JPH04367564A - Silicon nitride-based pressed compact and its production - Google Patents

Silicon nitride-based pressed compact and its production

Info

Publication number
JPH04367564A
JPH04367564A JP3141508A JP14150891A JPH04367564A JP H04367564 A JPH04367564 A JP H04367564A JP 3141508 A JP3141508 A JP 3141508A JP 14150891 A JP14150891 A JP 14150891A JP H04367564 A JPH04367564 A JP H04367564A
Authority
JP
Japan
Prior art keywords
silicon nitride
added
sintering
weight
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3141508A
Other languages
Japanese (ja)
Inventor
Hiroichi Yamamoto
博一 山本
Kazutaka Mori
一剛 森
Takehiko Hirata
武彦 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3141508A priority Critical patent/JPH04367564A/en
Publication of JPH04367564A publication Critical patent/JPH04367564A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a silicon nitride-based sintered compact requiring abrasion resistance at high temperatures and a method for producing the above-mentioned sintered compact. CONSTITUTION:The subject method is a method for producing a silicon nitride- based sintered compact composed of sintering mixed powder composed of 0.3-5wt.% zirconium oxide powder and/or samarium oxide powder having <=3mum average particle size with 3-30wt.% silicon carbide whisker, a sintering assistant in an amount of 3-15wt.% based on the silicon nitride powder and the remainder composed substantially of silicon nitride powder at a sintering temperature within the range of 1550-1700 deg.C under >=200kg/cm<2> pressure. Furthermore, the silicon nitride-based sintered compact obtained by the aforementioned method is provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は特に高温での耐摩耗性を
要求される部材、例えば自動車エンジン用カム、タペッ
トボイラーの耐摩耗部品、製鉄機器の耐摩耗部品等への
適用が期待される窒化珪素質の耐摩耗性セラミックス及
びその製造方法に関するものである。
[Industrial Application Field] The present invention is expected to be applied to parts that require wear resistance particularly at high temperatures, such as cams for automobile engines, wear-resistant parts of tappet boilers, wear-resistant parts of steel manufacturing equipment, etc. The present invention relates to wear-resistant silicon nitride ceramics and a method for producing the same.

【0002】0002

【従来の技術】特に高温領域で耐摩耗性に優れたセラミ
ックスとして窒化珪素質セラミックスが広く使用されて
きた。耐摩耗性を向上させる方法として多くの工夫がさ
れているが、基本的にはホットプレス法で焼結し硬さを
向上させる方法が一般的であった。又、硬さを向上させ
る方法として硬質粒子やウイスカを添加する方法も提案
されてきたが、このような添加物を添加すると焼結性が
低下し高温でホットプレス焼結しないと緻密化せず、添
加物である硬質粒子やウイスカが焼結助剤と反応し、そ
の特性を十分に発揮することができないという問題があ
った。すなわち、添加した硬質粒子やウイスカの特性を
十分発揮できないため添加量を増やさなければならない
が、そのようにすると焼結性は低下し、より高温で焼結
する必要があり、しかもコストが高くなる等の問題があ
った。
BACKGROUND OF THE INVENTION Silicon nitride ceramics have been widely used as ceramics that have excellent wear resistance, especially in high-temperature regions. Although many methods have been used to improve wear resistance, the most common method has been to sinter the material using a hot press method to improve hardness. Addition of hard particles or whiskers has also been proposed as a method to improve hardness, but adding such additives reduces sinterability and does not densify unless hot press sintered at high temperatures. However, there was a problem in that the additives, such as hard particles and whiskers, reacted with the sintering aid, making it impossible to fully demonstrate its properties. In other words, the properties of the added hard particles and whiskers cannot be fully demonstrated, so the amount added must be increased, but doing so will reduce sinterability, necessitate sintering at a higher temperature, and increase cost. There were other problems.

【0003】0003

【発明が解決しようとする課題】本発明は上記技術水準
に鑑み、焼結温度が低くても十分緻密化でき、添加した
硬質粒子やウイスカの添加量が少なくても、その添加効
果を十分に発揮させることができる窒化珪素質加圧焼結
体及びその製造方法を提供しようとするものである。
[Problems to be Solved by the Invention] In view of the above-mentioned state of the art, the present invention is capable of achieving sufficient densification even at a low sintering temperature, and that even if the amount of added hard particles and whiskers is small, the addition effect can be sufficiently exhibited. It is an object of the present invention to provide a pressed sintered body of silicon nitride and a method for manufacturing the same, which can exhibit the following effects.

