JPH04369412A - Shape failure detecting apparatus - Google Patents

Shape failure detecting apparatus

Info

Publication number
JPH04369412A
JPH04369412A JP3173071A JP17307191A JPH04369412A JP H04369412 A JPH04369412 A JP H04369412A JP 3173071 A JP3173071 A JP 3173071A JP 17307191 A JP17307191 A JP 17307191A JP H04369412 A JPH04369412 A JP H04369412A
Authority
JP
Japan
Prior art keywords
circuit
light
shape
signal
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3173071A
Other languages
Japanese (ja)
Inventor
Katsuhiko Niikura
新蔵 克彦
Manabu Kuninaga
学 國永
Toshitaka Ota
敏隆 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3173071A priority Critical patent/JPH04369412A/en
Publication of JPH04369412A publication Critical patent/JPH04369412A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To detect a part of improper shape generated in a band-shaped body such as a steel plate or the like highly accurately during the travel of the band- shaped body. CONSTITUTION:This apparatus adapted to detect a failure in the shape of an object by casting a laser beam is constituted of two-dimensional cross photodetecting elements 10 for detecting the reflecting beam, a circuit 15 which detects the center of gravity of luminance of the beam from the signals detected by a longitudinal array of the photodetecting elements, and a circuit 13 which calculates the number of the photodetecting elements detecting the laser beam of not smaller than a predetermined value. The apparatus obtains the evaluating result corresponding to the kind of the shape failure and the degree of harm from the characteristic amount fed from the circuits. There are provided circuits 16, 16-1 to correct errors resulting from the curve of the scanning locus of the beam caused by an optical system, so that the detecting accuracy is improved. For a lateral array of photodetecting elements, there is provided a detecting circuit 20 to detect the maximum detecting amount of light of all the elements, and the shape failure is evaluated based on the detecting output.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、帯状体例えば鋼板等に
発生する形状不良部を、帯状体の走行中に高精度に検出
する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for detecting with high precision a defective shape occurring in a strip, such as a steel plate, while the strip is running.

【0002】0002

【従来の技術】鋼板等の帯状体に発生する形状不良には
、中のび、側のび、側波のように、ある程度の範囲にま
たがっているものがあるが、凹凸、折れ等のように局部
的なものもある。これらの帯状体の形状不良を走行中に
検出する場合、従来ある程度の範囲にまたがる形状不良
の形状検出器として、例えば特開昭57−124243
号に帯状体に映った棒状光源の虚像をテレビカメラで撮
影し、形状不良により発生する像の歪みをビデオ信号か
ら自動検出する方法や、変位計により帯状体の高さ変化
を直接検出する方法などは良く知られている。しかしこ
れらの方法では帯状体表面全体をくまなく検査すること
は極めて困難である上、凹凸不良に代表される微小な形
状不良に対する感度も低い。
[Prior Art] Shape defects that occur in strip-shaped objects such as steel plates include those that extend over a certain range, such as center stretch, side stretch, and side waves, but are localized such as unevenness, folds, etc. There are some things like that. When detecting defective shapes of these strips while traveling, conventional shape detectors for detecting defective shapes over a certain range have been used, for example, in Japanese Patent Application Laid-Open No. 57-124243.
A method is to use a television camera to take a virtual image of a bar-shaped light source reflected on a strip, and automatically detect image distortion caused by shape defects from the video signal, and a method is to directly detect changes in the height of the strip using a displacement meter. etc. are well known. However, with these methods, it is extremely difficult to thoroughly inspect the entire surface of the strip, and the sensitivity to minute shape defects typified by unevenness defects is also low.

【0003】微小な形状不良の検出は、従来いわゆる光
学的疵検出器の役割であったが、基本的に対象物からの
反射光量の変化を測定するものであるため、色ムラや光
沢が変化している疵、さらには甚だひどい形状不良には
威力を発揮するが、のびや波のように形状が緩やかに変
化する形状不良や周辺と光沢の差がない凹凸不良のよう
な微小な形状不良の検出に関しては無力である。
[0003] Detection of minute shape defects has traditionally been the role of so-called optical flaw detectors, but since they basically measure changes in the amount of light reflected from the object, it is difficult to detect variations in color unevenness or gloss. However, it is effective against small shape defects such as shape defects where the shape changes gradually like stretches or waves, and unevenness defects where there is no difference in gloss from the surrounding area. It is powerless to detect.

【0004】また特開昭61−254809号は、レー
ザービームを被検材に照射し反射ビームを縦列配置した
受光素子で受光し、受光位置の上下変動から形状不良を
検出するものである。形状不良の検出に一定の効果があ
る。
Furthermore, Japanese Patent Laid-Open No. 61-254809 discloses a method in which a laser beam is irradiated onto a material to be inspected, the reflected beam is received by light receiving elements arranged in tandem, and shape defects are detected from vertical fluctuations in the light receiving position. It has a certain effect on detecting shape defects.

