JPH04369272A - Composite diode - Google Patents

Composite diode

Info

Publication number
JPH04369272A
JPH04369272A JP14503691A JP14503691A JPH04369272A JP H04369272 A JPH04369272 A JP H04369272A JP 14503691 A JP14503691 A JP 14503691A JP 14503691 A JP14503691 A JP 14503691A JP H04369272 A JPH04369272 A JP H04369272A
Authority
JP
Japan
Prior art keywords
diode
field effect
effect transistors
pair
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14503691A
Other languages
Japanese (ja)
Inventor
Kazuo Matsuzaki
松崎 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP14503691A priority Critical patent/JPH04369272A/en
Publication of JPH04369272A publication Critical patent/JPH04369272A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve reverse recovery characteristic of a composite diode and to easily enhance a breakdown voltage by connecting a pair of opposite conductivity type field effect transistors diode-connected to each other in anti- parallel with each other. CONSTITUTION:A pair of opposite conductivity type field effect transistors 10, 20 are diode-connected to each other, and both are connected in anti-parallel with each other to form a composite diodes having a pair of terminals P, N. For example, the transistor 10 is an electron conductive n-channel type, the transistor 20 is a hole conductive p-channel type, and both are short-circuited between a gate terminal G and a source terminal to be diode-connected. Accordingly, the electrons and the holes are rapidly absorbed, for example, into p-type and n-type drain layers without reinjections of opposite polarity holes and electrons.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は高速動作に適しダイオー
ド接続された電界効果トランジスタから構成される複合
化ダイオードに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite diode suitable for high-speed operation and composed of diode-connected field effect transistors.

【0002】0002

【従来の技術】インバータ装置,チョッパ装置,スイッ
チングレギュレータ等の回路装置では益々高周波化が進
められており、その回路内で整流用等に用いられるダイ
オードの性能にはまず第1に高速動作が可能なことが要
求され、さらには使用回路電圧に充分耐え得る高い耐圧
性やむだな電力損失を抑え得る低い順方向電圧降下等の
性能が要求されるのが常である。この内のダイオードの
高速動作性能上は周知のようにそのオン動作時よりオフ
動作時の方に問題があり、そのバルクの半導体内のキャ
リアが完全に消滅して耐圧を充分に回復し切るまでのい
わゆる逆回復時間を短縮することが高速動作性を高める
上で最も大切になる。
[Prior Art] Circuit devices such as inverters, chopper devices, and switching regulators are becoming increasingly high-frequency, and the performance of diodes used for rectification in these circuits is first of all high-speed operation. In addition, performance such as high voltage resistance that can sufficiently withstand the circuit voltage used, and low forward voltage drop that can suppress unnecessary power loss is usually required. As is well known, the high-speed operation performance of diodes among these diodes is more problematic during off-operation than on-operation, until the carriers in the bulk semiconductor are completely annihilated and the withstand voltage is fully recovered. Reducing the so-called reverse recovery time is most important in improving high-speed operation.

【0003】この高速動作性の要求を満たすものとして
、主には pinの3層構造を持ついわゆる高速ダイオ
ードが従来から用いられている。よく知られているよう
に、このpin構造のダイオードはそのi層に必要な耐
圧を持たせながら、逆回復を速めるために白金や金等の
原子をいわゆるライフタイムキラーを導入して、オフ動
作時のバルク内の正負のキャリアの消滅を促進するもの
である。
[0003] So-called high-speed diodes, which mainly have a three-layer pin structure, have been used to meet this requirement for high-speed operation. As is well known, diodes with this pin structure have the necessary breakdown voltage in their i-layer, and in order to speed up reverse recovery, so-called lifetime killer atoms such as platinum or gold are introduced to prevent off-operation. This promotes the disappearance of positive and negative carriers within the bulk of time.

【0004】また、ショットキーバリアダイオードも高
速動作用に適する。周知のように、これは金属を半導体
に直接接触させたとき両者間に生じるショットキーバリ
アがもつ整流作用を利用するもので、バリア付近にキャ
リアの蓄積がほとんど起こらないため本質的に逆回復時
間が短く、しかも順方向電圧降下が接合形ダイオードよ
りも小さい利点を有する。
[0004] Schottky barrier diodes are also suitable for high-speed operation. As is well known, this method utilizes the rectifying effect of the Schottky barrier that occurs between a metal and a semiconductor when they are brought into direct contact with each other, and since almost no carriers accumulate near the barrier, the reverse recovery time is essentially short. It has the advantage of a shorter forward voltage drop and a smaller forward voltage drop than a junction diode.

【0005】[0005]

【発明が解決しようとする課題】しかし、上述の pi
nダイオードとショットキーバリアダイオードのいずれ
にもそれぞれ以下のような一長一短がある。
[Problem to be solved by the invention] However, the above pi
Both n-diodes and Schottky barrier diodes have their own advantages and disadvantages as described below.

【0006】pin構造の高速ダイオードはそのi層の
厚みにより耐圧を所望値に設定できる利点があるが、逆
回復時間を短縮するためライフタイムキラーの導入量を
あまり増すと順方向電圧降下が大きくなるので、実用上
はこの制約のため逆回復時間をある限度以下に短縮でき
ない。例えば、順方向電圧降下を通常のダイオードより
10%高い程度に抑えると逆回復時間はふつう30ns
程度が限度になり、それ以下に減少させるのは非常に困
難である。
[0006] A high-speed diode with a pin structure has the advantage that the breakdown voltage can be set to a desired value depending on the thickness of its i-layer, but if the amount of lifetime killer introduced to shorten the reverse recovery time is increased too much, the forward voltage drop becomes large. Therefore, in practice, the reverse recovery time cannot be reduced below a certain limit due to this restriction. For example, if the forward voltage drop is suppressed to 10% higher than that of a normal diode, the reverse recovery time is typically 30ns.
This is the limit, and it is extremely difficult to reduce it below that level.