【0004】0004

【課題を解決するための手段】本発明者らは焼結温度を
低温化する手法として、焼結助剤として通常用いられて
いる酸化アルミウニム(Al2 O3 、アルミナ)、
酸化イットリウム(Y2 O3 、イットリア)に加え
て、第三成分の化合物を添加することを検討し、その結
果、酸化ジルコニウム(ZrO2 、ジルコニア)及び
酸化サマリウム(Sm2 O3 、サマリア)が焼結温
度の低温化に効果があり、かつ高温での特性(曲げ強さ
、硬さ等)の低下が少なく、有効な添加化合物であるこ
とを確認し、この知見に基づいて本発明を完成するに到
った。すなわち、本発明は (1)酸化ジルコニウム及び/又は酸化サマリウムを0
.3〜5重量%、炭化珪素ウイスカを3〜30重量%と
窒化珪素に対して3〜15重量%の焼結助剤と残部実質
的に窒化珪素とからなることを特徴とする窒化珪素質加
圧焼結体。
[Means for Solving the Problem] As a method for lowering the sintering temperature, the present inventors used aluminum oxide (Al2O3, alumina), which is commonly used as a sintering aid,
In addition to yttrium oxide (Y2O3, yttria), we considered adding a third component compound, and as a result, we found that zirconium oxide (ZrO2, zirconia) and samarium oxide (Sm2O3, samaria) can be used at low sintering temperatures. The present inventors confirmed that it is an effective additive compound that is effective in reducing oxidation and has little deterioration in properties (bending strength, hardness, etc.) at high temperatures.Based on this knowledge, the present invention was completed. . That is, the present invention provides (1) zero zirconium oxide and/or samarium oxide.
.. 3 to 5% by weight of silicon carbide whiskers, 3 to 15% by weight of a sintering aid based on silicon nitride, and the remainder substantially silicon nitride. Pressed sintered body.

【0005】(2)平均粒径3μm以下の酸化ジルコニ
ウム粉末及び/又は酸化サマリウム粉末を0.3〜5重
量%、炭化ウイスカを3〜30重量%、窒化珪素粉末に
対し3〜15重量%の焼結助剤と残部実質的に窒化珪素
粉末とからなる混合粉末を、加圧圧力200kg/cm
2 以上、焼結温度1,550〜1700℃の範囲で焼
結することを特徴とする窒化珪素質加圧焼結体の製造方
法。である。
(2) 0.3 to 5% by weight of zirconium oxide powder and/or samarium oxide powder with an average particle size of 3 μm or less, 3 to 30% by weight of carbide whiskers, and 3 to 15% by weight of silicon nitride powder. A mixed powder consisting of a sintering aid and the remainder substantially silicon nitride powder was pressed at a pressure of 200 kg/cm.
2. A method for producing a pressed sintered body of silicon nitride, characterized in that sintering is carried out at a sintering temperature in the range of 1,550 to 1,700°C. It is.

【0006】[0006]

【作用】本発明によれば、通常用いられているアルミナ
−イットリア系の焼結助剤のみを添加した場合と比較し
て、約100℃焼結温度を低下させることが可能となり
、添加した硬質粒子やウイスカを効果的に耐摩耗性の向
上に寄与させることができ、かつ高温での特性の低下も
少なく、室温から高温までの耐摩耗性について飛躍的な
改善が達成できた。
[Function] According to the present invention, it is possible to lower the sintering temperature by approximately 100°C compared to the case where only the commonly used alumina-yttria-based sintering aid is added, and the added hard Particles and whiskers can be effectively used to improve wear resistance, and there is little deterioration in properties at high temperatures, resulting in a dramatic improvement in wear resistance from room temperature to high temperature.

【0007】[0007]

【実施例】本発明の効果を以下の実施例で詳細に説明す
る。試験に供した窒化珪素粉末は平均粒径0.5μm(
結晶子径は0.2μm以下)程度の粉末であった。焼結
助剤としては酸化アルミニウム(Al2 O3 )は平
均粒径0.8μm、酸化イットリウム(Y2 O3 )
は平均粒径1.2μmのものを用いた。焼結助剤の基本
の配合組成としては窒化珪素粉末を93重量%、酸化ア
ルミニウムを2重量%、酸化イットリウムを5重量%と
して以下の試験を行った。
EXAMPLES The effects of the present invention will be explained in detail in the following examples. The silicon nitride powder used in the test had an average particle size of 0.5 μm (
The powder had a crystallite diameter of approximately 0.2 μm or less. As sintering aids, aluminum oxide (Al2O3) has an average particle size of 0.8μm, and yttrium oxide (Y2O3)
The particles used had an average particle size of 1.2 μm. The following test was conducted using the basic composition of the sintering aid as 93% by weight of silicon nitride powder, 2% by weight of aluminum oxide, and 5% by weight of yttrium oxide.

