JPH04370948A - Evaluation of semiconductor crystal dislocation - Google Patents

Evaluation of semiconductor crystal dislocation

Info

Publication number
JPH04370948A
JPH04370948A JP17451791A JP17451791A JPH04370948A JP H04370948 A JPH04370948 A JP H04370948A JP 17451791 A JP17451791 A JP 17451791A JP 17451791 A JP17451791 A JP 17451791A JP H04370948 A JPH04370948 A JP H04370948A
Authority
JP
Japan
Prior art keywords
etching
dislocations
group
evaluation
dislocation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17451791A
Other languages
Japanese (ja)
Inventor
Masaya Kawano
連也 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17451791A priority Critical patent/JPH04370948A/en
Publication of JPH04370948A publication Critical patent/JPH04370948A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To enable an evaluation for semiconductor crystal dislocation to measure the dislocation accurately for II-VI semiconductor crystals. CONSTITUTION:Two CdZn substrates 4 and 6 are bonded by an epoxy adhesive to allow its epitaxial surfaces to face each other in evaluating the dislocation of the semiconductor crystal on the B surface which is formed of the II-VI semiconductors the group II of which is composed of Hg, Cd, or an element containing a small amount of Mn and Zn in them, and the group VI of which is composed of Te or an element containing a small amount of Se in Te. An pressure of 40g/cm<-2> is given vertically to the bonding surface. The etching surface is polished after annealing for three hours in a vacuum of 80 deg.C. The polished crystal is etched for 20 seconds at room temperature using an etching solution for defective evaluation prepared by mixing 49weight% hydrofluoric acid, 30weight% hydrogen peroxide water, and water in a cubic ration of 3:2:9. Subsequently, an etching is performed in a static state with the etching surface vertically held for 10 second at room temperature using an etching solution for defective evaluation prepared by mixing 70weight% nitric acid, 36weight% hydrochloric acid, water, bromine, and acetic acid in a cubic ratio of 60:25:90:0.1:5.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、II−VI族半導体の
うち、II族がHg,Cdもしくはそれらに少量のMn
,Znが含まれる元素で構成され、VI族がTeもしく
はそれに少量のSeが含まれる元素で構成される半導体
結晶の転位評価法に関するものである。
[Industrial Application Field] The present invention is a group II-VI semiconductor in which group II is Hg, Cd or a small amount of Mn.
, Zn, and the VI group is composed of Te or an element containing a small amount of Se.

【0002】0002

【従来の技術】II−VI族半導体のうち、II族がH
g,Cdもしくはそれらに少量のMn,Znが含まれる
元素で構成され、VI族がTeもしくはそれに少量のS
eが含まれる元素で構成される結晶のB面に作用する欠
陥評価用エッチング液は{111}B面を除き公表され
ていない。他の面方位に対して作用する欠陥評価用エッ
チング液には次のようなものがある。ただし面方位の表
記法は極力原論文に従い、原論文における明らかに誤っ
た表記は訂正した。
[Prior Art] Among II-VI group semiconductors, group II is H
Group VI is composed of Te or a small amount of S.
No etching solution for defect evaluation that acts on the B-plane of a crystal composed of elements containing e has been published, except for the {111} B-plane. Etching solutions for defect evaluation that act on other surface orientations include the following. However, the notation of surface orientation followed the original paper as much as possible, and clearly incorrect notations in the original paper were corrected.

【0003】ロックウェル社が開発したエッチング液(
US特許No.4,897,152.(1990))は
、(110),(100),(111)A,(111)
B,(311)面に作用する。I.Haehnertと
M.Schenkのエッチング液(ジャーナル  オブ
  クリスタル  グロウス(J.Crystal  
Growth  101(1990)251))は{1
10},{111}A,{1(バー)1(バー)1(バ
ー)}B,{115}面に作用する。
[0003] Etching solution developed by Rockwell Corporation (
US Patent No. 4,897,152. (1990)) is (110), (100), (111)A, (111)
B, acts on the (311) plane. I. Haehnert and M. Schenk etching solution (J.Crystal
Growth 101 (1990) 251)) is {1
10}, {111}A, {1 (bar) 1 (bar) 1 (bar)}B, acts on the {115} plane.