【0005】[0005]

【発明が解決しようとする課題】しかし、被検材を一基
の形状検出装置で全幅にわたって形状不良を検出するに
は、次のような課題がある。即ち、帯状体例えば冷延鋼
板、表面処理鋼板等の製造において、通常検査員の目視
観察で十分に管理しているとは言えども、発生する形状
不良の種類や形態は前述のように種々あり、従来装置で
はそれら形状不良を現場製造ライン内で十分に満足しえ
る精度で検出そして認識する事は困難であった。
However, there are the following problems in detecting shape defects over the entire width of a test material using a single shape detection device. In other words, in the production of strips such as cold-rolled steel sheets, surface-treated steel sheets, etc., although they are usually adequately controlled through visual observation by inspectors, there are various types and forms of shape defects that occur, as mentioned above. However, with conventional equipment, it has been difficult to detect and recognize these shape defects with sufficient accuracy within the on-site production line.

【0006】またレーザービームの被検材への走査は回
転ミラーと放物面鏡との組合せで行わざるを得ないので
、被検材上の反射位置は板幅方向で直線とならず曲線状
となり検出精度に限界がある。
[0006] Furthermore, since scanning of the laser beam onto the material to be inspected must be performed using a combination of a rotating mirror and a parabolic mirror, the reflection position on the material to be inspected is not a straight line in the width direction of the material, but a curved line. Therefore, there is a limit to detection accuracy.

【0007】本発明は、このような従来技術の欠点を克
服するもので、帯状体に発生する種々の形状不良を一基
の形状検出装置で、走行中に高精度に検出する装置を提
供するものである。
The present invention overcomes these drawbacks of the prior art, and provides a device that can detect various shape defects occurring in a strip with high precision during traveling using a single shape detection device. It is something.

【0008】[0008]

【課題を解決するための手段】本発明は、レーザービー
ム3を被検材1の幅方向へ走査する平行走査装置(5、
6)と、被検材1から反射された反射ビームを入射し、
幅方向の拡がりを圧縮する走査方向集光装置9と、走査
方向集光装置9からの反射ビームを受光する十字状受光
素子群10と、十字状受光素子群10の縦列の受光素子
が受光する高さ方向での受光量の重心を算出する回路1
5と、縦列の受光素子が受光した信号と予め定めた閾値
と比較し閾値を超えた受光素子の個数を計数する回路1
3と、前記計数回路13からの信号及び重心算出回路1
5からの信号とそれぞれ定めた閾値とを比較し、比較結
果に基いて形状不良を出力する第1判定回路17、18
、19と、前記十字状受光素子群10の横列の受光素子
が受光した反射ビームの最大受光量を検出する回路20
と、前記最大受光量検出回路からの信号と予め定めた閾
値とを比較し、比較結果に基いて形状不良を出力する第
2判定回路21、22とからなることを特徴とする形状
不良検出装置である。
[Means for Solving the Problems] The present invention provides a parallel scanning device (5,
6), and the reflected beam reflected from the test material 1 is incident,
A scanning direction light collecting device 9 that compresses the spread in the width direction, a cross-shaped light receiving element group 10 that receives the reflected beam from the scanning direction light collecting device 9, and vertically arranged light receiving elements of the cross-shaped light receiving element group 10 receive light. Circuit 1 that calculates the center of gravity of the amount of received light in the height direction
5, and a circuit 1 that compares the signals received by the light receiving elements in the column with a predetermined threshold value and counts the number of light receiving elements that exceed the threshold value.
3, the signal from the counting circuit 13 and the center of gravity calculation circuit 1
First judgment circuits 17 and 18 compare the signals from 5 with respective predetermined threshold values and output shape defects based on the comparison results.
, 19, and a circuit 20 for detecting the maximum amount of reflected beams received by the horizontal rows of light receiving elements of the cross-shaped light receiving element group 10.
and a second determination circuit 21, 22 that compares the signal from the maximum received light amount detection circuit with a predetermined threshold value and outputs a shape defect based on the comparison result. It is.

【0009】[0009]

【作用】被検材の二次元方向の形状不良を反射ビームの
縦方向及び横方向の変位に分解して検出する。形状不良
の種類や形態に応じて各方向の不良弁別の閾値を個別に
定めることができ、高い検出精度が得られる。
[Operation] Defects in the shape of the specimen in the two-dimensional direction are detected by decomposing them into vertical and horizontal displacements of the reflected beam. The threshold value for defect discrimination in each direction can be determined individually according to the type and form of the shape defect, and high detection accuracy can be obtained.

