Next, the operation for detecting the state of the transmission path will be explained.

伝送が正常に行われている状態(第2図の期間(TI)
の状S)では、データ送信回路(1)は第2図(イ)に
示すようなデータ信号(1015)を出力伝送路(10
1)に送出し、このデータ信号(1015)を受けて、
差動ドライバ(2)がA相伝送路(201)に、第2図
(ロ)に示すような前記データ信号(1015)と同じ
極性のA相信号(2015)を送出すると共に、B相伝
送路(202)に、第2図(ハ)に示すような前記デー
タ信号(1015)即ちA相信号(201s)と逆極性
のB相信号(202S)を送出する。これらA相信号(
2015)及びB相信号(2025)は差動レシーバ(
3)に入力され、この差動レシーバ(3)により前記デ
ータ送信回路(1)の出力データ信号(101s)が復
元され出方伝送路(301)に出力信号(301S) 
(第2図(ニ))として出力され、データ受信回路(4
)に入力される。一方。
State where transmission is being performed normally (period (TI) in Figure 2)
In the state S), the data transmission circuit (1) sends the data signal (1015) as shown in FIG. 2(A) to the output transmission line (10
1), and upon receiving this data signal (1015),
The differential driver (2) sends out an A-phase signal (2015) having the same polarity as the data signal (1015) as shown in FIG. The data signal (1015) as shown in FIG. 2(C), that is, the B-phase signal (202S) having the opposite polarity to the A-phase signal (201s) is sent to the channel (202). These A-phase signals (
2015) and B-phase signal (2025) are sent to the differential receiver (
3), the differential receiver (3) restores the output data signal (101s) of the data transmission circuit (1), and outputs the output signal (301S) to the output transmission line (301).
(Figure 2 (d)), and the data receiving circuit (4)
) is entered. on the other hand.

フォトカプラ(9A)は、A相信号(2015)が1で
B相信号(2025)がOの状態のときにONとなり、
その出力信号(9AS)はアース電位の0となり、逆に
A相信号(2015)がOでB相信号(2025)が1
の状態のときにOFFとなり、その出力信号(9AS)
は1となっている。フォトカプラ(9B)は、前述のフ
ォトカプラ(9A)の動作とは逆に、A相信号(201
5)が1でB相信号(2025)が○の状態のときにO
FFとなっており、その出力信号(9BS)はlとなり
、逆にA相信号(201S)がOでB相信号(2025
)が1の状態のときにONとなって、その出力信号(9
BS)はアース電位のOとなっている。つまり、フォト
カプラ(9A)(9B)ノ出力信号(9AS) (9B
S)は、それらの−方が1のときに他方が0、一方が0
のときに他方が1となっている。従ってこれら出力信号
(9AS)(9BS)が入力されるNANDゲート(l
o)ノ出方信号、つまり異常検出回路(11)の出方信
号(100S)は出力1の状態が維持されており、伝送
が正常に行われていることを表わしている。
The photocoupler (9A) turns ON when the A phase signal (2015) is 1 and the B phase signal (2025) is O.
The output signal (9AS) is 0 at ground potential, and conversely, the A phase signal (2015) is O and the B phase signal (2025) is 1.
It turns OFF in the state of , and its output signal (9AS)
is 1. Opposite to the operation of the photocoupler (9A) described above, the photocoupler (9B) receives the A-phase signal (201
5) is 1 and the B phase signal (2025) is O.
The output signal (9BS) is 1, and conversely, the A phase signal (201S) is O and the B phase signal (2025
) is turned on when it is in the state of 1, and its output signal (9
BS) is O at ground potential. In other words, the photocoupler (9A) (9B) output signal (9AS) (9B
S), when the - one of them is 1, the other is 0, and one is 0
When , the other one becomes 1. Therefore, these output signals (9AS) (9BS) are input to the NAND gate (l
o) The output signal (100S) of the abnormality detection circuit (11) maintains the output 1 state, indicating that the transmission is being performed normally.