【0008】(1)先ず、焼結温度低温化のために添加
する化合物の選定試験を行った。焼結助剤の添加配合は
窒化珪素を93重量%、イットリアを5重量%、アルミ
ナを2重量%を基本配合とした。添加する化合物として
は主として希土類元素の酸化物を候補として選定した。 具体的には、酸化ランタン(La2 O3 )、酸化サ
マリウム(Sm2 O3 )、酸化ユウロビウム(Er
2 O3 )、酸化ガドリウム(Gd2 O3 )、酸
化イッテリビウム(Yb2 O3 )、酸化ディスプロ
ジウム(Dy2 O3 )、酸化ネオビウム(Nb2 
O3 )、酸化セリウム(CeO2 )と酸化ジルコニ
ウム(ZrO2 )の粉末を試験に供した。これらの粉
末の平均粒径は、約1〜0.5μmである。
(1) First, a test was conducted to select a compound to be added to lower the sintering temperature. The basic composition of the sintering aids was 93% by weight of silicon nitride, 5% by weight of yttria, and 2% by weight of alumina. As the compound to be added, oxides of rare earth elements were mainly selected as candidates. Specifically, lanthanum oxide (La2O3), samarium oxide (Sm2O3), eurobium oxide (Er)
2 O3 ), gadolinium oxide (Gd2 O3 ), ytterbium oxide (Yb2 O3 ), dysprosium oxide (Dy2 O3 ), neobium oxide (Nb2
Powders of cerium oxide (CeO2), zirconium oxide (ZrO2), and cerium oxide (CeO2) were tested. The average particle size of these powders is about 1-0.5 μm.

【0009】窒化珪素粉末、酸化アルミニウム粉末、酸
化イットリウム粉末を所定の配合割合で秤量後、これら
の混合物に対して、上記添加化合物を所定量秤量し添加
した。この混合物をエタノールを溶媒としてボールミル
を用いて48時間混合した。混合後、乾燥しホットプレ
スを用いて焼結した。ホットプレス焼結条件は焼結温度
1500〜1750℃、加圧力は250kg/cm2 
と一定で焼結した。なお、所定の焼結温度での保持時間
は2時間と一定で試験を行った。得られた焼結体から試
験片を切り出し、曲げ強さ試験(室温及び1200℃)
、硬さ試験(室温)、密度測定等の特性評価試験を行っ
た。なお、比較のために添加化合物の窒化珪素に関して
も同様の試験を行った。
After weighing silicon nitride powder, aluminum oxide powder, and yttrium oxide powder at a predetermined mixing ratio, a predetermined amount of the above-mentioned additive compound was weighed and added to the mixture. This mixture was mixed for 48 hours using a ball mill using ethanol as a solvent. After mixing, it was dried and sintered using a hot press. Hot press sintering conditions are sintering temperature 1500-1750℃, pressing force 250kg/cm2
and sintered at a constant rate. The test was conducted with the holding time at the predetermined sintering temperature constant at 2 hours. A test piece was cut out from the obtained sintered body and subjected to a bending strength test (room temperature and 1200°C).
Characteristic evaluation tests such as hardness test (room temperature) and density measurement were conducted. For comparison, a similar test was also conducted on silicon nitride as an additive compound.

【0010】先ず、添加する化合物の種類を絞り込むた
めに、化合物の添加量を内数で1重量%及び3重量%と
固定して各温度でホットプレス焼結を行い、焼結体の密
度測定を行って、焼結温度の低温化に有効な化合物の選
定を行った。これらの試験結果を纏めて表1に示す。表
1に、化合物無添加の窒化珪素をホットプレス焼結した
際に、相対密度が99%以上となる焼結温度を示してあ
るが、その焼結温度は1650℃である。
First, in order to narrow down the types of compounds to be added, hot press sintering was performed at each temperature with the added amount of the compound fixed at 1% and 3% by weight, and the density of the sintered body was measured. We conducted this process to select compounds that are effective in lowering the sintering temperature. The results of these tests are summarized in Table 1. Table 1 shows the sintering temperature at which the relative density becomes 99% or more when hot-press sintering silicon nitride without addition of compounds, and the sintering temperature is 1650°C.

【表1】[Table 1]

【0011】表1より明らかなように、化合物無添加の
窒化珪素焼結体に比較して、1550℃と低温で相対密
度99%以上まで緻密化しているのは酸化ジルコニウム
、酸化セリウム及び酸化サマリウムを添加した場合であ
る。酸化ガドリウム、酸化ランタン、酸化ネオビウム、
酸化ユウロビウム及び酸化ディスプロジウムを添加した
場合には化合物無添加の窒化珪素とほぼ同じ焼結温度で
ある1650℃でホットプレスしないと相対密度99%
程度まで緻密化しない。また、酸化イッテリビウムを添
加した場合には相対密度99%以上まで緻密化する焼結
温度が化合物無添加の窒化珪素と比較して高い1700
℃となっており、焼結温度低温化のための添加効果は認
められない。
As is clear from Table 1, zirconium oxide, cerium oxide, and samarium oxide are densified to a relative density of 99% or more at a low temperature of 1550° C. compared to a silicon nitride sintered body with no compound added. This is the case when . Gadolinium oxide, lanthanum oxide, neobium oxide,
When eurobium oxide and dysprosium oxide are added, the relative density is 99% unless hot pressed at 1650°C, which is almost the same sintering temperature as silicon nitride without compound additions.
Do not densify to a certain degree. In addition, when ytterbium oxide is added, the sintering temperature at which the relative density is densified to 99% or more is higher than that of silicon nitride with no compound added.
℃, and no effect of addition for lowering the sintering temperature was observed.