【0007】ショットキーバリアダイオードは逆回復時
間および順方向電圧降下については非常に有利であるが
、オフ時の逆漏れ電流がかなり大きい問題があるのでこ
れを嫌う用途には不向きである。また、高耐圧化が困難
な問題があって、順方向電圧降下を犠牲にすれば多少の
改善は可能ではあるが、それにも自ずから限界があるの
で pinダイオードの場合ほどの高耐圧化は望めない
Although Schottky barrier diodes are very advantageous in terms of reverse recovery time and forward voltage drop, they have the problem of considerably large reverse leakage current when turned off, so they are unsuitable for applications where this is a problem. In addition, there is the problem that it is difficult to increase the withstand voltage, and although it is possible to improve it somewhat by sacrificing the forward voltage drop, there is a limit to that, so it is not possible to achieve as high a withstand voltage as with a PIN diode. .

【0008】このため、最近ではこれら両種ダイオード
が持つ長所が併せて得られるようにpin構造にショッ
トキーバリアを組み合わせたSpin構造と呼ばれるダ
イオードも試みられている(IEEE Electro
n Device Lett., EDL−8, p.
407, 1987)が、両者の長所のみを兼備させる
ことは必ずしも容易でなく、とくに高耐圧用のダイオー
ドでは短所の方が出やすいのが実情である。さらには、
シリコン以外のGaAsやSiC等の半導体材料を利用
した高速ダイオードも検討されているが、ごく小形のも
のは別として電力用では経済性等の点でまだ実用性が充
分でない。
For this reason, recently, a diode called a spin structure, which combines a pin structure and a Schottky barrier, has been attempted in order to obtain the advantages of both types of diodes (IEEE Electro
n Device Let. , EDL-8, p.
407, 1987), it is not necessarily easy to combine only the advantages of both, and the reality is that the disadvantages are more likely to emerge, especially in high voltage diodes. Furthermore,
High-speed diodes using semiconductor materials other than silicon, such as GaAs and SiC, are also being considered, but apart from very small diodes, they are not yet sufficiently practical for power applications due to economic efficiency and other considerations.

【0009】かかる現状に鑑み本発明の目的は、材料面
や製造面での実用性を維持しながら動作を高速化する上
で逆回復時間に対する従来の制約を解決できるダイオー
ドを提供することにある。
In view of the current situation, it is an object of the present invention to provide a diode that can solve the conventional restrictions on reverse recovery time while increasing the speed of operation while maintaining practicality in terms of materials and manufacturing. .

【0010】0010

【課題を解決するための手段】この目的は本発明によれ
ば、それぞれダイオード接続された互いに逆導電形の1
対の電界効果トランジスタを逆並列接続して複合化ダイ
オードを構成することによって達成される。
[Means for Solving the Problem] According to the invention, this object is achieved by providing two diode-connected circuits of opposite conductivity type.
This is accomplished by connecting pairs of field effect transistors in antiparallel to form a composite diode.

【0011】なお、上記構成にいうダイオード接続は通
例のように各電界効果トランジスタのゲートを例えばそ
のソースと短絡することでよい。また、本発明による複
合化ダイオードでは、それを構成する1対の電界効果ト
ランジスタを互いに逆導電形ないしは逆チャネル形とす
ることにより、これらを逆並列接続したときその一方で
あるnチャネル形の方を専ら電子伝導性, 他方である
pチャネル形の方を専らホール伝導性として動作させる
Note that the diode connection in the above structure may be achieved by short-circuiting the gate of each field effect transistor, for example, with its source as usual. In addition, in the composite diode according to the present invention, the pair of field effect transistors constituting the diode are of opposite conductivity type or opposite channel type, so that when they are connected in antiparallel, one of the n-channel type The p-channel type operates exclusively as an electron conductor, and the p-channel type operates as an exclusively hole conductor.

【0012】この複合化ダイオードの実用的な構成とし
ては、1対の電界効果トランジスタをそれぞれ縦形構造
の別チップとして2個のチップを逆並列接続するように
し、あるいはそれらをそれぞれ横形構造の別チップとし
て2個のチップを上下に積み重ねた状態で逆並列接続す
るのが有利である。
[0012] As a practical configuration of this composite diode, a pair of field effect transistors are each connected as separate chips with a vertical structure, and the two chips are connected in antiparallel, or they are each connected as separate chips with a horizontal structure. It is advantageous to connect two chips stacked one above the other in antiparallel.

【0013】[0013]

【作用】本発明は、 pin構造のダイオードではその
内部電流経路内に正負のキャリア,つまり電子とホール
が混在している点に問題の真の原因があることに着目し
て、1対の電界効果トランジスタを組み合わせて複合化
ダイオードを構成し、電子とホールが流れる電流経路を
電界効果トランジスタごとに分離することにより問題を
解決するものである。
[Operation] The present invention focuses on the fact that the true cause of the problem is that positive and negative carriers, that is, electrons and holes, coexist in the internal current path of a diode with a pin structure. This problem is solved by combining effect transistors to form a composite diode and separating the current paths through which electrons and holes flow for each field effect transistor.