【0010】0010

【実施例】図1により先ず本発明の原理を説明する。図
1において、1はX方向に走行する被検材たる帯状体で
ある。2はレーザー装置であり、レーザービーム3をビ
ームエキスパンダー4を通して回転ミラー5に照射する
。回転ミラー5で反射されたレーザービーム3は放物面
鏡6で反射され、板幅方向に平行走査する走査ビームと
なって被検材1に対してある角度で被検材表面に照射す
る。被検材1の反射点8で反射された走査ビーム7は走
査方向集光装置、例えば放物面鏡9によって折り返され
、更に幅方向に集光され、十字状に密に多数個配置され
た十字状受光素子群10に入射する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the principle of the present invention will be explained with reference to FIG. In FIG. 1, reference numeral 1 denotes a belt-shaped body which is a material to be inspected and runs in the X direction. A laser device 2 irradiates a rotating mirror 5 with a laser beam 3 through a beam expander 4. The laser beam 3 reflected by the rotating mirror 5 is reflected by the parabolic mirror 6, becomes a scanning beam that scans parallel to the plate width direction, and irradiates the surface of the specimen 1 at a certain angle with respect to the specimen 1. The scanning beam 7 reflected at the reflection point 8 of the material to be inspected 1 is turned back by a scanning direction focusing device, for example, a parabolic mirror 9, and further focused in the width direction, and a large number of beams are densely arranged in a cross shape. The light enters the cross-shaped light receiving element group 10.

【0011】ここで、もし仮に反射点8−1のように被
検材1に対して幅方向で同一の角度θで入射するとすれ
ば、十字状受光素子群10上での反射スポットは、被検
材1の反射点の走行方向傾きにより次の様に変化する。
Here, if the reflection point 8-1 is incident on the specimen 1 at the same angle θ in the width direction, the reflection spot on the cross-shaped light receiving element group 10 will be It changes as follows depending on the inclination of the reflection point of inspection material 1 in the running direction.

【0012】図2の(a)に示すように正常部により走
査ビーム7が反射される場合は、走査ビーム7は、十字
状受光素子群10の中心A点に入射する。形状不良部の
長手方向の変化によって走査ビーム7が反射される場合
は、走査ビーム7が十字状受光素子群10に入射する位
置は形状不良部の傾きにより図2(b)(c)に示すよ
うにA点より高い位置のB点になったり、A点よりも低
い位置のC点になったりする。
When the scanning beam 7 is reflected by the normal portion as shown in FIG. 2A, the scanning beam 7 is incident on the center point A of the cross-shaped light receiving element group 10. When the scanning beam 7 is reflected due to a change in the longitudinal direction of the defective shape portion, the position where the scanning beam 7 enters the cross-shaped light receiving element group 10 is determined by the inclination of the defective portion as shown in FIGS. 2(b) and 2(c). Point B may be higher than point A, or point C may be lower than point A.

【0013】さらにレーザービーム3は有限の太さを有
しており、被検材1の走査箇所で形状不良部の傾きが一
定でない場合には、図3(a)のように走査反射ビーム
7は十字状受光素子10の狭い箇所に当たるのではなく
、広い範囲B〜Cにまたがって入射することもある。 特に微小な凹凸疵のような場合には、図3(b)に示す
ように受光量の極大点が2ヵ所以上出現することがある
Furthermore, the laser beam 3 has a finite thickness, and if the inclination of the defective shape part is not constant at the scanning location of the specimen 1, the scanning reflected beam 7 as shown in FIG. 3(a) may not be incident on a narrow area of the cross-shaped light receiving element 10, but may be incident over a wide range B to C. In particular, in the case of minute irregularities and flaws, two or more maximum points of the amount of received light may appear as shown in FIG. 3(b).

【0014】このように、形状不良による被検材1の走
行方向の変位によって生じる特徴があるが、幅方向に緩
やかに変化する形状不良の場合には、図4に示すように
十字状受光素子群10の幅方向受光素子の左右上下に振
れた位置に入射するようになる。さらに甚だひどい形状
不良の場合には、受光素子群10から外れてしまうが、
これらは、重大不良として製品からリジェクトすれば良
い。
As described above, there are characteristics caused by the displacement of the test material 1 in the running direction due to the shape defect, but in the case of a shape defect that changes gradually in the width direction, the cross-shaped light receiving element is used as shown in FIG. The light comes to be incident on the width direction light receiving elements of group 10 at positions that are swung horizontally, vertically, and vertically. If the shape is even more severe, it will fall off from the light receiving element group 10.
These can be rejected from the product as serious defects.