【0004】ただしCdTeもしくはCdZnTeに対
しては{111}A面のみに作用する。HgTeまたは
HgCdTe{111}A面に作用するエッチング液は
、文献(ジュルナル  ドゥ  フィジーク  シュプ
ルモン(J.Phys.Suppl.C6  40(1
979)151))によると、Parker  etc
h,Straghan  etch,Polisar 
 1,Polisar  2,Quelch  etc
h等のエッチング液が紹介されている。
However, for CdTe or CdZnTe, it acts only on the {111}A plane. Etching solutions that act on the HgTe or HgCdTe {111}A surface are described in the literature (J. Phys. Suppl. C6 40 (1)
979) 151)), Parker etc.
h, Straghan etch, Polisar
1, Polisar 2, Quelch etc.
Etching solutions such as H are introduced.

【0005】CdTe(111)A面に作用するエッチ
ング液は、中川エッチャント(アプライド  フィジッ
クス  レターズ(Appl.Phys.Lett.3
4(1979)574))、CdTe(111)B面に
対しては、T.H.Myersらのエッチング液(ジャ
ーナル  オブ  バキューム  サイエンス  テク
ノロジー(J.Vac.Sci.Technol.Al
(1983)1598))が公表されている。
[0005] The etching solution that acts on the CdTe (111) A side is Nakagawa etchant (Applied Physics Letters (Appl. Phys. Lett. 3).
4 (1979) 574)), and for the CdTe (111) B side, T. H. Myers et al.'s etching solution (J.Vac.Sci.Technol.Al
(1983) 1598)) has been published.

【0006】これらのエッチング液のうち、転位評価用
として最も信頼性があり、標準的とされるエッチング液
は次の二つである。まず、HgTeの組成に近いII−
VI族半導体用としては、Polisar  2と呼ば
れるエッチング液で、濃硝酸と、濃塩酸と、水と、臭素
と、酢酸とを、体積比60:25:90:0.1:5で
混合した欠陥評価用エッチング液である。CdTeの組
成に近いII−VI族半導体用としては中川エッチャン
トと呼ばれるエッチング液で、フッ化水素酸と、過酸化
水素水と、水とを、体積比3:2:2で混合した欠陥評
価用エッチング液である。
Among these etching solutions, the following two are considered to be the most reliable and standard for dislocation evaluation. First, II-
For VI group semiconductors, an etching solution called Polisar 2 is used to remove defects by mixing concentrated nitric acid, concentrated hydrochloric acid, water, bromine, and acetic acid in a volume ratio of 60:25:90:0.1:5. This is an etching solution for evaluation. For II-VI group semiconductors with a composition similar to CdTe, there is an etching solution called Nakagawa etchant, which is a mixture of hydrofluoric acid, hydrogen peroxide, and water in a volume ratio of 3:2:2 for defect evaluation. It is an etching solution.

【0007】これらのエッチング液は共に{111}A
面に作用する。これらのエッチング条件は、Polis
ar  2の場合室温で20〜30秒、中川エッチャン
トの場合室温で20秒である。
Both of these etching solutions are {111}A
Acts on the surface. These etching conditions are based on Polis etching conditions.
In the case of ar 2, it is 20 to 30 seconds at room temperature, and in the case of Nakagawa etchant, it is 20 seconds at room temperature.

【0008】[0008]

【発明が解決しようとする課題】B面に作用する欠陥評
価用エッチング液は、{111}B面を除き報告されて
いない。従来報告されている欠陥評価用エッチング液の
うち、ロックウェル社のエッチング液は、{111}B
面だけでなく、高面指数のHgCdTe結晶B面に作用
して転位に起因するエッチピットを形成することが本発
明者の実験の結果わかったが、観察し得るエッチピット
をB面に形成するために10μm以上エッチングする必
要があり、薄膜結晶への適用が難しいこと、また形成す
るエッチピットの数のばらつきが大きく標準エッチング
液である。Polisar  2によるエッチピットの
数との信頼できる対応がとれないこと等の欠点がある。 それに加えて表面からの評価だけでは基板やバッファー
層中の転位との関係や成長中の転位発生について調べる
ことができない。
[Problems to be Solved by the Invention] No etching solution for defect evaluation that acts on the B-plane has been reported except for the {111}B-plane. Among the previously reported etching solutions for defect evaluation, Rockwell's etching solution is {111}B.
As a result of experiments by the present inventor, it was found that etch pits caused by dislocations are formed by acting not only on the B-plane of the HgCdTe crystal with a high surface index, but observable etch pits are formed on the B-plane. Therefore, it is necessary to etch at least 10 μm, making it difficult to apply to thin film crystals, and the number of etch pits formed varies widely, making it a standard etching solution. There are drawbacks such as the inability to reliably correspond to the number of etch pits produced by Polisar 2. In addition, it is not possible to investigate the relationship with dislocations in the substrate or buffer layer, or the occurrence of dislocations during growth, only by evaluating from the surface.