【0014】すなわち、 pinダイオードではそのオ
ン状態中に例えばi層のバルク内に電子とホールが共存
して互いに逆方向に移動して電流を形成しており、オフ
動作時に電子がp形層の方に, ホールがn形層の方に
それぞれ移動し終わってバルク内にキャリアが存在しな
くなったとき逆回復状態になるが、電子がp形層, ホ
ールがn形層にそれぞれ吸収されると同時にそれぞれホ
ールと電子のバルクへの再注入が起きるので、実際には
i層内のキャリアは容易に消滅せず完全な逆回復までに
時間が掛かる。ライフタイムキラーはキャリアをバルク
内で捕捉して消滅させることにより逆回復を早めるもの
であるが、当然オン状態でもキャリアを常に消滅させる
のであまり大量に導入すると順方向電圧降下が増えるこ
とになり、これが従来から逆回復時間を思うように短縮
できない原因である。
That is, in a pin diode, during its on state, electrons and holes coexist in the bulk of the i-layer, for example, and move in opposite directions to each other, forming a current, and during its off-state, electrons move in the bulk of the p-type layer. On the other hand, when the holes finish moving toward the n-type layer and there are no more carriers in the bulk, a reverse recovery state occurs, but when electrons are absorbed by the p-type layer and holes are absorbed by the n-type layer, At the same time, holes and electrons are re-injected into the bulk respectively, so in reality, carriers in the i-layer are not easily annihilated and it takes time for complete reverse recovery. Lifetime killer speeds up reverse recovery by trapping carriers in the bulk and annihilating them, but of course carriers are always annihilated even in the on state, so if too large a quantity is introduced, the forward voltage drop will increase. This is the reason why reverse recovery time cannot be shortened as expected.

【0015】そこで、本発明ではダイオード接続の電界
効果トランジスタを1対用い、一方を電子伝導性のnチ
ャネル形に, 他方のホール伝導性のpチャネル形にそ
れぞれした上で、両者を逆並列接続して複合化ダイオー
ドとすることにより、キャリアとしての電子とホールが
nチャネル形とpチャネル形の電界効果トランジスタ内
にそれぞれ専ら流れるようにする。従って、本発明では
電子とホールがそれぞれp形とn形の例えばドレイン層
内に逆極性のホールや電子の再注入を起こすことなく速
やかに吸収されるので、ライフタイムキラーを導入する
までもなく逆回復時間を短縮できる。また、オン状態の
電界効果トランジスタはユニポーラ素子でバイポーラの
場合のようにpn接合に伴う堰層電圧を含まないので、
本発明による複合化ダイオードの順方向電圧降下は本質
的に小さくなる。
Therefore, in the present invention, a pair of diode-connected field effect transistors is used, one of which is an electron-conducting n-channel type, and the other a hole-conducting p-channel type, and both are connected in antiparallel. By forming a composite diode, electrons and holes as carriers flow exclusively into the n-channel type and p-channel type field effect transistors, respectively. Therefore, in the present invention, electrons and holes are quickly absorbed into p-type and n-type drain layers, for example, without reinjecting holes or electrons of opposite polarity, so there is no need to introduce a lifetime killer. Reverse recovery time can be shortened. In addition, since the field effect transistor in the on state is a unipolar element and does not include the weir layer voltage associated with the pn junction as in the case of bipolar,
The forward voltage drop of the composite diode according to the present invention is essentially small.

【0016】[0016]

【実施例】以下、図面を参照しながら本発明の実施例を
説明する。図1は本発明の複合化ダイオードの基本構成
例を等価回路図で示すものである。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an equivalent circuit diagram showing an example of the basic configuration of a composite diode according to the present invention.

【0017】図1のように、本発明では互いに逆導電形
の1対の電界効果トランジスタ10と20をそれぞれダ
イオード接続した上で、両者を逆並列接続して1対の端
子PとNを備える複合化ダイオードとする。この図1の
例では、電界効果トランジスタ10の方が電子伝導性の
nチャネル形,電界効果トランジスタ20の方がホール
伝導性のpチャネル形であり、両者ともゲート端子Gと
ソース端子Sとの間を短絡してダイオード接続とする。 これらの電界効果トランジスタ10と20を逆並列接続
してなる複合化ダイオードのオン状態では、図のように
電子eをキャリアとする電流はnチャネル形電界効果ト
ランジスタ10内のみを端子Nから端子Pの方に流れ、
ホールhをキャリアとする電流はpチャネル形電界効果
トランジスタ20内のみを端子Pから端子Nの方に流れ
る。
As shown in FIG. 1, in the present invention, a pair of field effect transistors 10 and 20 of opposite conductivity types are diode-connected, and then connected in antiparallel to provide a pair of terminals P and N. Use a composite diode. In the example of FIG. 1, the field effect transistor 10 is an electron conductive n-channel type, and the field effect transistor 20 is a hole conductive p channel type, and both have a gate terminal G and a source terminal S. A diode connection is established by short-circuiting between the two terminals. When the composite diode formed by connecting these field effect transistors 10 and 20 in antiparallel is on, a current with electrons e as carriers flows only within the n-channel field effect transistor 10 from terminal N to terminal P. flowing towards
A current using holes h as carriers flows from the terminal P to the terminal N only in the p-channel field effect transistor 20.

