JPH04370804A - Controller - Google Patents

Controller

Info

Publication number
JPH04370804A
JPH04370804A JP14725591A JP14725591A JPH04370804A JP H04370804 A JPH04370804 A JP H04370804A JP 14725591 A JP14725591 A JP 14725591A JP 14725591 A JP14725591 A JP 14725591A JP H04370804 A JPH04370804 A JP H04370804A
Authority
JP
Japan
Prior art keywords
dead time
controlled
control
variable
manipulated variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14725591A
Other languages
Japanese (ja)
Other versions
JP2697970B2 (en
Inventor
Tetsuaki Kurokawa
哲明 黒川
Yuichi Kato
祐一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3147255A priority Critical patent/JP2697970B2/en
Publication of JPH04370804A publication Critical patent/JPH04370804A/en
Application granted granted Critical
Publication of JP2697970B2 publication Critical patent/JP2697970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To remove idle time elements by predicting the control motion of a controlled system which has the idle time elements. CONSTITUTION:This controller is equipped with a time identifying arithmetic part 24 which continuously measures a manipulated variable inputted to the controlled system varying in idle time and a controlled variable outputted by the controlled system to identify the idle time up to the appearance of the manipulated variable in the controlled variable and a controlled variable predictive arithmetic part 26 which predicts and calculates a controlled variable after the idle time by using the calculated idle time and the relation model between the controlled variable and manipulated variable.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、液レベル・温度・形状
等を自動制御する制御装置、特に、制御対象が無視でき
ないむだ時間要素を有し、かつそのむだ時間が時々刻々
変化する場合の制御に適した制御装置に関する。
[Industrial Application Field] The present invention relates to a control device that automatically controls liquid level, temperature, shape, etc. This invention relates to a control device suitable for control.

【0002】0002

【従来の技術】連続鋳造プロセスにおけるモールド内湯
面レベル制御(例えば特公昭63−16218 号)、
室温をコントロールする室温制御および、圧延工程での
板厚制御においては、一般にPID演算による定値制御
によっており、特に比例動作(P)および積分動作(I
)を主体とした制御が行なわれている。
[Prior Art] Molten metal level control in a mold in a continuous casting process (for example, Japanese Patent Publication No. 16218/1983);
Room temperature control and plate thickness control in the rolling process are generally based on fixed value control using PID calculations, especially proportional action (P) and integral action (I).
) is mainly controlled.

【0003】しかし、制御対象に無視できないむだ時間
が存在すると、従来のPID制御では、外乱が入るたび
に、目標値に対して急上昇、下降が生じ持続振動が生じ
てしまう。そのため変動量を極力小さくする必要のある
制御には適していない。むだ時間要素を含む系を安定に
制御する方法として、スミス法が知られている。この方
法はPID制御等の制御要素に加えてむだ時間を補償す
る制御要素を付加することによって、むだ時間要素を等
価的に除去するという方法である。
However, if there is a non-negligible dead time in the controlled object, in conventional PID control, each time a disturbance occurs, the target value suddenly increases or decreases, resulting in sustained vibration. Therefore, it is not suitable for control that requires the amount of variation to be minimized. The Smith method is known as a method for stably controlling systems that include dead time elements. This method is a method of equivalently removing dead time elements by adding a control element for compensating for dead time in addition to control elements such as PID control.

【0004】0004

【発明が解決しようとする課題】しかしながら、この手
法を採用するとしてもそれぞれの系について適切なむだ
時間の値を決定しなければならず、また、むだ時間の値
が時々刻々変化するような系では、むだ時間の決定をリ
アルタイムで行なう必要がある。したがって本発明の目
的は、制御対象が無視できないむだ時間を有し、かつ、
それが時間的に変化する場合であっても安定した制御を
行なうことのできる制御装置を提供することにある。
[Problem to be Solved by the Invention] However, even if this method is adopted, it is necessary to determine an appropriate value of dead time for each system, and it is necessary to determine an appropriate value of dead time for each system. Therefore, it is necessary to determine the dead time in real time. Therefore, it is an object of the present invention that a controlled object has a non-negligible dead time, and
It is an object of the present invention to provide a control device capable of performing stable control even when it changes over time.