【0009】B面薄膜結晶の{110}ヘキ開面を評価
する場合、HgCdTeの欠陥評価は可能であるが、C
dTe{110}面に対する欠陥評価用エッチング液が
無いために、CdTe基板やCdTeバッファー層の転
位との関連を調べることができない。
When evaluating the {110} hexagonal plane of a B-plane thin film crystal, it is possible to evaluate defects in HgCdTe, but
Since there is no etching solution for evaluating defects on the dTe {110} plane, it is not possible to investigate the relationship with dislocations in the CdTe substrate or CdTe buffer layer.

【0010】また、HgCdTeの転位密度についても
、バルク結晶の転位密度評価において標準的に使われる
Polisar  2による転位密度との対応がとれな
い。
[0010] Furthermore, the dislocation density of HgCdTe does not correspond to the dislocation density determined by Polisar 2, which is standardly used in evaluating the dislocation density of bulk crystals.

【0011】また、仮にB面薄膜結晶のヘキ開面以外の
断面を評価しようとしても、研磨時に面だれが生じて、
エピ断面における微小領域において所定の面を正確に出
すことはできない。
[0011] Furthermore, even if one attempts to evaluate a cross section other than the cleavage plane of a B-plane thin film crystal, surface sagging occurs during polishing.
It is not possible to accurately expose a predetermined surface in a micro region in an epitaxial cross section.

【0012】次に、{111}A面を標準エッチング液
を指定のエッチング条件でエッチングを行う場合、Po
lisar  2、中川エッチャント共にピット径が5
μm程度になるため、微小領域で転位分布の測定は不可
能である。加えて、高転位密度の結晶を転位評価する場
合、ピットが重なり合って、転位密度や転位分布の測定
が不可能である。
Next, when etching the {111}A surface using a standard etching solution under specified etching conditions, Po
Both lisar 2 and Nakagawa etchant have a pit diameter of 5.
Since the diameter is on the order of μm, it is impossible to measure dislocation distribution in a micro region. In addition, when evaluating dislocations in a crystal with a high dislocation density, the pits overlap, making it impossible to measure the dislocation density or dislocation distribution.

【0013】本発明はこのような従来の事情に鑑みてな
されたもので、転位を正確に測定することのできる半導
体結晶の転位評価法を提供することにある。
The present invention has been made in view of the above-mentioned conventional circumstances, and it is an object of the present invention to provide a method for evaluating dislocations in semiconductor crystals that can accurately measure dislocations.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
、本発明による半導体結晶の転位評価法においては、I
I−VI族半導体のうち、II族がHg,Cdもしくは
それらに少量のMn,Znが含まれる元素で構成され、
VI族がTeもしくはそれに少量のSeが含まれる元素
で構成されるB面の薄膜半導体結晶の転位評価法であっ
て、二枚の薄膜結晶の表面同士を接着剤ではりあわせ圧
着させた状態で真空アニールをし、その断面に近い面を
エッチング面とし、その面を研磨した後にエッチングす
ることにより、転位に起因するエッチピットを形成させ
るものである。
[Means for Solving the Problems] In order to achieve the above object, in the method for evaluating dislocations in semiconductor crystals according to the present invention, I
Among Group I-VI semiconductors, Group II is composed of Hg, Cd, or elements containing small amounts of Mn and Zn,
This is a method for evaluating dislocations in B-plane thin film semiconductor crystals, in which group VI is composed of elements containing Te or a small amount of Se, in which the surfaces of two thin film crystals are laminated together with an adhesive and pressed together. Etch pits caused by dislocations are formed by performing vacuum annealing, using a surface close to the cross section as an etching surface, polishing that surface, and then etching.

【0015】また、前記II−VI族半導体のうち、H
g,Teの組成に近い半導体結晶の{111}A面にお
いて、70重量%の硝酸と、36重量%の塩酸と、水と
、臭素と、酢酸とを、体積比60:25:90:0.1
:5で混合した欠陥評価用エッチング液を用いて室温で
所定の時間エッチング面を垂直に立て静止状態でエッチ
ングを行い、転位に起因するエッチピットを形成させる
ものである。
Furthermore, among the II-VI group semiconductors, H
g, on the {111}A plane of a semiconductor crystal with a composition close to that of Te, 70% by weight of nitric acid, 36% by weight of hydrochloric acid, water, bromine, and acetic acid were mixed in a volume ratio of 60:25:90:0. .1
Etching is performed using the etching solution for defect evaluation mixed in step 5 at room temperature for a predetermined period of time with the etched surface standing vertically and in a stationary state to form etch pits caused by dislocations.