【0018】図2は1対の電界効果トランジスタ10と
20をそれぞれ縦形構造の別チップ構成とした実施例を
示す。これら電界効果トランジスタ10と20のチップ
内のすべての半導体領域は図のように互いに逆導電形と
され、いずれも縦形なので通例のようにドレイン領域1
1や21としての基板の上にエピタキシャル層をドレイ
ン層12や22として成長させてチャネル形成層13や
23を拡散した上、その表面上に多結晶シリコンのゲー
ト14や24をそれぞれゲート酸化膜14aや21aを
介して配設し、ソース層15や25を浅く拡散してなる
FIG. 2 shows an embodiment in which a pair of field effect transistors 10 and 20 are each configured on separate chips with a vertical structure. All the semiconductor regions in the chips of these field effect transistors 10 and 20 are of opposite conductivity type to each other as shown in the figure, and since both are vertical, the drain region 1
Epitaxial layers are grown as drain layers 12 and 22 on the substrates 1 and 21, and channel forming layers 13 and 23 are diffused, and polycrystalline silicon gates 14 and 24 are formed on the surfaces thereof with gate oxide films 14a, respectively. and 21a, and the source layers 15 and 25 are shallowly diffused.

【0019】チップの表面側では層間絶縁膜16や26
上に配設した金属の電極膜17や27によリゲート14
や24をソース層15や25と短絡してダイオード接続
状態とし、裏面側ではドレイン領域11や21に接続す
る電極膜17や27をドレイン端子用に設ける。なお、
図2のチップ構造は電界効果トランジスタの単位構造で
あり、実際には電流容量に応じて図の単位構造が左右方
向に複数回繰り返して設けられる。
On the surface side of the chip, interlayer insulating films 16 and 26
The regate 14 is formed by the metal electrode films 17 and 27 disposed above.
and 24 are short-circuited with source layers 15 and 25 to form a diode connection state, and on the back side, electrode films 17 and 27 connected to drain regions 11 and 21 are provided for drain terminals. In addition,
The chip structure shown in FIG. 2 is a unit structure of a field effect transistor, and in reality, the unit structure shown in the figure is repeatedly provided in the horizontal direction a plurality of times depending on the current capacity.

【0020】これら1対の電界効果トランジスタ10と
20のチップは図示のように逆並列接続した上で1対の
ダイオード端子PとNを導出する。この複合化ダイオー
ドのオン状態では、nチャネル形電界効果トランジスタ
10側では単一のキャリアとしての電子eがn形のソー
ス層15からゲート16の下側のp形のチャネル形成層
13の表面に形成されるn形のチャネルを通ってn形の
ドレイン層12とドレイン領域11との方に流れ、pチ
ャネル形電界効果トランジスタ20側では単一のキャリ
アとしてのホールhがp形のソース層25からゲート2
6の下のn形のチャネル形成層23の表面に形成される
p形のチャネルを通ってp形のドレイン層22とドレイ
ン領域21の方に流れる。
The chips of the pair of field effect transistors 10 and 20 are connected in antiparallel as shown, and a pair of diode terminals P and N are led out. In the ON state of this composite diode, electrons e as single carriers are transferred from the n-type source layer 15 to the surface of the p-type channel forming layer 13 below the gate 16 on the n-channel field effect transistor 10 side. Through the formed n-type channel, it flows toward the n-type drain layer 12 and the drain region 11, and on the p-channel field effect transistor 20 side, holes h as a single carrier flow into the p-type source layer 25. From gate 2
It flows toward the p-type drain layer 22 and the drain region 21 through a p-type channel formed on the surface of the n-type channel forming layer 23 under the p-type drain layer 22 and the drain region 21 .

【0021】この複合化ダイオードのオフ動作時に逆方
向電圧,つまり負側端子Nの方に正の電圧が掛かったと
き、空乏層が主にドレイン層12や22内に延びてその
バルク内の電子eやホールhがドレイン領域11や21
内に吸収されるが、これらがいずれも単一のキャリアで
、かつドレイン層12や22から同じ導電形のドレイン
領域11や21に吸収されるので逆極性のキャリアの再
注入が発生せず、バルク内のキャリアが急速に減少して
 pin構造の高速ダイオードの場合よりもずっと短時
間内に逆回復状態に達する。この図2の構造で数百V級
の耐圧の複合化ダイオードを試作した結果では、ライフ
タイムキラーの導入なしの条件下で数ns程度までの非
常に短い逆回復時間が得られている。
[0021] When a reverse voltage, that is, a positive voltage is applied to the negative terminal N during the off-operation of this composite diode, the depletion layer mainly extends into the drain layers 12 and 22 and the electrons in the bulk are e and hole h are drain regions 11 and 21
However, since these are all single carriers and are absorbed from the drain layers 12 and 22 into the drain regions 11 and 21 of the same conductivity type, re-injection of carriers of opposite polarity does not occur. The carriers in the bulk are rapidly depleted and the reverse recovery state is reached in a much shorter time than in the case of a pin fast diode. As a result of trial manufacturing of a composite diode with a withstand voltage of several hundred volts with the structure shown in FIG. 2, an extremely short reverse recovery time of about several ns was obtained without introducing a lifetime killer.