【0005】[0005]

【課題を解決するための手段】図1は本発明の原理構成
図である。図において、本発明の制御装置は、目標値と
観測値との偏差から観測値を目標値に一致させるための
操作量を演算して制御対象10に与える操作量演算手段
12を具備する制御装置において、制御対象10に与え
た操作量と制御対象10において観測される制御量とか
ら、該制御対象10のむだ時間を逐次的かつ連続的に同
定するむだ時間逐次型同定手段14と、該むだ時間逐次
型同定手段14が同定したむだ時間の値と前記制御量と
操作量とから、制御対象10のモデルを用いてむだ時間
経過後の制御量を予測演算する制御量予測演算手段16
とを具備し、目標制御量と該制御量予測演算手段16が
予測した制御量との差が前記偏差として前記操作量演算
手段12に与えられることを特徴とするものである。
[Means for Solving the Problems] FIG. 1 is a diagram showing the basic configuration of the present invention. In the figure, the control device of the present invention is a control device equipped with a manipulated variable calculating means 12 that calculates a manipulated variable for making the observed value match the target value from the deviation between the target value and the observed value and provides it to the controlled object 10. , a dead time sequential identification means 14 sequentially and continuously identifies the dead time of the controlled object 10 from the manipulated variable given to the controlled object 10 and the controlled variable observed in the controlled object 10; Controlled variable prediction calculation means 16 predicts and calculates the controlled variable after the dead time has elapsed using a model of the controlled object 10 from the value of the dead time identified by the time-sequential identification means 14, the control amount, and the manipulated variable.
It is characterized in that the difference between the target control amount and the control amount predicted by the control amount prediction calculation means 16 is given to the operation amount calculation means 12 as the deviation.

【0006】[0006]

【作用】むだ時間逐次型同定手段14がむだ時間の同定
のための演算を逐次的に行なうことにより、高速なむだ
時間演算が達成され、時々刻々変化するむだ時間がリア
ルタイムで同定されてそれによるむだ時間の補償がリア
ルタイムで実現される。
[Operation] By sequentially performing calculations for dead time identification by the dead time sequential identification means 14, high-speed dead time calculation is achieved, and the dead time that changes from moment to moment is identified in real time. Dead time compensation is realized in real time.

【0007】[0007]

【実施例】図2は本発明の一実施例に係る制御装置20
を使用した制御系のブロック図を示す。22は制御対象
を表わし、加えられた操作量u(t) に対応して制御
量y(t) が変化するのにむだ時間としてτ時間を要
し、しかもむだ時間τは時刻tによって変化し、τ(t
) で表わされる。
[Embodiment] FIG. 2 shows a control device 20 according to an embodiment of the present invention.
A block diagram of a control system using the is shown. 22 represents a controlled object, and it takes τ time as a dead time for the controlled variable y(t) to change in response to the applied manipulated variable u(t), and the dead time τ varies depending on time t. , τ(t
).

【0008】むだ時間逐次型同定演算部24は、このむ
だ時間τ(t) を同定(推定計算)するもので、後に
詳述するように、操作量u(t) をd時刻遅らせたu
(t−d)とy(t)との相互相関係数を、dを変えて
求め、それが最大となるdを遅れ時間τ′(t)とする
。ここで相互相関係数を忘却係数を使って、逐次的に求
めることが本制御装置の最大の特長である。
The dead time sequential type identification calculation section 24 identifies (estimates) this dead time τ(t).
The cross-correlation coefficient between (t-d) and y(t) is obtained by varying d, and the maximum d is set as the delay time τ'(t). The greatest feature of this control device is that the cross-correlation coefficient is found sequentially using the forgetting coefficient.

【0009】制御量予測演算部26は、上記で求まった
推定むだ時間τ′(t) を使ってモデル計算によりτ
′(t) 時刻後の制御量y(t+τ′(t))を予測
計算するものである。操作量演算部28は、目標制御量
と制御量予測演算部26が演算したτ′(t) 後の予
測制御量y(t+τ′(t))との差により操作量を演
算するものである。これは例えば周知のPID制御演算
ロジック等を用いる。
The control amount prediction calculation section 26 uses the estimated dead time τ'(t) obtained above to calculate τ by model calculation.
'(t) The control amount y(t+τ'(t)) after time is predictively calculated. The manipulated variable calculating section 28 calculates the manipulated variable based on the difference between the target controlled variable and the predicted controlled variable y (t+τ'(t)) after τ'(t) calculated by the controlled variable prediction calculating section 26. . This uses, for example, a well-known PID control calculation logic.