【0016】また、前記II−VI族半導体のうち、C
dTeの組成に近い半導体結晶の{111}A面におい
て、49重量%のフッ化水素酸と、30重量%の過酸化
水素水と、水とを、体積比3:2:9で混合した欠陥評
価用エッチング液を用いて室温で所定の時間エッチング
を行い、転位に起因するエッチピットを形成させるもの
である。
Furthermore, among the II-VI group semiconductors, C
A defect created by mixing 49% by weight of hydrofluoric acid, 30% by weight of hydrogen peroxide, and water in a volume ratio of 3:2:9 on the {111}A plane of a semiconductor crystal with a composition similar to that of dTe. Etching is performed for a predetermined time at room temperature using an etchant for evaluation to form etch pits caused by dislocations.

【0017】[0017]

【作用】(1)本発明方法によれば、圧着により2μm
程度の極めて薄い接着剤の膜でエピ面同士を接着するた
め、ほぼバルクの研磨と同様の正確な面出しが可能であ
る。このとき、エピ面とバルク結晶を接着させても同じ
効果が得られる。圧着させた状態で真空アニールを行う
ことにより接着剤の厚みを薄くし、内部に残った気泡を
追い出すことができ、エピ断面全領域において正確に所
望の面を研磨することが可能である。このようにして断
面全面にわたって正確な面を出すことにより、転位評価
について実績があり信頼できるエッチング液を任意に選
んで転位評価を行うことが可能となる。また、基板・バ
ッファー層・エピ層の転位を同時に調べることができる
[Function] (1) According to the method of the present invention, the thickness of 2 μm is obtained by crimping.
Since the epitaxial surfaces are bonded together with an extremely thin film of adhesive, it is possible to level out the surfaces as accurately as bulk polishing. At this time, the same effect can be obtained even if the epitaxial surface and the bulk crystal are bonded together. By performing vacuum annealing in a crimped state, it is possible to reduce the thickness of the adhesive and expel any air bubbles remaining inside, making it possible to accurately polish the desired surface in the entire epitaxial cross section. In this way, by presenting an accurate surface over the entire cross section, it becomes possible to arbitrarily select a reliable etching solution that has a proven track record for dislocation evaluation to perform dislocation evaluation. Additionally, dislocations in the substrate, buffer layer, and epitaxial layer can be investigated simultaneously.

【0018】(2)HgTeの組成に近い結晶の{11
1}A面を、70重量%の硝酸と、36重量%の塩酸と
、水と、臭素と、酢酸とを、体積比60:25:90:
0.1:5で混合した欠陥評価用エッチング液により室
温でエッチングを行った場合、5秒後付近から結晶とエ
ッチング液の反応が開始すると同時に気泡が発生し始め
る。その後、転位に起因するエッチピットが形成し始め
、エッチングを開始してから約10秒後にほぼすべての
エッチピットが出揃う。この時点でのピット径は1μm
以下である。さらにエッチングを続けてもピット径が大
きくなるだけで新たなエッチピットは生じない。従って
、室温で約10秒のエッチングにより転位によるエッチ
ピットはすべて現れ、かつピット径を1μm以下に抑え
ることができる。この条件でエッチングすることにより
、HgTeの組成に近い結晶の{111}A面の微小領
域の転位分布や高転位密度結晶の転位評価を行うことが
可能である。
(2) {11 of crystals close to the composition of HgTe
1} Side A was treated with 70% by weight nitric acid, 36% by weight hydrochloric acid, water, bromine, and acetic acid in a volume ratio of 60:25:90:
When etching is performed at room temperature using an etching solution for defect evaluation mixed at a ratio of 0.1:5, bubbles begin to generate at the same time as the reaction between the crystal and the etching solution starts around 5 seconds later. Thereafter, etch pits due to dislocations begin to form, and approximately 10 seconds after the start of etching, almost all of the etch pits appear. The pit diameter at this point is 1μm
It is as follows. Even if etching is continued further, the pit diameter only increases and no new etch pits are generated. Therefore, by etching for about 10 seconds at room temperature, all etch pits due to dislocations appear, and the pit diameter can be suppressed to 1 μm or less. By etching under these conditions, it is possible to evaluate the dislocation distribution in a micro region of the {111}A plane of a crystal close to the composition of HgTe and the dislocations of a high dislocation density crystal.