【0022】なお、この図2の実施例の複合化ダイオー
ドの耐圧は上述のように主に空乏層が延びるドレイン層
12や22の厚みによって決まり、 500〜600 
Vの耐圧を要する場合その厚みは50〜60μm程度に
設定される。また、各部の不純物濃度は例えばドレイン
領域11や21を1019原子/cm3 程度, ドレ
イン層12や22を1016原子/cm3程度, チャ
ネル形成層13や23を1016〜1017原子/cm
3 の範囲, ソース層15や25を1020原子/c
m3 程度にそれぞれ設定するのがよく、ソース層15
や25の拡散深さは1μm程度と浅いてよいが、チャネ
ル形成層13や23の深さは例えば15μm程度と深い
めにするのがよい。
The breakdown voltage of the composite diode of the embodiment shown in FIG. 2 is determined mainly by the thickness of the drain layers 12 and 22 in which the depletion layer extends, as described above, and is 500 to 600.
When a breakdown voltage of V is required, the thickness is set to about 50 to 60 μm. Further, the impurity concentration of each part is, for example, approximately 1019 atoms/cm3 for the drain regions 11 and 21, approximately 1016 atoms/cm3 for the drain layers 12 and 22, and 1016 to 1017 atoms/cm3 for the channel forming layers 13 and 23.
3 range, source layers 15 and 25 at 1020 atoms/c
It is best to set each to about m3, and the source layer 15
The diffusion depth of the channel forming layers 13 and 23 may be as shallow as about 1 μm, but the depth of the channel forming layers 13 and 23 is preferably deeper, for example, about 15 μm.

【0023】本発明では上述のように1対の電界効果ト
ランジスタの一方に電子eが, 他方にホールがそれぞ
れ専ら流れるが、後者の易動度が前者より低いので図2
の左右のチップが同サイズではpチャネル電界効果トラ
ンジスタ20の電流がnチャネル電界効果トランジスタ
10の電流より小さくなる。かかる電流の不均等があっ
ても原理上はなんら支障はないが、電流密度の不均等は
チップ面積の利用効率の低下を招くから、電界効果トラ
ンジスタのチップ内の拡散パターンの大きさないしは単
位構造の繰り返し回数を適宜に設定して電流密度分担を
均一化するのが合理的である。もちろん、かかる設定に
よって両電界効果トランジスタ10と12の電流を等し
くすることも可能である。
In the present invention, as described above, electrons e flow exclusively into one of a pair of field effect transistors, and holes exclusively flow into the other, but since the mobility of the latter is lower than that of the former, FIG.
If the left and right chips are the same size, the current of the p-channel field effect transistor 20 will be smaller than the current of the n-channel field effect transistor 10. There is no problem in principle even if there is such an unevenness of current, but since an unevenness of the current density causes a decrease in the utilization efficiency of the chip area, the size of the diffusion pattern or the unit structure in the chip of the field effect transistor may be affected. It is reasonable to set the number of times of repetition as appropriate to equalize the current density distribution. Of course, it is also possible to make the currents of both field effect transistors 10 and 12 equal by such a setting.

【0024】図3に示す実施例では1対の電界効果トラ
ンジスタ30と40が横形構造にされ、同じチップ内に
作り込まれる。この実施例用のウエハは通常のCMOS
用と同様にp形の基板1上にn形のエピタキシャル層2
を成長させたもので、nチャネル電界効果トランジスタ
30用の分離絶縁膜3で囲まれた範囲内にp形のウエル
31を拡散した上で、ゲート32と42をゲート酸化膜
32aと42aを介して設け、それぞれ所定の導電形で
ソース層33と43およびドレイン層34と44を拡散
して、横形構造のnチャネル電界効果トランジスタ30
とpチャネル電界効果トランジスタ40を作り込む。各
電界効果トランジスタ30と40のダイオード接続と両
者間の逆並列接続を層間絶縁膜4の上に配設した電極膜
5によりすべてチップの表面側で図のように行なった上
で1対のダイオード端子PとNを導出する。
In the embodiment shown in FIG. 3, a pair of field effect transistors 30 and 40 are arranged in a lateral configuration and are fabricated within the same chip. The wafer for this example is a normal CMOS
An n-type epitaxial layer 2 is formed on a p-type substrate 1 as in the case of
A p-type well 31 is diffused within the range surrounded by the isolation insulating film 3 for the n-channel field effect transistor 30, and the gates 32 and 42 are grown through the gate oxide films 32a and 42a. The source layers 33 and 43 and the drain layers 34 and 44 are diffused with predetermined conductivity types, respectively, to form an n-channel field effect transistor 30 with a lateral structure.
and a p-channel field effect transistor 40. The diode connection of each field effect transistor 30 and 40 and the antiparallel connection between them are all made on the front surface side of the chip by the electrode film 5 disposed on the interlayer insulating film 4 as shown in the figure, and then a pair of diodes are connected. Derive terminals P and N.

【0025】この実施例においても、nチャネル電界効
果トランジスタ30側が電子伝導性,pチャネル電界効
果トランジスタ40側がホール伝導性の構成要素として
それぞれ用いられる点は図2の前実施例と全く同じであ
り、同様に数ns程度の短い逆回復時間特性を備える複
合化ダイオードとして機能する。この図3の実施例は高
耐圧や大電流容量を持たせる上では必ずしも有利でない
が、集積回路装置内に通常のウエハプロセスで容易に組
み込むことができ、かつ図2のようなチップ間の接続が
不要になる利点を有する。
This embodiment is exactly the same as the previous embodiment shown in FIG. 2 in that the n-channel field effect transistor 30 side is used as an electron conductive component, and the p-channel field effect transistor 40 side is used as a hole conductive component. Similarly, it functions as a composite diode with a short reverse recovery time characteristic of about several ns. Although the embodiment shown in FIG. 3 is not necessarily advantageous in terms of having a high withstand voltage or large current capacity, it can be easily incorporated into an integrated circuit device by a normal wafer process, and it can be used for connections between chips as shown in FIG. This has the advantage that it is not necessary.