次に、第2図の期間(T5)に示すように、A相伝送路
(20+)が断線した場合には、フォトカプラ(9A)
(9B)は、それらの発光ダイオードには所定値以上の
電圧がかからなくなるため、双方共にOFFの状態とな
り、従って両フォトカプラ(9A)(9B)の出力信号
(9AS)(9BS)は何れも1の状態となる(第2図
(ホ)(へ))ので、NANDゲート(10)の出力、
即ち異常検出回路(11)の出力信号(1005)は0
の状態(第2図(ト))となり、伝送が異常であること
を表わす。
Next, as shown in period (T5) in Figure 2, when the A-phase transmission line (20+) is disconnected, the photocoupler (9A)
(9B) is no longer applied with a voltage higher than a predetermined value to those light emitting diodes, so both are in the OFF state, so the output signals (9AS) (9BS) of both photocouplers (9A) (9B) are is also in the state of 1 (Fig. 2 (E) and (E)), so the output of the NAND gate (10),
That is, the output signal (1005) of the abnormality detection circuit (11) is 0.
(FIG. 2 (G)), indicating that the transmission is abnormal.

第2図の期間(T6)はB相伝送路(202)が断線し
た場合であるが、この場合は、前述のA相伝送路(20
1)断線の場合と同様の動作となり、第2図(ホ)(へ
)に示すように、両フォトカプラ(9A) (9B)の
出力信号(9AS) (9BS)の何れも1の状態とな
り、異常検出回路(1工)の出力信号(1005)はO
の状態(第2図(ト))となり、伝送が異常であること
を表わす。
The period (T6) in FIG. 2 is when the B-phase transmission line (202) is disconnected, but in this case, the above-mentioned A-phase transmission line (202) is disconnected.
1) The operation is the same as in the case of a disconnection, and as shown in Figure 2 (E) and (F), the output signals (9AS) (9BS) of both photocouplers (9A) (9B) become 1. , the output signal (1005) of the abnormality detection circuit (1st construction) is O.
(FIG. 2 (g)), indicating that the transmission is abnormal.

第2図の期間(T7)は、A相伝送路(201)がアー
ス短絡した場合を示しており、A相伝送路(201)の
A相信号(2015)は継続的に0となり、B相信号(
2025)は出力データ信号(1015)に逆極性で対
応して交互に1、○となる。従って、B相信号(202
5)がOとなってA相信号(2015)とB相信号(2
025) トが共にOのときにフォトカプラ(9A) 
(9B)の出力信号(NANDゲート(10)の入力信
号)が共に1となって異常検出回路(11)の出力がO
となり、異常状態であることを表わす。
The period (T7) in Figure 2 shows the case where the A-phase transmission line (201) is shorted to ground, and the A-phase signal (2015) of the A-phase transmission line (201) is continuously 0, and the B-phase signal (2015) of the A-phase transmission line (201) is continuously 0. signal(
2025) corresponds to the output data signal (1015) with opposite polarity and becomes 1 and ◯ alternately. Therefore, the B phase signal (202
5) becomes O, and the A phase signal (2015) and B phase signal (2015)
025) Photocoupler (9A) when both
(9B) output signals (input signals of NAND gate (10)) both become 1, and the output of abnormality detection circuit (11) becomes O.
This indicates an abnormal state.

第2図の期間(丁4)は、A相伝送路(201)とB相
伝送路(202>とが短絡した場合を示しており、フォ
トカプラ(9A) (9B)は、それらの発光ダイオー
ドには所定値以上の電圧がかがらないため、双方共にO
FFの状態となり、従ってNANDゲート(10)の出
力、即ち異常検出回路(11)の出力信号(1005)
はOの状態となり、異常であることを表わす。
The period (4) in Fig. 2 shows the case where the A-phase transmission line (201) and the B-phase transmission line (202> are short-circuited, and the photocouplers (9A) (9B) are connected to their light emitting diodes. Since the voltage above the specified value is not applied to the
FF state, therefore, the output of the NAND gate (10), that is, the output signal (1005) of the abnormality detection circuit (11)
is in the O state, indicating an abnormality.

なお、第2図に図示してないが、A相信号(2015)
のみ1の状態が継続するような異常状態。
Although not shown in Fig. 2, the A phase signal (2015)
An abnormal condition in which the condition 1 continues.