【0010】30は操作量演算部28において演算され
た操作量だけ制御対象22に働きかける操作端であり、
32は制御量を検出する検出端である。図3〜図5は本
発明の制御装置の使用可能な例を示している。図3は鋼
板の板厚制御の例で、操作量u(t) が油圧圧下装置
40によるロール圧下量、制御量y(t) が厚み計4
2において測定される鋼板厚みである。この場合厚み計
42が圧下装置40から数m離れた位置に設置されてい
るのでむだ時間を生じ、しかも、ロール44と鋼板46
はスリップするので、鋼板速度はロール周速に一致せず
、むだ時間は変化する。
Reference numeral 30 denotes an operating end that acts on the controlled object 22 by the operating amount calculated by the operating amount calculating section 28;
32 is a detection end for detecting the control amount. 3 to 5 show examples of possible uses of the control device of the invention. FIG. 3 is an example of plate thickness control of a steel plate, where the manipulated variable u(t) is the roll reduction amount by the hydraulic pressure reduction device 40, and the controlled variable y(t) is the thickness total 4
This is the steel plate thickness measured in No. 2. In this case, since the thickness gauge 42 is installed at a position several meters away from the rolling down device 40, there is a dead time.
slips, so the steel plate speed does not match the roll circumferential speed, and the dead time changes.

【0011】図4は連続鋳造機のモールドレベル制御の
例で、操作量u(t) はスライディングノズル50の
開度、制御量y(t) はレベル計52により測定した
モールドレベルである。この場合浸漬ノズル54内に溶
鋼が充満しておらずタンディッシュ56内の溶鋼がモー
ルド58内へ流入するのに時間遅れがあり、ノズル内の
状況によりむだ時間が変化する。
FIG. 4 shows an example of mold level control in a continuous casting machine, where the manipulated variable u(t) is the opening degree of the sliding nozzle 50, and the controlled variable y(t) is the mold level measured by the level meter 52. In this case, the immersion nozzle 54 is not filled with molten steel, and there is a time delay before the molten steel in the tundish 56 flows into the mold 58, and the dead time changes depending on the situation inside the nozzle.

【0012】図5は室内の温度制御の例で操作量u(t
) はボイラー60からの蒸気量を操作するコントロー
ル弁62の開度、制御量y(t)は温度計64により測
定した室内温度である。このプロセスでも弁62が開閉
してから、それにともなって室内温度が変化するのでむ
だ時間がある。 図2のむだ時間逐次型同定演算部24における演算処理
は、相互相関係数の計算を前回の計算結果を利用して逐
次的に計算することによって簡略化して、計算時間およ
びメモリが節約できるようになっており、パーソナルコ
ンピュータ程度の能力のコンピュータ上でのソフトウェ
ア処理で実現が可能である。
FIG. 5 shows an example of indoor temperature control in which the manipulated variable u(t
) is the opening degree of the control valve 62 that controls the amount of steam from the boiler 60, and the control amount y(t) is the room temperature measured by the thermometer 64. Even in this process, there is dead time since the indoor temperature changes after the valve 62 opens and closes. The calculation process in the dead time sequential identification calculation unit 24 in FIG. 2 is simplified by sequentially calculating the cross-correlation coefficient using the previous calculation results, so that calculation time and memory can be saved. This can be realized using software processing on a computer with the same power as a personal computer.