【0019】またエッチング条件は撹拌の有無によって
も大きく変化する。人為的な撹拌の場合、一回ごとにば
らつきがでる。そこでエッチング面を垂直に立て、静止
状態でエッチングを行うと、反応によって生じた気泡が
エッチング面表面をなでることにより撹拌が行われるた
め、毎回同じ条件でエッチングすることが可能になる。
[0019] Etching conditions also vary greatly depending on the presence or absence of stirring. In the case of artificial stirring, variations occur each time. Therefore, if the etching surface is held vertically and etching is performed in a static state, the bubbles generated by the reaction stroke the surface of the etching surface and agitation is performed, making it possible to perform etching under the same conditions every time.

【0020】(3)CdTeの組成に近い結晶の{11
1}A面を中川エッチャントにより室温でエッチングを
行った場合、開始直後から結晶とエッチング液の反応が
開始し、転位に起因するエッチピットが形成し始める。 エッチングを開始してから2〜3秒後にほぼすべてのエ
ッチピットが出揃っていると思われ、開始から10秒後
にはピット径は3μm程度になり、さらにエッチングを
続けてもピット径が大きくなるだけで新たなエッチピッ
トは生じない。エッチング時間が10秒以下であるとエ
ッチング時間の誤差が大きくなりエッチング液の撹拌状
態も毎回異なるため、再現性のあるエッチングを行うこ
とができない。
(3) {11 of a crystal close to the composition of CdTe
1} When the A-plane is etched with Nakagawa etchant at room temperature, the reaction between the crystal and the etching solution starts immediately after the etching starts, and etch pits due to dislocations begin to form. It seems that almost all the etch pits have appeared 2 to 3 seconds after starting etching, and 10 seconds after starting, the pit diameter will be about 3 μm, and even if you continue etching, the pit diameter will only increase. No new etch pits are generated. If the etching time is less than 10 seconds, the error in the etching time will be large and the stirring state of the etching solution will also differ each time, making it impossible to perform etching with reproducibility.

【0021】そこで、49重量%のフッ化水素酸と、3
0重量%の過酸化水素水と、水とを、体積比3:2:9
で混合した欠陥評価用エッチング液を用いてエッチング
を行うと、室温で10秒のエッチングにより転位による
エッチピットが形成され始め、開始から約20秒間で全
てのエッチピットは出揃い、かつピット径を1μm以下
に抑えることができる。
Therefore, 49% by weight of hydrofluoric acid and 3
0% by weight hydrogen peroxide solution and water at a volume ratio of 3:2:9
When etching is carried out using the etching solution for defect evaluation mixed in the above, etch pits due to dislocations begin to form after 10 seconds of etching at room temperature, and within about 20 seconds from the start, all etch pits are aligned and the pit diameter is 1 μm. It can be kept below.

【0022】この条件でエッチングすることにより、H
gTeの組成に近い結晶の{111}A面の微小領域の
転位分布や高転位密度結晶の転位評価を行うことが可能
である。ただし、エッチング条件において、静止状態で
のエッチングであるなら、エッチング面を垂直に立てる
と、水平に寝かした場合とでエッチング条件に変化は出
ない。
By etching under these conditions, H
It is possible to evaluate the dislocation distribution in a micro region of the {111}A plane of a crystal close to the composition of gTe and the dislocations of a high dislocation density crystal. However, if etching is performed in a stationary state, there will be no change in etching conditions when the etching surface is placed vertically or when the etching surface is placed horizontally.

【0023】[0023]

【実施例】以下、本発明の実施例について、図面を参照
して説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0024】図1は、本発明の方法により得られたCd
ZnTe(1(バー)1(バー)2(バー))B基板上
に成長したCdTeバッファー層とHgCdTeエピ層
の断面の転位分布の一例である。
FIG. 1 shows Cd obtained by the method of the present invention.
This is an example of the dislocation distribution in the cross section of a CdTe buffer layer and a HgCdTe epilayer grown on a ZnTe (1 (bar) 1 (bar) 2 (bar)) B substrate.

【0025】図において、HgCdTeエピ層1と、H
gCdTeエピ層2とは接着剤3によりはりあわされて
おり、HgCdTeエピ層1は、CdZnTe基板4の
上に直接成長させたものであり、HgCdTeエピ層2
は、CdTeバッファー層5を介してCdZnTe基板
6の上に成長させたものである。HgCdTeエピ層1
,2およびCdTeバッファー層5の断面にエッチピッ
トが観察される。CdZnTe基板4,6にもエッチピ
ットは形成しているが、密度が小さいためにこの写真の
中には写っていない。
In the figure, an HgCdTe epilayer 1 and an HgCdTe epilayer 1 are shown.
The HgCdTe epilayer 1 is bonded to the gCdTe epilayer 2 using an adhesive 3, and the HgCdTe epilayer 1 is grown directly on the CdZnTe substrate 4.
is grown on a CdZnTe substrate 6 via a CdTe buffer layer 5. HgCdTe epi layer 1
, 2 and the cross section of the CdTe buffer layer 5. Etch pits are observed in the cross section of the CdTe buffer layer 5. Etch pits are also formed on the CdZnTe substrates 4 and 6, but they are not visible in this photograph because their density is low.