B相信号(2025)のみOの状態が継続するような異
常状態、A相信号(2015)及びB相信号(2025
)(7)双方が共に1あるいは共にOとなるような異常
状態等、前述の具体例以外の異常状態をも検出できる。
An abnormal state in which only the B-phase signal (2025) remains O, the A-phase signal (2015) and the B-phase signal (2025)
) (7) It is also possible to detect abnormal states other than the above-mentioned specific example, such as an abnormal state where both are 1 or both are O.

また、前述の実施例においてはA相伝送路(201)と
B相伝送路(202)との電位差を検出する手段として
フォトカプラ(9A) (9B)を使用した例を示した
が、○Pアンプ等、他の手段を使用しても前述の実施例
と同様の効果を奏する。
In addition, in the above embodiment, an example was shown in which photocouplers (9A) (9B) were used as means for detecting the potential difference between the A-phase transmission line (201) and the B-phase transmission line (202), but ○P Even if other means such as an amplifier are used, the same effect as in the above-described embodiment can be obtained.

C発明の効果] この発明は前述のように、データ送信回路と、このデー
タ送信回路の出力をA相信号とこのA相信号と逆極性の
B相信号とに分けて送信する差動ドライバと、前記A相
信号と前記B相信号とを受信しこれら両受倍信号から前
記データ送信回路の出力信号を復元して出力する差動レ
シーバと、この差動レシーバの出力を受けるデータ受信
回路と、前記A相信号と前記B相信号との電位差を検出
しこの電位差が所定レベルより低い場合に伝送異常と判
定する異常検出回路とを備えた構成としたので、従来の
装置では確実には検出することができなかった異常状態
、即ちA相伝送路及びB相伝送路の少なくと一方が断線
した場合や、A相伝送路とB相伝送路とが短絡した場合
のように、伝送路における伝送信号がデータ送信回路の
出力データ信号とモードは同じであるが信号レベルが低
くなるような異常状態をも確実に検出できる効果がある
C Effects of the Invention] As described above, the present invention includes a data transmitting circuit, a differential driver that divides the output of the data transmitting circuit into an A-phase signal and a B-phase signal having the opposite polarity to the A-phase signal, and transmits the output. , a differential receiver that receives the A-phase signal and the B-phase signal, restores and outputs the output signal of the data transmitting circuit from these multiplied signals, and a data receiving circuit that receives the output of the differential receiver. , an abnormality detection circuit that detects the potential difference between the A-phase signal and the B-phase signal and determines that there is a transmission abnormality when this potential difference is lower than a predetermined level. Abnormal conditions in the transmission line, such as when at least one of the A-phase transmission line and B-phase transmission line is disconnected, or when the A-phase transmission line and the B-phase transmission line are short-circuited, This has the effect of reliably detecting an abnormal state in which the transmission signal is in the same mode as the output data signal of the data transmission circuit but the signal level is low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す接続図、第2図は正
常状態及び異常状態を第1図における各部の信号波形で
示す動作説明図、第3図は従来の差動伝送装置を示す接
続図、第4図は正常状態及び異常状態を第3図における
各部の信号波形で示す動作説明図である。 図において、(1)はデータ送信回路、(2)は差動ド
ライバ、(3)は差動レシーバ、(4)はデータ受信回
路、(11)は異常検出回路、 (100S)は異常検
出回路(11)の出力信号、(1015)はデータ送信
回路(1)の出力データ信号、(201)はA相伝送路
、(7015)はA相信号、(202)はB相伝送路、
(2025)はB相信号である。 なお図中同一符号は同−又は相当部分を示す。 −一一二 ’、i4’h
Fig. 1 is a connection diagram showing an embodiment of the present invention, Fig. 2 is an operation explanatory diagram showing normal and abnormal states with signal waveforms of each part in Fig. 1, and Fig. 3 is a diagram showing a conventional differential transmission device. The connection diagram shown in FIG. 4 is an operation explanatory diagram showing the normal state and abnormal state by signal waveforms of each part in FIG. 3. In the figure, (1) is a data transmission circuit, (2) is a differential driver, (3) is a differential receiver, (4) is a data reception circuit, (11) is an abnormality detection circuit, and (100S) is an abnormality detection circuit. (11) is the output signal, (1015) is the output data signal of the data transmission circuit (1), (201) is the A-phase transmission line, (7015) is the A-phase signal, (202) is the B-phase transmission line,
(2025) is a B-phase signal. Note that the same reference numerals in the figures indicate the same or equivalent parts. -112', i4'h