【0013】図6はこのむだ時間逐次型同定演算部24
および図2の制御量予測演算部26を実現するソフトウ
ェア処理のフローチャートである。操作量u(t) と
制御量y(t) はともにA/D変換して演算周期毎に
とり込まれて記憶され、u(t) については過去の値
とともにu(t−d),…u(t−1), u(t)の
D個のサンプルがメモリ上に保持される(ステップa)
。なお、図4の例のように制御対象に積分要素がある場
合にはy(t) のかわりとして差分値Δy(t) =
y(t) −y(t−1)を使う。次に予め設定された
定数である忘却係数ρ(0<ρ<1)を用いて漸化式(
1) P(t) =1+ρ・P(t−1),P(0) =0 
       …(1) より、パラメータP(t) を算出し、その値を用いて
漸化式(2)(3)、 ym (t) =ym (t−1)+{y(t) −y
m (t−1)}/P(t), ym (0) =0                
                  …(2) um (t,d) =um (t−1,d)+{u(t
−d)−um (t−1,d)}/P(t), um (0,d) =0;ただしd=0,1…D   
       …(3) より、y(t) の重み付き平均値ym (t) およ
びu(t−d)の重み付き平均値um (t,d)を算
出し、それらの値から漸化式(4) R(t,d) =R(t−1,d) +1/P(t) 〔ρ・P(t−1)/P(t)2・{
y(t) −ym (t−1)}{u(t−d)−um
 (t−1,d)}+{y(t) −ym t)}{u
(t−d)−um (t,d) }−R(t−1,d)
〕,R(0,d) =0              
                  …(4) より操作量u(t) をdだけ遅延させたu(t−d)
と制御量y(t) との相互相関係数R(t,d) を
算出する(ステップb)。そして、算出されたR(t,
d) ; d=0,1…Dの中で最大のR(t,d) 
を与えるdを推定むだ時間τ′(t) とする(ステッ
プc)。
FIG. 6 shows this dead time sequential type identification calculation section 24.
3 is a flowchart of software processing that implements the control amount prediction calculation unit 26 of FIG. 2. FIG. Both the manipulated variable u(t) and the controlled variable y(t) are A/D converted and captured and stored in each calculation cycle, and u(t) is stored together with past values as u(t-d),...u (t-1), D samples of u(t) are held in memory (step a)
. Note that when the controlled object has an integral element as in the example in Fig. 4, the difference value Δy(t) =
Use y(t) -y(t-1). Next, using the forgetting coefficient ρ (0<ρ<1) which is a preset constant, the recurrence formula (
1) P(t) =1+ρ・P(t-1), P(0) =0
...From (1), calculate the parameter P(t), and use the value to calculate recurrence formulas (2) and (3), ym (t) = ym (t-1) + {y(t) -y
m (t-1)}/P(t), ym (0) =0
...(2) um (t, d) = um (t-1, d) + {u(t
-d) -um (t-1, d)}/P(t), um (0, d) = 0; however, d = 0, 1...D
...(3), calculate the weighted average value ym (t) of y(t) and the weighted average value um (t, d) of u(t-d), and use the recurrence formula (4 ) R(t, d) = R(t-1, d) +1/P(t) [ρ・P(t-1)/P(t)2・{
y(t) -ym (t-1)}{u(t-d)-um
(t-1, d)}+{y(t) -ym t)}{u
(t-d)-um (t,d) }-R(t-1,d)
], R (0, d) = 0
...(4) u(t-d) with the manipulated variable u(t) delayed by d
The cross-correlation coefficient R(t, d) between the control amount y(t) and the control amount y(t) is calculated (step b). Then, the calculated R(t,
d); d=0,1...maximum R(t,d) among D
Let d giving the estimated dead time τ'(t) be the estimated dead time τ'(t) (step c).

【0014】制御対象モデルを ym (t) =f(u(t−τ(t))とすると、τ
′(t) 時間後の予測制御量はym (t+τ′(t
))=y(t) +(f(u(t))−f(u(t−τ
′(t))) で計算される(ステップd)。ただし、y(t) は実
測値である。
[0014] If the controlled object model is ym (t) = f (u (t - τ (t)), then τ
'(t) The predicted control amount after time is ym (t+τ'(t
))=y(t) +(f(u(t))-f(u(t-τ
'(t))) (step d). However, y(t) is an actual value.

【0015】算出された予測制御量y(t+τ′(t)
)が出力され(ステップe)、目標制御量との偏差が操
作量演算部28(図2)へ供給される。図7は、本制御
装置を用いた制御の例で、図4の連続鋳造機のモールド
レベル制御チャートである。現在時刻tを34分40秒
として、本制御装置の演算内容を説明する。まず操作量
であるSN(スライディングノズル開度)u(t) と
制御量であるモールドレベルy(t) よりむだ時間τ
′(t) を同定する。 (ただしこの場合は制御対象にモールド58 (図2)
という積分要素があるので、u(t) とΔy(t)=
y(t) −y(t−1)とからτ′(t) を求める
。)この場合は同定結果がτ′(t)=2秒だから、2
秒前の34分38秒から34分40秒までのu(k) 
の影響が制御量にあらわれていないので、その2秒間に
制御量が、どのくらい変化しているかをモデルを使って
推定演算し、それを実測レベルy(t) に加え、予測
レベルy(t+τ′(t))とする。この予測レベルに
よりフィードバック制御を行う。
[0015] The calculated predicted control amount y(t+τ'(t)
) is output (step e), and the deviation from the target control amount is supplied to the manipulated variable calculation unit 28 (FIG. 2). FIG. 7 is an example of control using this control device, and is a mold level control chart of the continuous casting machine of FIG. 4. The calculation contents of this control device will be explained assuming that the current time t is 34 minutes and 40 seconds. First, the dead time τ is calculated from the manipulated variable SN (sliding nozzle opening degree) u(t) and the controlled variable mold level y(t).
′(t). (However, in this case, the control target is the mold 58 (Fig. 2)
Since there is an integral element, u(t) and Δy(t)=
Find τ'(t) from y(t) -y(t-1). ) In this case, the identification result is τ'(t) = 2 seconds, so 2
u(k) from 34 minutes 38 seconds ago to 34 minutes 40 seconds
Since the effect of (t)). Feedback control is performed based on this predicted level.