【0026】二枚の結晶は、図2に示した方位に切断さ
れ、エッチング面7が同じ方向になり、かつエピ面同士
が向かいあわせになるようにエポキシ系接着剤を用いて
はりあわされる。このときはりあわせる基板枚数が偶数
であれば、エピ面同士を向かい合わせにしてたくさんの
結晶を一度にはりあわせても良い。
The two crystals are cut in the orientation shown in FIG. 2, and then glued together using an epoxy adhesive so that the etched surfaces 7 are in the same direction and the epitaxial surfaces face each other. If the number of substrates to be laminated at this time is an even number, many crystals may be laminated at once with their epitaxial surfaces facing each other.

【0027】次に、接着後の結晶に対して接着面に垂直
に40g/cm2の圧力をかけ、真空中80℃にてアニ
ールを3時間行った。その後エッチング面とその裏側を
荒削りして平面出しを行い、エッチング面を研磨した。 研磨は3000番のアルミナ粉末でラッピングした後で
mechano−chemical  polishを
行った。以上の作業により(1(バー)1(バー)2(
バー))B結晶の(1(バー)1(バー)1)A面断面
を基板・エピ層共に正確に出すことができ、かつ損傷の
無い(1(バー)1(バー)1)A鏡面研磨面を得た。
Next, a pressure of 40 g/cm 2 was applied perpendicular to the bonded surface to the bonded crystal, and annealing was performed at 80° C. in vacuum for 3 hours. After that, the etched surface and its back side were roughly cut to make it planar, and the etched surface was polished. For polishing, mechano-chemical polishing was performed after lapping with No. 3000 alumina powder. With the above operations (1 (bar) 1 (bar) 2 (
The (1 (bar) 1 (bar) 1) A cross section of the (1 (bar) 1 (bar) 1) A plane of the (1 (bar) 1 (bar) 1) A plane of the (1 (bar) 1 (bar) 1) (bar)) B crystal can be accurately displayed on both the substrate and the epitaxial layer, and the (1 (bar) 1 (bar) 1) A mirror surface is free from damage. A polished surface was obtained.

【0028】次に、研磨面を上向きにしてガラス基板に
固形ワックスを用いて接着し、結晶の取扱を良くすると
同時にエッチング時のエッチング面の角度を正確に設定
できるようにした。あとはガラス基板ごとに所定のエッ
チング液につけることにより転位評価を行うことができ
る。
Next, the crystal was bonded to a glass substrate with solid wax with the polished surface facing upward, thereby making it possible to better handle the crystal and at the same time accurately setting the angle of the etched surface during etching. Dislocation evaluation can then be performed by immersing each glass substrate in a predetermined etching solution.

【0029】研磨を施した結晶を、49重量%のフッ化
水素酸と、30重量%の過酸化水素水と、水とを、体積
比3:2:9で混合した欠陥評価用エッチング液を用い
て室温で20秒間エッチングを行った。その結果、Cd
ZnTe基板4の転位密度8.8×104cm−2,C
dZnTe基板6の転位密度2.6×105cm−2を
得た。また、CdTeバッファー層については転位密度
が大きすぎて正確な測定は不可能であったが、109c
m−2のオーダーであることがわかった。
[0029] The polished crystal was treated with an etching solution for defect evaluation, which is a mixture of 49% by weight of hydrofluoric acid, 30% by weight of hydrogen peroxide, and water in a volume ratio of 3:2:9. Etching was performed for 20 seconds at room temperature. As a result, Cd
Dislocation density of ZnTe substrate 4: 8.8 x 104 cm-2, C
A dislocation density of dZnTe substrate 6 of 2.6×10 5 cm −2 was obtained. In addition, the dislocation density of the CdTe buffer layer was too large to make accurate measurements;
It was found to be on the order of m-2.