Claims (1)

【特許請求の範囲】[Claims] データ送信回路、このデータ送信回路の出力をA相信号
とこのA相信号と逆極性のB相信号とに分けて送信する
差動ドライバ、前記A相信号と前記B相信号とを受信し
これら両受信信号から前記データ送信回路の出力信号を
復元して出力する差動レシーバ、この差動レシーバの出
力を受けるデータ受信回路、及び前記A相信号と前記B
相信号との電位差を検出しこの電位差が所定レベルより
低い場合に伝送異常と判定する異常検出回路を備えた差
動伝送装置。
a data transmitting circuit; a differential driver that divides and transmits the output of the data transmitting circuit into an A-phase signal and a B-phase signal having the opposite polarity; a differential driver that receives the A-phase signal and the B-phase signal; a differential receiver that restores and outputs the output signal of the data transmitting circuit from both received signals, a data receiving circuit that receives the output of this differential receiver, and the A-phase signal and the B-phase signal.
A differential transmission device that includes an abnormality detection circuit that detects a potential difference with a phase signal and determines a transmission abnormality when this potential difference is lower than a predetermined level.
JP14132290A 1990-06-01 1990-06-01 Differential transmitter Pending JPH0437231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14132290A JPH0437231A (en) 1990-06-01 1990-06-01 Differential transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14132290A JPH0437231A (en) 1990-06-01 1990-06-01 Differential transmitter

Publications (1)

Publication Number Publication Date
JPH0437231A true JPH0437231A (en) 1992-02-07

Family

ID=15289227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14132290A Pending JPH0437231A (en) 1990-06-01 1990-06-01 Differential transmitter

Country Status (1)

Country Link
JP (1) JPH0437231A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4344238A1 (en) * 1992-12-25 1994-06-30 Mitsubishi Electric Corp Two-line input / output device
JP2010213246A (en) * 2009-03-12 2010-09-24 Ricoh Co Ltd Receiving device, driver, and image forming apparatus
JP2011206948A (en) * 2010-03-29 2011-10-20 Canon Inc Image forming apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4344238A1 (en) * 1992-12-25 1994-06-30 Mitsubishi Electric Corp Two-line input / output device
JP2010213246A (en) * 2009-03-12 2010-09-24 Ricoh Co Ltd Receiving device, driver, and image forming apparatus
US8654166B2 (en) 2009-03-12 2014-02-18 Ricoh Company, Ltd. Receiving device, driving unit, and image forming apparatus
JP2011206948A (en) * 2010-03-29 2011-10-20 Canon Inc Image forming apparatus

Similar Documents

Publication Publication Date Title
US8294474B2 (en) Device for sensing a fault current in a field bus system
US5257287A (en) Automatic polarity detection and correction method and apparatus employing linkpulses
US20110285424A1 (en) Differential communication device
JPH05196677A (en) Fault detecting device of driving circuit
US5483639A (en) Device for detecting transmission errors in balanced two-wire bus lines and two-bus interfaces
US5550804A (en) Data bus system
US6493401B1 (en) Receiving circuit and method for a controlled area network system
KR100396415B1 (en) Fault tolerant digital transmission system
USRE42178E1 (en) Fiber optic conversion system and method
JPH0437231A (en) Differential transmitter
US6150922A (en) Serial communication technique
CA2404840C (en) Rf detection and switcing system and method
US4785467A (en) Transmission system employing high impedance detection for carrier detection
US4866705A (en) Data transmission system with means for distributing collision signals via the transmission line
US5751692A (en) Bus signal detector
KR20020008180A (en) System for transmitting data, especially in a motor vehicle, and method for transmitting data
JPH05191317A (en) Differential signal transmission circuit
JP3036991B2 (en) Balanced transmission line disconnection detection circuit
US10649871B2 (en) Device with low-ohmic circuit path
JP2845000B2 (en) Signal transmission / reception circuit of bidirectional signal line
JP3221259B2 (en) Bus type duplex transmission equipment
JP3055717B2 (en) Output circuit of photoelectric switch
JPH01302180A (en) Disconnection detecting system
JP2851085B2 (en) Terminal power off detection method
JPH0341842A (en) Transmission system