【0026】図4の実施例では横形構造の電界効果トラ
ンジスタ50と60用の別チップを積み重ねた上で逆並
列接続して複合化ダイオードを構成する。nチャネル形
電界効果トランジスタ50のチップはp形のサブストレ
ート領域51の端部に高不純物濃度のn形のソース領域
52とドレイン領域53を拡散し、ゲート54をソース
領域52と接触しかつゲート酸化膜54aを介してサブ
ストレート領域51に対向するように設け、さらにその
上を酸化シリコン膜等の絶縁膜55で覆ってなり、同様
にpチャネル形電界効果トランジスタ60のチップはn
形のサブストレート領域61の端部にp形のソース領域
62とドレイン領域63を拡散し、ゲート64をソース
領域62と接触しかつゲート酸化膜64aを介してサブ
ストレート領域61に対向するように設け、さらにその
上を絶縁膜65で覆ってなる。これら電界効果トランジ
スタ50と60はいずれもゲート54や64の下側のサ
ブストレート領域51や61の表面にチャネルが形成さ
れる横形構造のものである。
In the embodiment shown in FIG. 4, separate chips for field effect transistors 50 and 60 having a horizontal structure are stacked and connected in antiparallel to form a composite diode. The chip of the n-channel field effect transistor 50 has a highly impurity-concentrated n-type source region 52 and a drain region 53 diffused into the ends of a p-type substrate region 51, and has a gate 54 in contact with the source region 52 and a gate It is provided so as to face the substrate region 51 via an oxide film 54a, and is further covered with an insulating film 55 such as a silicon oxide film. Similarly, the chip of the p-channel field effect transistor 60 is
A p-type source region 62 and a p-type drain region 63 are diffused into the ends of a shaped substrate region 61, and a gate 64 is made to be in contact with the source region 62 and to face the substrate region 61 through a gate oxide film 64a. and further covered with an insulating film 65. These field effect transistors 50 and 60 both have a horizontal structure in which a channel is formed on the surface of the substrate region 51 or 61 below the gate 54 or 64.

【0027】この実施例では、両電界効果トランジスタ
50と60のチップを高温下の接合等の手段により相互
に積み重ねて一体化チップ70とした上で、左右の端面
に端子PとN用の電極膜71を付けることによりそれぞ
れをダイオード接続するとともに両者を逆並列接続して
複合化ダイオードとする。なお、この実際の製造方法と
しては両電界効果トランジスタ50と60のチップがま
だウエハの状態にある内に接合して置き、この接合ウエ
ハを切断して図の一体化チップ70に単離した上で電極
膜71を付けるようにするのが製造コスト面で有利であ
る。
In this embodiment, the chips of both field effect transistors 50 and 60 are stacked on top of each other by means such as bonding under high temperature to form an integrated chip 70, and electrodes for terminals P and N are provided on the left and right end surfaces. By attaching the film 71, each is diode-connected, and both are connected in antiparallel to form a composite diode. The actual manufacturing method is to bond the chips of both field effect transistors 50 and 60 while they are still in the wafer state, cut the bonded wafer and isolate it into the integrated chip 70 shown in the figure. It is advantageous in terms of manufacturing cost to attach the electrode film 71 in this manner.

【0028】この図4の実施例でも、電界効果トランジ
スタ50と60をそれぞれ電子伝導性とホール伝導性の
構成要素として用いながら逆回復特性の良好な複合化ダ
イオードを構成できるのはいままでの実施例と全く同じ
である。この実施例による複合化ダイオードは図2の実
施例ほどは高耐圧化に適しないが、チップの組み合わせ
と相互間接続が非常に容易になり、ウエハを接合した後
に切断する上述の製造方法を採用できるので量産用の個
別素子に適し、かつ図のようなチップの積み重ねをさら
に多重化した構造を容易に採り得る利点がある。
In the embodiment shown in FIG. 4 as well, it is possible to construct a composite diode with good reverse recovery characteristics while using field effect transistors 50 and 60 as constituent elements for electron conductivity and hole conductivity, respectively. Exactly the same as the example. Although the composite diode according to this embodiment is not as suitable for high breakdown voltage as the embodiment shown in FIG. 2, it is very easy to combine chips and interconnect them, and the above-mentioned manufacturing method of bonding and then cutting the wafers is adopted. Therefore, it is suitable for mass-produced individual elements, and has the advantage that a structure in which chips are stacked in multiplexes as shown in the figure can be easily adopted.

【0029】図5はかかる多重化構造により高耐圧の複
合化ダイオードを構成した実施例を示す。図示のように
、図4の一体化チップ70が図の矢印のように導通方向
を交互に逆方向にして絶縁板72を介して積み重ねられ
る。この場合にも、2枚ずつ接合したウエハを適宜な平
面的パターンに形成された絶縁板72を介して接着等の
手段により積み重ね、これを切断して図の状態に単離し
た上で電極膜71を付けることにより一体化チップ70
の直列接続とダイオード端子PとNの導出を同時に果た
すことができる。もちろん、一体化チップ70は必要な
耐圧値に応じた個数だけ積み重ねられる。
FIG. 5 shows an embodiment in which a high breakdown voltage composite diode is constructed using such a multiplexed structure. As shown in the figure, the integrated chips 70 of FIG. 4 are stacked with insulating plates 72 interposed in such a manner that the conduction directions are alternately reversed as indicated by the arrows in the figure. In this case as well, the wafers bonded two by two are stacked up by means such as adhesion with insulating plates 72 formed in an appropriate planar pattern interposed therebetween, cut and isolated into the state shown in the figure, and then the electrode film is formed. By attaching 71, the integrated chip 70
The series connection of the diode terminals P and N and the derivation of the diode terminals P and N can be achieved at the same time. Of course, the number of integrated chips 70 is stacked according to the required breakdown voltage value.