【0030】次に、70重量%の硝酸と、36重量%の
塩酸と、水と、臭素と、酢酸とを、体積比60:25:
90:0.1:5で混合した欠陥評価用エッチング液を
用いて室温で10秒間、エッチング面を垂直に立て静止
状態でエッチングを行った。その結果、HgCdTeエ
ピ層1の転位密度2.2×107cm−2,HgCdT
eエピ層2の転位密度3.0×108cm−2を得た。
Next, 70% by weight of nitric acid, 36% by weight of hydrochloric acid, water, bromine, and acetic acid were mixed in a volume ratio of 60:25:
Etching was performed at room temperature for 10 seconds using an etching solution for defect evaluation mixed at a ratio of 90:0.1:5 with the etched surface standing vertically and in a stationary state. As a result, the dislocation density of the HgCdTe epilayer 1 was 2.2×107 cm−2, and the HgCdTe
A dislocation density of e-epi layer 2 of 3.0×10 8 cm −2 was obtained.

【0031】[0031]

【発明の効果】本発明の方法により、II−VI族半導
体のうち、II族がHg,Cdもしくはそれらに少量の
Mn,Znが含まれる元素で構成され、VI族がTeも
しくはそれに少量のSeが含まれる元素で構成されるB
面薄膜結晶もしくは{111}A面の結晶の転位密度、
およびその転位分布を正確に測定することができる。ま
た、欠陥評価用エッチング液として標準的なものを使う
ことができるため、この方法で得られた転位密度はバル
ク結晶等で報告されている値とも比較が可能な信頼でき
る値である。
Effects of the Invention By the method of the present invention, among II-VI group semiconductors, group II is composed of Hg, Cd, or elements containing small amounts of Mn and Zn, and group VI is composed of Te or a small amount of Se. B is composed of elements containing
Dislocation density of plane thin film crystal or {111}A plane crystal,
and its dislocation distribution can be measured accurately. Furthermore, since a standard etching solution for defect evaluation can be used, the dislocation density obtained by this method is a reliable value that can be compared with values reported for bulk crystals and the like.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の方法により得られた基板・バッファー
層・エピ層の断面の転位分布の一例の写真である。
FIG. 1 is a photograph of an example of a dislocation distribution in a cross section of a substrate, a buffer layer, and an epitaxial layer obtained by the method of the present invention.

【図2】結晶の切断方位の説明図である。FIG. 2 is an explanatory diagram of cutting directions of crystals.

【符号の説明】[Explanation of symbols]

1  HgCdTeエピ層 2  HgCdTeエピ層 3  接着剤 4  CdZnTe基板 5  CdTeバッファー層 6  CdZnTe基板 7  エッチング面 1 HgCdTe epilayer 2 HgCdTe epilayer 3. Adhesive 4 CdZnTe substrate 5 CdTe buffer layer 6 CdZnTe substrate 7 Etched surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  II−VI族半導体のうち、II族が
Hg,Cdもしくはそれらに少量のMn,Znが含まれ
る元素で構成され、VI族がTeもしくはそれに少量の
Seが含まれる元素で構成されるB面の薄膜半導体結晶
の転位評価法であって、二枚の薄膜結晶の表面同士を接
着剤ではりあわせ圧着させた状態で真空アニールをし、
その断面に近い面をエッチング面とし、その面を研磨し
た後にエッチングすることにより、転位に起因するエッ
チピットを形成させることを特徴とする半導体結晶の転
位評価法。
[Claim 1] Among II-VI group semiconductors, group II is composed of Hg, Cd, or an element containing a small amount of Mn or Zn, and group VI is composed of Te or an element containing a small amount of Se. This is a method for evaluating dislocations in B-plane thin film semiconductor crystals, in which the surfaces of two thin film crystals are laminated and pressed together with an adhesive and then vacuum annealed.
A method for evaluating dislocations in a semiconductor crystal, characterized in that a surface close to the cross section is set as an etching surface, and the surface is polished and then etched to form etch pits caused by dislocations.
【請求項2】  前記II−VI族半導体のうち、Hg
,Teの組成に近い半導体結晶の{111}A面におい
て、70重量%の硝酸と、36重量%の塩酸と、水と、
臭素と、酢酸とを、体積比60:25:90:0.1:
5で混合した欠陥評価用エッチング液を用いて室温で所
定の時間エッチング面を垂直に立て静止状態でエッチン
グを行い、転位に起因するエッチピットを形成させるこ
とを特徴とする請求項1に記載の半導体結晶の転位評価
法。
2. Among the II-VI group semiconductors, Hg
, 70% by weight of nitric acid, 36% by weight of hydrochloric acid, water,
Bromine and acetic acid in a volume ratio of 60:25:90:0.1:
2. Etch pits caused by dislocations are formed by performing etching using the etching solution for defect evaluation mixed in step 5 at room temperature for a predetermined period of time with the etched surface standing vertically and in a stationary state. Dislocation evaluation method for semiconductor crystals.
【請求項3】  前記II−VI族半導体のうち、Cd
Teの組成に近い半導体結晶の{111}A面において
、49重量%のフッ化水素酸と、30重量%の過酸化水
素水と、水とを、体積比3:2:9で混合した欠陥評価
用エッチング液を用いて室温で所定の時間エッチングを
行い、転位に起因するエッチピットを形成させることを
特徴とする請求項1に記載の半導体結晶の転位評価法。
3. Among the II-VI group semiconductors, Cd
A defect created by mixing 49% by weight of hydrofluoric acid, 30% by weight of hydrogen peroxide, and water in a volume ratio of 3:2:9 on the {111}A plane of a semiconductor crystal with a composition close to that of Te. 2. The method for evaluating dislocations in a semiconductor crystal according to claim 1, wherein etching is performed for a predetermined time at room temperature using an etchant for evaluation to form etch pits caused by dislocations.
JP17451791A 1991-06-19 1991-06-19 Evaluation of semiconductor crystal dislocation Pending JPH04370948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17451791A JPH04370948A (en) 1991-06-19 1991-06-19 Evaluation of semiconductor crystal dislocation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17451791A JPH04370948A (en) 1991-06-19 1991-06-19 Evaluation of semiconductor crystal dislocation