【0015】このように反射点8の表面の傾きを検出す
るものであるが、被検材1が走行方向で傾いている場合
、反射された走査ビーム7の向きは反射点8の傾きの2
倍変化し、さらに十字状受光素子群10での上下移動距
離は反射点8と受光素子群10との距離Lに比例するた
め、該距離Lを十分離せば極めて敏感に形状不良部の傾
き変化を捉える特徴を有している。
In this way, the inclination of the surface of the reflection point 8 is detected, but if the specimen 1 is inclined in the running direction, the direction of the reflected scanning beam 7 is 2 times the inclination of the reflection point 8.
Furthermore, since the vertical movement distance in the cross-shaped light-receiving element group 10 is proportional to the distance L between the reflection point 8 and the light-receiving element group 10, if the distance L is sufficiently separated, the slope of the defective part will change extremely sensitively. It has the characteristic of capturing

【0016】一方、前述のように回転ミラー5により走
査されたレーザービーム3は、例えば放物面鏡6で平行
走査される際、幅方向で回転ミラー5と放物面鏡6との
距離が異なる為に、被検材1上でのレーザービーム3の
位置走査の軌跡は直線とはならず、放物面鏡6の曲率に
対応した曲線となる。その結果、たとえ対象物の被検材
1が平坦だとしても被検材中央部からの反射レーザービ
ーム7と端部からの反射レーザービーム7とが十字状受
光素子群10に入射する高さが変化してしまう。
On the other hand, when the laser beam 3 scanned by the rotating mirror 5 as described above is scanned in parallel by the parabolic mirror 6, for example, the distance between the rotating mirror 5 and the parabolic mirror 6 in the width direction is Because of this difference, the locus of positional scanning of the laser beam 3 on the test material 1 is not a straight line, but a curved line corresponding to the curvature of the parabolic mirror 6. As a result, even if the object to be inspected 1 is flat, the height at which the reflected laser beam 7 from the center of the object and the reflected laser beam 7 from the edges enter the cross-shaped light receiving element group 10 is increased. It will change.

【0017】この変化量を△Hとすると、△Hは平行走
査するための放物面鏡6が広幅化すればするほど大きく
なり、また前述の距離Lを大きくすればするほど大きく
なる。距離Lを大きくする事は前述のように形状不良部
の傾き変化をより敏感に捉えることになるが、反面、入
射高さ変化量△Hが増大する欠点が生じる。そこで放物
面鏡6の曲面形状から幅方向の修正量を算出し、後述す
る信号処理部で補正することにより、高精度に形状不良
度合いを捉えるようにしている。なお被検材1の走行速
度に応じて、走査周期を十分短くし、走査ピッチを十分
細かくすれば被検材1の表面をくまなく検査することが
可能である。
Assuming that this amount of change is ΔH, ΔH increases as the parabolic mirror 6 for parallel scanning becomes wider, and as the above-mentioned distance L increases, ΔH increases. Increasing the distance L makes it possible to more sensitively detect changes in the inclination of the defective shape portion as described above, but on the other hand, there is a drawback that the amount of change in the incident height ΔH increases. Therefore, by calculating the correction amount in the width direction from the curved shape of the parabolic mirror 6 and correcting it by a signal processing section to be described later, the degree of shape defect can be determined with high accuracy. Note that if the scanning period is made sufficiently short and the scanning pitch is made sufficiently fine depending on the traveling speed of the specimen 1, it is possible to thoroughly inspect the surface of the specimen 1.

【0018】十字状受光素子群10は、受光素子11が
複数個、十字状に設けられたものであり走査方向集光装
置9からの走査反射ビーム7が水平及び垂直の各変位を
検出する。十字状に受光素子11を配したのは、検出原
理の項で前述した特徴を必要最小限の受光素子数で実現
するためである。
The cross-shaped light receiving element group 10 includes a plurality of light receiving elements 11 arranged in a cross shape, and detects horizontal and vertical displacements of the scanning reflected beam 7 from the scanning direction condenser 9. The reason why the light-receiving elements 11 are arranged in a cross shape is to realize the features described above in the detection principle section with the minimum number of light-receiving elements.

【0019】次に信号処理について図5を用いて説明す
る。
Next, signal processing will be explained using FIG. 5.

【0020】十字状受光素子群10は、高さ方向にM個
、幅方向に6N個、合計M+6N個の受光素子11が設
けられたものであり、また12はプリアンプ回路を表す
。プリアンプ12の各出力に結合された回路13は、M
個の高さ方向の受光素子11に対して、予め定めたある
可変の閾値を超える受光素子11のブロック数が幾つ存
在するかを算出する回路である。この回路13を以下「
島の数」回数と称する。図6にその機能を示す。
The cross-shaped light-receiving element group 10 is provided with M light-receiving elements 11 in the height direction and 6N light-receiving elements in the width direction, for a total of M+6N light-receiving elements 11, and 12 represents a preamplifier circuit. A circuit 13 coupled to each output of the preamplifier 12 has an M
This circuit calculates the number of blocks of light receiving elements 11 that exceed a predetermined variable threshold for each light receiving element 11 in the height direction. This circuit 13 is hereinafter referred to as “
The number of islands is called the number of times. Figure 6 shows its function.