【0016】[0016]

【発明の効果】以上述べてきたように本発明によれば、
制御対象が無視できないむだ時間要素を含み、そのむだ
時間の値が時間とともに変化する場合であっても、安定
な制御を行なう制御装置が、比較的安価なコンピュータ
を使用して実現することができる。
[Effects of the Invention] As described above, according to the present invention,
A control device that performs stable control even when the controlled object includes non-negligible dead time elements and the value of the dead time changes over time can be realized using a relatively inexpensive computer. .

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の原理構成図である。FIG. 1 is a diagram showing the principle configuration of the present invention.

【図2】本発明の一実施例を表わす図である。FIG. 2 is a diagram representing an embodiment of the present invention.

【図3】本発明を鋼板の圧延工程における板厚制御に適
用した例を表わす図である。
FIG. 3 is a diagram showing an example in which the present invention is applied to plate thickness control in a steel plate rolling process.

【図4】本発明を連続鋳造機のモールドレベル制御に適
用した例を表わす図である。
FIG. 4 is a diagram showing an example in which the present invention is applied to mold level control of a continuous casting machine.

【図5】本発明を室温の制御に適用した例を表わす図で
ある。
FIG. 5 is a diagram showing an example in which the present invention is applied to room temperature control.

【図6】むだ時間同定演算および予測制御量算出の処理
のフローチャートである。
FIG. 6 is a flowchart of processing for dead time identification calculation and predicted control amount calculation.

【図7】本発明の制御装置による連続鋳造機のモールド
レベル制御の制御結果を表わす図である。
FIG. 7 is a diagram showing control results of mold level control of a continuous casting machine by the control device of the present invention.

【符号の説明】[Explanation of symbols]

40…圧下装置 42…厚み計 44…ロール 46…鋼板 50…スライディングノズル 52…モールドレベル計 54…浸漬ノズル 56…タンディッシュ 58…モールド 64…温度計 40...Reducing device 42...Thickness gauge 44...Roll 46...Steel plate 50...Sliding nozzle 52...Mold level meter 54...Immersion nozzle 56...Tundish 58...Mold 64...Thermometer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  目標値と観測値との偏差から観測値を
目標値に一致させるための操作量を演算して制御対象(
10)に与える操作量演算手段(12) を具備する制
御装置において、制御対象(10) に与えた操作量と
制御対象 (10) において観測される制御量とから
、該制御対象 (10)のむだ時間を逐次的かつ連続的
に同定するむだ時間逐次型同定手段 (14) と、該
むだ時間逐次型同定手段 (14) が同定したむだ時
間の値と前記制御量と操作量とから、制御対象 (10
) のモデルを用いてむだ時間経過後の制御量を予測演
算する制御量予測演算手段 (16) とを具備し、目
標制御量と該制御量予測演算手段 (16) が予測し
た制御量との差が前記偏差として前記操作量演算手段 
(12) に与えられることを特徴とする制御装置。
[Claim 1] The control target (
In a control device equipped with a manipulated variable calculating means (12) given to a controlled object (10), the controlled amount of the controlled object (10) is calculated from the manipulated variable given to the controlled object (10) and the controlled variable observed in the controlled object (10). A dead time sequential identification means (14) identifies the dead time sequentially and continuously, and the control is performed based on the value of the dead time identified by the dead time sequential identification means (14), the control amount, and the manipulated variable. Target (10
) for predicting and calculating the controlled variable after the dead time has elapsed using a model of The difference is used as the deviation by the operation amount calculation means.
(12) A control device characterized by:
【請求項2】  前記むだ時間逐次型同定手段(10)
 は複数通りの遅延時間で遅延させた操作量と制御量と
の相互相関係数を算出し、該相互相関係数が最大となる
遅延時間を前記むだ時間とする請求項1記載の制御装置
[Claim 2] The dead time sequential identification means (10)
2. The control device according to claim 1, wherein: calculates a cross-correlation coefficient between the manipulated variable and the controlled variable delayed by a plurality of delay times, and sets the delay time at which the cross-correlation coefficient is maximum as the dead time.
【請求項3】  前記むだ時間逐次型同定手段(10)
 は前回の演算における相互相関係数を用いて漸化式に
より今回の相互相関係数を算出する請求項2記載の制御
装置。
3. The dead time sequential identification means (10)
3. The control device according to claim 2, wherein: calculates the current cross-correlation coefficient by a recurrence formula using the cross-correlation coefficient in the previous calculation.
JP3147255A 1991-06-19 1991-06-19 Control device Expired - Fee Related JP2697970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3147255A JP2697970B2 (en) 1991-06-19 1991-06-19 Control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3147255A JP2697970B2 (en) 1991-06-19 1991-06-19 Control device