Publications (1)

Publication Number Publication Date
JPH04370948A true JPH04370948A (en) 1992-12-24

Family

ID=15979903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17451791A Pending JPH04370948A (en) 1991-06-19 1991-06-19 Evaluation of semiconductor crystal dislocation

Country Status (1)

Country Link
JP (1) JPH04370948A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0739686A2 (en) * 1995-04-25 1996-10-30 AT&T IPM Corp. Method and apparatus for polishing metal-soluble materials such as diamond

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0739686A2 (en) * 1995-04-25 1996-10-30 AT&T IPM Corp. Method and apparatus for polishing metal-soluble materials such as diamond
EP0739686A3 (en) * 1995-04-25 1996-11-13 AT&T IPM Corp. Method and apparatus for polishing metal-soluble materials such as diamond
US5846122A (en) * 1995-04-25 1998-12-08 Lucent Technologies Inc. Method and apparatus for polishing metal-soluble materials such as diamond

Similar Documents

Publication Publication Date Title
EP1060509B1 (en) Crystal ion-slicing of single-crystal films
US7323414B2 (en) Method for polishing a substrate surface
US4100014A (en) Etching agent for III/V semiconductors
Asghar et al. Effect of polishing parameters on chemical mechanical planarization of C-plane (0001) gallium nitride surface using SiO2 and Al2O3 abrasives
Spitzer et al. Silicon‐Doped Gallium Arsenide Grown from Gallium Solution: Silicon Site Distribution
KR20010105417A (en) Slicing of single-crystal films using ion implantation
Cheung Preparation of large‐area monocrystalline silicon thin windows
US4042419A (en) Process for the removal of specific crystal structure defects from semiconductor discs and the product thereof
US4412886A (en) Method for the preparation of a ferroelectric substrate plate
US2871110A (en) Etching of semiconductor materials
US6059878A (en) Method of manufacturing a bismuth-substituted rare-earth iron garnet single crystal film
EP0094302A2 (en) A method of removing impurities from semiconductor wafers
JPH04370948A (en) Evaluation of semiconductor crystal dislocation
US2927011A (en) Etching of semiconductor materials
JPS61172341A (en) Passivation of mercury cadmium telluride substrate
US4372808A (en) Process for removing a liquid phase epitaxial layer from a wafer
US3485731A (en) Process for electrolytically etching indium arsenide
JPH0319688B2 (en)
JPH06101457B2 (en) Mirror polishing liquid for GaAs wafer and mirror polishing method
JP2894154B2 (en) Method for measuring the depth of the affected layer on the silicon wafer surface
JPH05109693A (en) Manufacture of soi substrate
JPS6376413A (en) Semiconductor wafer and manufacture of the same
RU2032242C1 (en) Process of manufacture of laser target of cathode-ray tube on base of monocrystal of semiconductor of a 002b - 006 type
Irene et al. Observation of defects in mercury cadmium telluride crystals grown by chemical vapor transport
Robinson et al. The Chemical Polishing of Sapphire and Spinel