【0021】「島の数」回路13はM個の受光素子11
に入った光を光電変換し、各受光素子11ごとに設けら
れたコンパレータによりある閾値14を越えた受光素子
11のコンパレータ出力をH(1)とし、閾値14を越
えなかった受光素子11のコンパレータ出力をL(0)
とし、次に図6(b)に示すようにその各コンパレータ
出力を隣合ったコンパレータ出力と比較することにより
、例えば、コンパレータ出力を非反転出力と反転させた
出力に分け、隣合ったコンパレータとのANDをとるこ
とにより島の数nをリアルタイムで求める。
The "number of islands" circuit 13 has M light receiving elements 11.
The input light is photoelectrically converted, and the comparator output of the light receiving element 11 that exceeds a certain threshold value 14 is set as H(1) by a comparator provided for each light receiving element 11, and the comparator output of the light receiving element 11 that does not exceed the threshold value 14 is set as H(1). output to L(0)
Then, as shown in FIG. 6(b), by comparing each comparator output with the adjacent comparator output, for example, the comparator output is divided into a non-inverted output and an inverted output, and The number of islands, n, is determined in real time by ANDing.

【0022】プリアンプ12の各出力に結合された回路
15は十字状受光素子群10の縦列の受光素子11が受
光する高さ方向での受光量の重心gを算出するものであ
り、この重心算出回路15は、高さ方向の受光素子11
に対して、各受光素子11の受光量を受光素子の位置に
応じて重み付け加算する回路と、高さ方向の受光素子1
1に対して、各受光素子11の受光量の総和を求める回
路から構成され、前者の加算回路から算出した量を後者
の総和回路から算出した量で割算する機能を持つ。即ち
、各受光素子11で受光している受光量をVi 、各受
光素子の番号をi(i=1〜M)とすると、g=Σ(i
・Vi )/ΣVi を算出し出力する。
A circuit 15 coupled to each output of the preamplifier 12 calculates the center of gravity g of the amount of light received in the height direction by the light receiving elements 11 in the column of the cross-shaped light receiving element group 10. The circuit 15 includes a light receiving element 11 in the height direction.
, a circuit that weights and adds the amount of light received by each light receiving element 11 according to the position of the light receiving element, and a circuit that adds the amount of light received by each light receiving element 11 in the height direction.
1, it is composed of a circuit that calculates the sum of the amount of light received by each light receiving element 11, and has a function of dividing the amount calculated from the former adding circuit by the amount calculated from the latter summation circuit. That is, if the amount of light received by each light receiving element 11 is Vi, and the number of each light receiving element is i (i=1 to M), then g=Σ(i
・Calculate and output Vi)/ΣVi.

【0023】16、16−1は、重心算出回路15の出
力に前述の変化量△Hを加算する回路である。例えば、
事前に被検材1上でのレーザービームの被検材長さ方向
の曲がり量Ey を実測もしくはシミュレーションによ
り算出すると、図7に示すように変化量△Hは投受光装
置の配置で、以下の演算により決定される。
Reference numerals 16 and 16-1 are circuits that add the above-mentioned change amount ΔH to the output of the center of gravity calculation circuit 15. for example,
If the bending amount Ey of the laser beam in the length direction of the test material 1 on the test material 1 is calculated in advance by actual measurement or simulation, the amount of change △H is determined by the arrangement of the light emitting and receiving device as shown in Fig. 7. Determined by calculation.

【0024】   H=L  tanθ    ・・・・・・・・・・
・・・・・・(1)  Hy =(L+△Ey )ta
nθ’・・・・・・・・・・・(2)  △H=L(t
anθ’−tanθ)+△Ey tanθ・・(3)但
し、L  :走査レーザービーム反射位置と十字状受光
素子群の距離 θ  :板端部での走査反射レーザービームの反射角度
θ’:板中央部側の走査反射レーザービームの反射角度
H  :板端部の走査反射レーザービームの十字状受光
素子群への入射高さ Hy :板中央部側の走査反射レーザービームの十字状
受光素子群への入射高さ △H:入射高さ変化量 この演算によりあらかじめ入射高さ変化量△Hを算出し
、この変化量△Hに対応した電圧発生回路(図示しない
)を介して、重心算出回路15から出力される重心gを
補正する方法があるが、これを簡素化するには図7(b
)に示すように被検材中央のみの変化量△Hcente
rを求めて板幅方向に折れ線近似し、別途入力される板
幅方向走査パルス信号をカウントして、板幅位置に応じ
た補正値△Hを△H算出回路16で生成し、加算回路1
6−1で重心gに加算して補正する。これにより被検材
1の全幅を一基の検出装置により形状検出できる。
[0024] H=L tanθ
・・・・・・(1) Hy = (L+△Ey)ta
nθ'・・・・・・・・・・・・(2) △H=L(t
anθ' - tanθ) + △Ey tanθ... (3) However, L: Distance between the scanning laser beam reflection position and the cross-shaped light receiving element group θ: Reflection angle of the scanning reflected laser beam at the plate end θ': Center of the plate Reflection angle H of the scanning reflected laser beam on the side of the plate: Height of incidence of the scanning reflected laser beam on the plate end to the cross-shaped light receiving element group Hy: Reflection angle of the scanning reflected laser beam on the plate center side to the cross-shaped light receiving element group Incident height △H: amount of change in incident height The amount of change in incident height △H is calculated in advance by this calculation, and the amount of change in the incident height △H is calculated from the center of gravity calculation circuit 15 via a voltage generation circuit (not shown) corresponding to this amount of change △H. There is a method of correcting the output center of gravity g, but to simplify this method, use Fig. 7 (b
), the amount of change only in the center of the test material △Hcente
r is calculated and approximated by a polygonal line in the board width direction, and a separately input board width direction scanning pulse signal is counted to generate a correction value ΔH corresponding to the board width position in the ΔH calculation circuit 16, and the addition circuit 1
In 6-1, it is added to the center of gravity g and corrected. Thereby, the shape of the entire width of the specimen 1 can be detected by one detection device.