【0030】以上説明した実施例ごとに異なるが、本発
明による複合化ダイオードは広範囲な電圧と電流に適す
るよう構成でき、図2の実施例は大容量用に,図3の実
施例は小容量用に,図4や図5の実施例は両者の中間容
量にそれぞれ適する。例えば図2の実施例では数百Vの
耐圧と数十Aの電流容量の複合化ダイオードを容易に構
成できる。しかし、逆回復特性はいずれの実施例もあま
り大差はなく、逆回復時間は原理的には小容量範囲で1
nsないしそれ以下にすることも可能で、実用的には広
い容量範囲で数ns程度を実現できる。このように、本
発明は良好な逆回復特性を保証しながら、上述の実施例
に限らず必要な耐圧や電流容量に応じ種々な態様で実施
をすることが可能である。
Although the embodiments described above are different, the composite diode according to the present invention can be constructed to be suitable for a wide range of voltages and currents, with the embodiment of FIG. 2 being suitable for a large capacity, and the embodiment of FIG. The embodiments of FIGS. 4 and 5 are suitable for intermediate capacities between the two, respectively. For example, in the embodiment shown in FIG. 2, a composite diode having a withstand voltage of several hundred volts and a current capacity of several tens of amperes can be easily constructed. However, there is not much difference in the reverse recovery characteristics between the examples, and the reverse recovery time is theoretically 1 in the small capacity range.
It is also possible to set the capacitance to ns or less, and practically, it is possible to achieve a capacitance of about several ns over a wide capacity range. In this manner, the present invention is not limited to the above-described embodiments, and can be implemented in various forms depending on the required breakdown voltage and current capacity, while ensuring good reverse recovery characteristics.

【0031】[0031]

【発明の効果】以上のとおり本発明の複合化ダイオード
では、それぞれダイオード接続された互いに逆導電形の
1対の電界効果トランジスタを逆並列接続してこれを構
成することにより、次の効果を得ることができる。
[Effects of the Invention] As described above, in the composite diode of the present invention, the following effects are obtained by configuring a pair of field effect transistors of opposite conductivity types, each diode-connected, connected in antiparallel. be able to.

【0032】(a) オン時に電子とホールを2個のダ
イオード接続の電界効果トランジスタに分離して流すこ
とにより、オフ動作中のいずれのキャリアの吸収時にも
逆極性のキャリアの再注入をなくしてバルク内キャリア
を速やかに消滅させ、ダイオードの逆回復時間を数ns
程度に短縮することができる。
(a) By separating electrons and holes and flowing them through two diode-connected field effect transistors during on-state, re-injection of carriers of opposite polarity is eliminated when any carrier is absorbed during off-state. Rapidly eliminates carriers in the bulk, reducing diode reverse recovery time to several ns
It can be shortened to a certain extent.

【0033】(b)  pin構造の高速ダイオードの
ようなライフタイムキラーの導入が不要で、構成要素と
しての電界効果トランジスタをふつうのMOSプロセス
により容易に作り込めるので、工程を簡略化してコスト
を下げて品質の揃った高速ダイオードを提供でき、かつ
集積回路装置にも容易に組み込むことができる。
(b) There is no need to introduce a lifetime killer such as a high-speed diode with a pin structure, and the field effect transistor as a component can be easily manufactured using a normal MOS process, simplifying the process and reducing costs. It is possible to provide high-speed diodes of uniform quality, and it can be easily incorporated into integrated circuit devices.

【0034】(c) ダイオードの耐圧を主に電界効果
トランジスタのドレイン層の厚みにより正確に設定でき
るので、ショットキーバリアダイオードより高耐圧化が
容易で、かつ逆漏れ電流の問題も非常に少ない。
(c) Since the breakdown voltage of the diode can be accurately set mainly by the thickness of the drain layer of the field effect transistor, it is easier to increase the breakdown voltage to a higher voltage than a Schottky barrier diode, and the problem of reverse leakage current is extremely small.

【0035】(d) 複合化ダイオードを構成する1対
の電界効果トランジスタがいずれも堰層電圧を含まない
ユニポーラ回路素子として機能するので、ダイオードの
オン動作の立ち上がり電圧を低めることができる。
(d) Since each of the pair of field effect transistors constituting the composite diode functions as a unipolar circuit element that does not include a weir layer voltage, the voltage at which the diode turns on can be reduced.

【0036】このように本発明は、逆回復特性に優れ、
高耐圧化が容易で、広範な電圧電流範囲に適する実用性
が高い高速動作性能の複合化ダイオードを提供するもの
で、高周波用回路装置に適用してその性能向上に貢献す
ることが期待される。
As described above, the present invention has excellent reverse recovery characteristics,
This product provides a highly practical, high-speed operation performance composite diode that can easily be made to withstand a high voltage, is suitable for a wide voltage and current range, and is expected to contribute to improving the performance of high-frequency circuit devices. .

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による複合化ダイオードの基本構成例を
示す回路図である。
FIG. 1 is a circuit diagram showing an example of the basic configuration of a composite diode according to the present invention.