Publications (2)

Publication Number Publication Date
JPH04370804A true JPH04370804A (en) 1992-12-24
JP2697970B2 JP2697970B2 (en) 1998-01-19

Family

ID=15426099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3147255A Expired - Fee Related JP2697970B2 (en) 1991-06-19 1991-06-19 Control device

Country Status (1)

Country Link
JP (1) JP2697970B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002533192A (en) * 1998-12-23 2002-10-08 フィッシャー アンド ペイケル リミティド Laundry device with load balancing system
US8930031B2 (en) 2008-12-17 2015-01-06 Fisher & Paykel Appliances Limited Laundry machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231303A (en) * 1986-03-31 1987-10-09 Toshiba Corp Dead time control device
JPS63128401A (en) * 1986-11-18 1988-06-01 Hitachi Ltd Proportion/integration type estimation adaptive control device
JPS63163505A (en) * 1986-12-25 1988-07-07 Idemitsu Petrochem Co Ltd Adaptive control method for process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231303A (en) * 1986-03-31 1987-10-09 Toshiba Corp Dead time control device
JPS63128401A (en) * 1986-11-18 1988-06-01 Hitachi Ltd Proportion/integration type estimation adaptive control device
JPS63163505A (en) * 1986-12-25 1988-07-07 Idemitsu Petrochem Co Ltd Adaptive control method for process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002533192A (en) * 1998-12-23 2002-10-08 フィッシャー アンド ペイケル リミティド Laundry device with load balancing system
US8930031B2 (en) 2008-12-17 2015-01-06 Fisher & Paykel Appliances Limited Laundry machine

Also Published As

Publication number Publication date
JP2697970B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
CN100374960C (en) Modeling method for a metal
JP3318742B2 (en) Mold level control device for continuous casting equipment
US5311924A (en) Molten metal level control method and device for continuous casting
Liu et al. Algorithm design and application of laminar cooling feedback control in hot strip mill
JPH09145265A (en) Method and apparatus for controlling temperature in electrical furnace
JPH04370804A (en) Controller
JP3291201B2 (en) Apparatus and method for controlling plating amount
JPH06264B2 (en) Level control method in continuous casting
Barron et al. Model-based control of mold level in a continuous steel caster under model uncertainties
JP2005509530A (en) Continuous casting method
JP2002018506A (en) Method and device for controlling thickness, method for calculating pass schedule in continuous rolling mill
Ivanova Model predictive control of secondary cooling modes in continuous casting
JP3501982B2 (en) Sheet width control device
JP5858265B1 (en) Reduction control device and reduction control method
JPH07100610A (en) Method for controlling molten metal surface level in mold in continuous casting
JP2634108B2 (en) Metal surface level control method in continuous casting
Yang et al. A fuzzy PID thermal control system for casting dies
Jabri et al. Suppression of periodic disturbances in the continuous casting process
RU2783688C1 (en) Method for controlling the cooling device in the rolling mill line
JP2984171B2 (en) Mold level control device
JP2735362B2 (en) Pump control device
Chen Control of constrained moving-boundary process with application to steel continuous casting
JP7452514B2 (en) Method and device for controlling steel plate tension and looper angle during hot rolling
Ivanova Model predictive control of continuous ingot solidification
JPS63163505A (en) Adaptive control method for process

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970812

LAPS Cancellation because of no payment of annual fees