【0025】17、18は判定回路であり、コンパレー
タで任意に予め定めた閾値と比較される。該判定回路1
7、18は例えば微小な凹凸疵の場合、島の数nが2以
上あり、かつ補正した重心g’が殆ど平坦部と変化しな
いという条件(gmin≦g’≦gmax)で凹凸疵が
「有り」と判断するために、各回路17、18に接続さ
れたANDゲートから「1」を出力する。
Reference numerals 17 and 18 are determination circuits, which are compared with arbitrarily predetermined threshold values by comparators. The judgment circuit 1
For example, in the case of minute unevenness flaws, 7 and 18 indicate that the unevenness flaw is "present" under the conditions that the number n of islands is 2 or more and the corrected center of gravity g' is almost unchanged from the flat part (gmin≦g'≦gmax). ”, the AND gates connected to each circuit 17 and 18 output “1”.

【0026】「有り」と判断した部分を例えばシフトレ
ジスタ19に「1」で入力し、「有り」と判断しなかっ
た部分を「0」と入力し、例えば、被検材1の面に対応
させた6×6の正方行列のなかでの「1」の連結成分を
計数し、連結成分がある閾値14以上であれば重大な形
状不良と、閾値14以下であれば軽い形状不良とする。 なお、閾値14を複数個設定すれば、より精密な有害度
判定が実現できる。
[0026] For example, the part judged as "present" is inputted as "1" into the shift register 19, and the part judged as "not present" is inputted as "0". The connected components of 1 in the 6×6 square matrix are counted, and if the connected component is above a certain threshold of 14, it is considered a serious shape defect, and if it is below the threshold of 14, it is considered a minor shape defect. Note that by setting a plurality of threshold values 14, a more precise degree of harm can be determined.

【0027】20は最大値検出回路であって、十字状受
光素子群10の横列つまり幅方向に設けた6N個の受光
素子11の受光量の最大値hを、例えばプリアンプ12
の各出力に接続されたダイオードOR回路で算出する。 最大値がある閾値h0 を超えれば判定回路21を介し
形状不良部が「有り」と判断する。
Reference numeral 20 denotes a maximum value detection circuit, which detects the maximum value h of the amount of light received by the 6N light receiving elements 11 arranged in the horizontal rows, that is, in the width direction, of the cross-shaped light receiving element group 10, for example, by the preamplifier 12.
It is calculated using a diode OR circuit connected to each output of If the maximum value exceeds a certain threshold h0, it is determined by the determination circuit 21 that there is a defective shape portion.

【0028】「有り」と判断した部分を例えばシフトレ
ジスタ22に「1」で入力し、「有り」と判断しなかっ
た部分を「0」と入力し、被検材1の長手方向(i’)
に「1」の連結成分を抽出し、連結部分が1個を超えた
所を重大形状不良とし、1個以下の所を軽い形状不良と
する。なお、閾値を複数個設定すれば、きめ細やかな判
定ができる。
For example, the part judged as "present" is inputted as "1" into the shift register 22, the part judged as "presence" is inputted as "0", and the longitudinal direction (i' )
Connected components with a value of 1 are extracted, and locations with more than 1 connected portion are treated as serious shape defects, and locations with less than 1 connected portion are treated as minor shape defects. Note that by setting a plurality of threshold values, detailed determination can be made.

【0029】この受光量最大値算出回路20は、折れや
のびのように幅方向に形状が緩やかに変化し、長手方向
にその形状がある長さ連続する場合に有効である。その
他形状不良の判定に有効な特徴量は、受光している受光
素子の最大受光量や受光している受光素子の幅などがあ
る。これらを特徴量を算出するのは容易であり、上記特
徴量と組み合わせれば、更に高精度な形状不良判定がで
きる。
This maximum amount of received light calculation circuit 20 is effective when the shape changes gradually in the width direction, such as bending or stretching, and the shape continues for a certain length in the longitudinal direction. Other feature quantities that are effective in determining shape defects include the maximum amount of light received by the light receiving element that is receiving light, the width of the light receiving element that is receiving light, and the like. It is easy to calculate feature quantities from these, and when combined with the above feature quantities, it is possible to determine shape defects with even higher accuracy.