【図2】複合化ダイオードを個別チップの1対の縦形電
界効果トランジスタにより構成する実施例の断面図であ
る。
FIG. 2 is a cross-sectional view of an embodiment in which the composite diode is constructed from a pair of vertical field effect transistors on individual chips;

【図3】複合化ダイオードを共通チップの1対の横形電
界効果トランジスタにより構成する実施例の断面図であ
る。
FIG. 3 is a cross-sectional view of an embodiment in which the composite diode is constructed by a pair of lateral field effect transistors on a common chip.

【図4】複合ダイオードを1対の横形電界効果トランジ
スタのチップを積み重ねて構成する実施例の断面図であ
る。
FIG. 4 is a cross-sectional view of an embodiment in which a composite diode is constructed by stacking a pair of lateral field effect transistor chips.

【図5】図4の実施例の複合化ダイオードを積み重ねる
実施例の断面図である。
FIG. 5 is a cross-sectional view of an embodiment of stacking the composite diodes of the embodiment of FIG. 4;

【符号の説明】[Explanation of symbols]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】互いに逆導電形をもちそれぞれがダイオー
ド接続された1対の電界効果トランジスタを逆並列接続
してなることを特徴とする複合化ダイオード。
1. A composite diode comprising a pair of field effect transistors connected in antiparallel, each having a conductivity type opposite to the other and each diode-connected.
【請求項2】請求項1に記載のダイオードにおいて、1
対の電界効果トランジスタがそれぞれ縦形構造の別チッ
プとされ、2個のチップが逆並列接続されたことを特徴
とする複合化ダイオード。
2. The diode according to claim 1, comprising: 1
1. A composite diode characterized in that a pair of field effect transistors are each formed on a separate chip with a vertical structure, and the two chips are connected in antiparallel.
【請求項3】請求項1に記載のダイオードにおいて、1
対の電界効果トランジスタがそれぞれ横形構造の別チッ
プとされ、2個のチップが上下に積み重ねられた状態で
逆並列接続されたことを特徴とする複合化ダイオード。
3. The diode according to claim 1, comprising: 1
A compound diode characterized in that a pair of field effect transistors are each formed as a separate chip with a horizontal structure, and the two chips are stacked one above the other and connected in antiparallel.
【請求項4】請求項1に記載のダイオードにおいて、1
対の電界効果トランジスタの一方が電子伝導性で他方が
ホール伝導性であることを特徴とする複合化ダイオード
4. The diode according to claim 1, wherein 1
A composite diode characterized in that one of a pair of field effect transistors is electron conductive and the other is hole conductive.
JP14503691A 1991-06-18 1991-06-18 Composite diode Pending JPH04369272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14503691A JPH04369272A (en) 1991-06-18 1991-06-18 Composite diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14503691A JPH04369272A (en) 1991-06-18 1991-06-18 Composite diode

Publications (1)

Publication Number Publication Date
JPH04369272A true JPH04369272A (en) 1992-12-22

Family

ID=15375922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14503691A Pending JPH04369272A (en) 1991-06-18 1991-06-18 Composite diode

Country Status (1)

Country Link
JP (1) JPH04369272A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227495A (en) * 2007-03-09 2008-09-25 Diodes Fabtech Inc High-efficiency rectifier
US9029874B2 (en) 2012-09-13 2015-05-12 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device having a first silicon carbide semiconductor layer and a second silicon carbide semiconductor layer
US10714313B2 (en) 2015-06-30 2020-07-14 Trumpf Huettinger Gmbh + Co. Kg High frequency amplifier apparatuses

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227495A (en) * 2007-03-09 2008-09-25 Diodes Fabtech Inc High-efficiency rectifier
US9029874B2 (en) 2012-09-13 2015-05-12 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device having a first silicon carbide semiconductor layer and a second silicon carbide semiconductor layer
US10714313B2 (en) 2015-06-30 2020-07-14 Trumpf Huettinger Gmbh + Co. Kg High frequency amplifier apparatuses

Similar Documents

Publication Publication Date Title
US9369125B2 (en) Bidirectional two-base bipolar junction transistor operation, circuits, and systems with collector-side base driven
US6323509B1 (en) Power semiconductor device including a free wheeling diode and method of manufacturing for same
US5416354A (en) Inverted epitaxial process semiconductor devices
US9159825B2 (en) Double-sided vertical semiconductor device with thinned substrate
US9246410B2 (en) Integrated power semiconductor component, production method and chopper circuit comprising integrated semiconductor component
JPH0828506B2 (en) Semiconductor device and manufacturing method thereof
CN107564955A (en) Power semiconductor and its operating method with complete depletion of channel region
JP7055056B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JPH06196705A (en) Reverse-current carrying type insulated gate bipolar transistor and manufacture thereof
CN107564957A (en) Power semiconductor with completely depleted channel region
JPH0851197A (en) Mos control thyristor having electric current saturation property
CN105702719A (en) Power Semiconductor Device with Improved Stability and Method for Producing the Same
JP3491049B2 (en) Rectifier and driving method thereof
US5442219A (en) Semiconductor device for controlling electric power
JPH04369272A (en) Composite diode
JPH0654796B2 (en) Composite semiconductor device
JPH025302B2 (en)
US4761679A (en) Complementary silicon-on-insulator lateral insulated gate rectifiers
CN107039513A (en) Power semiconductor transistor with enhanced bipolar amplification
JPH0637262A (en) Semiconductor device
JPH03105977A (en) Semiconductor device
JPH04363068A (en) Semiconductor device
JP2856257B2 (en) P-channel insulated gate bipolar transistor
JP2023524019A (en) Barrier layer for electrical contact area
JPH03148873A (en) Lateral type conductivity modulation mosfet