【0030】[0030]

【発明の効果】以上のように本発明によると、帯状被検
材例えば冷延鋼板、表面処理鋼板等の形状不良検出が、
形状不良の種類や形態に対応させた不良弁別の閾値を用
いて、走行中に精度よくできる。
[Effects of the Invention] As described above, according to the present invention, it is possible to detect defective shapes of strip-shaped test materials such as cold-rolled steel sheets, surface-treated steel sheets, etc.
Defect discrimination can be performed accurately while driving by using defect discrimination thresholds that correspond to the type and form of shape defects.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例と原理を説明する図である。FIG. 1 is a diagram illustrating an embodiment and principle of the present invention.

【図2】本発明の原理を説明する図である。FIG. 2 is a diagram explaining the principle of the present invention.

【図3】本発明の原理を説明する図である。FIG. 3 is a diagram illustrating the principle of the present invention.

【図4】本発明の原理を説明する図である。FIG. 4 is a diagram explaining the principle of the present invention.

【図5】本発明の一実施例の信号処理ブロックを示す図
である。
FIG. 5 is a diagram showing a signal processing block according to an embodiment of the present invention.

【図6】本発明の一実施例の信号処理を説明するための
図である。
FIG. 6 is a diagram for explaining signal processing according to an embodiment of the present invention.

【図7】本発明の一実施例において十字状受光素子群へ
の走査反射ビームの入射高さが板幅方向位置に対応して
変化する状態を説明するための図である。
FIG. 7 is a diagram for explaining a state in which the height of incidence of the scanning reflected beam on the cross-shaped light receiving element group changes in accordance with the position in the plate width direction in one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  被検材 2  レーザ装置 3  レーザビーム 4  ビームエキスパンダ 5  回転ミラー 6  放物面鏡 7  走査ビーム 8  反射点 9  放物面鏡 10  十字状受光素子群 11  受光素子 12  プリアンプ 13  島の数回路 15  重心算出回路 16  △H算出回路 17、18  判定回路 19  シフトレジスタ 20  最大値検出回路 21  判定回路 22  シフトレジスタ 1 Test material 2 Laser device 3 Laser beam 4 Beam expander 5 Rotating mirror 6 Parabolic mirror 7 Scanning beam 8 Reflection point 9 Parabolic mirror 10 Cross-shaped light receiving element group 11 Photo receiving element 12 Preamplifier 13 Island number circuit 15 Center of gravity calculation circuit 16 △H calculation circuit 17, 18 Judgment circuit 19 Shift register 20 Maximum value detection circuit 21 Judgment circuit 22 Shift register

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  レーザービームを被検材の幅方向へ走
査する平行走査装置と、被検材から反射された反射ビー
ムを入射し幅方向の拡がりを圧縮する走査方向集光装置
と、走査方向集光装置からの反射ビームを受光する十字
状受光素子群と、十字状受光素子群の縦列の受光素子が
受光する高さ方向での受光量の重心を算出する計数回路
と、縦列の受光素子が受光した信号と予め定めた閾値と
を比較し閾値を超えた受光素子の個数を計算する回路と
、前記計数回路からの信号及び重心算出回路からの信号
とそれぞれ定めた閾値とを比較し、比較結果に基いて形
状不良を出力する第1判定回路と、前記十字状受光素子
群の横列の受光素子が受光した反射ビームの最大受光量
を検出する回路と、前記最大受光量検出回路からの信号
と予め定めた閾値とを比較し、比較結果に基いて形状不
良を出力する第2判定回路とからなることを特徴とする
形状不良検出装置。
Claim 1: a parallel scanning device that scans a laser beam in the width direction of a material to be inspected; a scanning direction focusing device that enters a reflected beam reflected from the material to be inspected and compresses the spread in the width direction; A cross-shaped light-receiving element group that receives the reflected beam from the condenser, a counting circuit that calculates the center of gravity of the amount of light received in the height direction received by the vertically-column light-receiving elements of the cross-shaped light-receiving element group, and the vertically-column light-receiving elements. A circuit that compares the signal received by the light with a predetermined threshold value and calculates the number of light receiving elements exceeding the threshold value, and compares the signal from the counting circuit and the signal from the center of gravity calculation circuit with the respective predetermined threshold values; a first determination circuit that outputs a shape defect based on the comparison result; a circuit that detects the maximum amount of reflected beams received by the horizontal light receiving elements of the cross-shaped light receiving element group; A shape defect detection device comprising a second determination circuit that compares the signal with a predetermined threshold value and outputs a shape defect based on the comparison result.
【請求項2】  光学系に起因する高さ方向の入射高さ
変化量を被検材の幅方向に沿って算出する回路と、前記
重心算出回路からの信号と前記入射高さ変化量の算出回
路とを加算し、被検材の幅方向に沿った走査ビームの曲
がりによる誤差を補正する回路とを備える請求項1に記
載の形状不良検出装置。
2. A circuit for calculating the amount of change in incident height in the height direction due to the optical system along the width direction of the specimen, a signal from the center of gravity calculation circuit and calculation of the amount of change in the incident height. 2. The shape defect detection apparatus according to claim 1, further comprising a circuit for correcting errors caused by bending of the scanning beam along the width direction of the test material.
【請求項3】  前記第1判定回路が、前記計数回路か
らの信号と予め定めた閾値とを比較する第1比較回路と
、前記重心算出回路からの信号と予め定めた閾値とを比
較する第2比較回路と、前記第1、第2比較回路の出力
のアンドをとるアンド回路と、前記アンド回路の出力を
被検材の面に対応させて記憶する行列状のシフトレジス
タとを備え、このシフトレジスタの記憶内容に基いて不
良部分の大きさを判定する回路とから成ることを特徴と
する請求項1に記載の形状不良検出装置。
3. The first determination circuit includes a first comparison circuit that compares the signal from the counting circuit with a predetermined threshold, and a first comparison circuit that compares the signal from the center of gravity calculation circuit with a predetermined threshold. 2 comparison circuits, an AND circuit that ANDs the outputs of the first and second comparison circuits, and a matrix-like shift register that stores the outputs of the AND circuit in correspondence with the surface of the material to be inspected. 2. The shape defect detection device according to claim 1, further comprising a circuit for determining the size of the defective portion based on the contents stored in the shift register.
【請求項4】  前記第2判定回路が、前記最大受光量
検出回路からの信号と予め定めた閾値とを比較する第3
比較回路と、前記第3比較回路の出力の出力を被検材の
面に対応させて記憶する行列状のシフトレジスタとを備
え、このシフトレジスタの記憶内容に基いて不良部分の
大きさを判定する回路とから成ることを特徴とする請求
項1に記載の形状不良検出装置。
4. The second determination circuit compares the signal from the maximum received light amount detection circuit with a predetermined threshold value.
Comprising a comparison circuit and a matrix-shaped shift register that stores the output of the third comparison circuit in correspondence with the surface of the material to be inspected, and determines the size of the defective portion based on the stored contents of the shift register. 2. The shape defect detection device according to claim 1, further comprising a circuit for detecting defects in shape.
JP3173071A 1991-06-18 1991-06-18 Shape failure detecting apparatus Withdrawn JPH04369412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3173071A JPH04369412A (en) 1991-06-18 1991-06-18 Shape failure detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3173071A JPH04369412A (en) 1991-06-18 1991-06-18 Shape failure detecting apparatus

Publications (1)

Publication Number Publication Date
JPH04369412A true JPH04369412A (en) 1992-12-22

Family

ID=15953670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3173071A Withdrawn JPH04369412A (en) 1991-06-18 1991-06-18 Shape failure detecting apparatus

Country Status (1)

Country Link
JP (1) JPH04369412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8384903B2 (en) 1998-11-18 2013-02-26 Kla-Tencor Corporation Detection system for nanometer scale topographic measurements of reflective surfaces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8384903B2 (en) 1998-11-18 2013-02-26 Kla-Tencor Corporation Detection system for nanometer scale topographic measurements of reflective surfaces

Similar Documents

Publication Publication Date Title
JPH0674907A (en) Detection method for defect of tranparent plate-like body
CN106461575A (en) Device and method for measuring distortion defects in a manufactured float glass strip
JPH11311510A (en) Method and apparatus for inspection of very small uneven part
US3779649A (en) Method of and an electro-optical system for inspecting material
CN111638226B (en) Detection method, image processor and detection system
US4641256A (en) System and method for measuring energy transmission through a moving aperture pattern
JPH04369412A (en) Shape failure detecting apparatus
JPH061168B2 (en) Shape defect detection device
JPS6125042A (en) Surface-defect examining device
JP4023295B2 (en) Surface inspection method and surface inspection apparatus
JPH03135704A (en) Strain inspecting method for plate type body
JPS61176838A (en) Inspection of defect of transparent or semi-transparent plate-shaped body
JPH079403B2 (en) Surface defect inspection method for objects
JPH09113465A (en) Detection apparatus for surface fault for galvanized steel plate
JPS62233710A (en) Face inspection instrument
JPH0827181B2 (en) Automatic coating skin inspection device
JP3145296B2 (en) Defect detection method
JP3340879B2 (en) Surface defect detection method and apparatus
JP2715897B2 (en) IC foreign matter inspection apparatus and method
JP3013693B2 (en) Defect detection method and device
JPH05203586A (en) Shape failure detection method
JPH0961373A (en) Method for inspecting surface defect, and device therefor
JP3444575B2 (en) Rangefinder
JPS58744A (en) Inspecting method of bottle or the like
JPH07234116A (en) Warpage rate measuring method for plate material

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903