【0012】以上の結果から、窒化珪素の焼結温度低温
化に有効な化合物としては酸化ジルコニウム、酸化セリ
ウム、酸化サマリウムであることが明らかになったので
、焼結温度を相対密度が99%となる1550℃及び1
600℃の二条件に固定し、曲げ強さ試験及び硬さ試験
を行い、特性面でも優れた添加化合物を選定する試験を
行った。なお、化合物の添加量は前述の試験と同様に1
重量%及び3重量%とした。これらの結果を纏めて表2
に示す。比較のため、化合物無添加の窒化珪素を165
0℃でホットプレス焼結したものの特性値をも表2に示
してある。
From the above results, it has become clear that zirconium oxide, cerium oxide, and samarium oxide are effective compounds for lowering the sintering temperature of silicon nitride. becomes 1550℃ and 1
A bending strength test and a hardness test were conducted under two fixed conditions of 600° C., and a test was conducted to select an additive compound with excellent properties. The amount of the compound added was 1 as in the above test.
% by weight and 3% by weight. Table 2 summarizes these results.
Shown below. For comparison, silicon nitride without compound addition was used at 165
Table 2 also shows the characteristic values of the samples hot-press sintered at 0°C.

【表2】[Table 2]

【0013】表2より明らかな通り、化合物の添加によ
り室温の曲げ強さ及び硬さは向上することが明らかとな
った。これは、これらの添加化合物が一種の焼結助剤と
して働き組織の一層の緻密化に有効に働いたためと考え
られる。これに対して、1200℃の高温の曲げ強さは
添加した化合物種によって傾向が異なり、酸化ジルコニ
ウム及び酸化サマリウムを添加した場合には、高温曲げ
強さは化合物無添加の場合と比較してほぼ同程度か若干
向上する結果となった。これに対して、酸化セリウムを
添加した場合には、高温の曲げ強さは顕著に低下してい
る。このことは前述の試験の結果(表1参照)からも、
酸化セリウムを添加した場合に、焼結試験での最も低い
焼結温度である1500℃でも他の化合物を添加した場
合と比較して、かなり相対密度が向上しており、酸化セ
リウムを添加することにより窒化珪素焼結時の液相の生
成が促進されていることが推定できる。このことが、逆
に高温曲げ強さ試験においては粒界に存在するガラス相
の軟化が容易に起こるため、高温の曲げ強さが他の化合
物を添加した場合と比較して劣る結果になったものと考
えられる。
As is clear from Table 2, the addition of the compound improves the bending strength and hardness at room temperature. This is thought to be because these additive compounds functioned as a kind of sintering aid and effectively worked to further densify the structure. On the other hand, the bending strength at a high temperature of 1200°C has different trends depending on the type of compound added, and when zirconium oxide and samarium oxide are added, the high-temperature bending strength is almost the same as when no compounds are added. The results were about the same or slightly improved. On the other hand, when cerium oxide is added, the bending strength at high temperatures is significantly reduced. This is also confirmed from the test results mentioned above (see Table 1).
When cerium oxide was added, the relative density was significantly improved compared to when other compounds were added, even at the lowest sintering temperature in the sintering test, 1500°C. It can be inferred that the formation of a liquid phase during silicon nitride sintering is promoted by this. Conversely, in high-temperature bending strength tests, the glass phase present at the grain boundaries easily softens, resulting in a result in which the high-temperature bending strength is inferior to that obtained when other compounds are added. considered to be a thing.

【0014】次いで、添加する化合物の粉末の粒径の影
響について検討を行った。検討した化合物は酸化サマリ
ウムである。酸化サマリウムの粉末粒径としては0.5
μm、1.0μm、2.0μm、3.0μm及び5.0
μmの五種類を準備した。添加量は1重量%とし焼結温
度は1550℃とした。表3に各種粒径の酸化サマリウ
ムを添加した焼結体の焼結密度及び室温曲げ強さを示す
。この表より明らかな通り、酸化サマリウムの粉末粒径
が5.0μmの場合には焼結体密度が若干低下し室温曲
げ強さも低下している。この結果から、添加する化合物
の粉末粒径としては3.0μm以下とすること、さらに
好ましくは化合物の平均粒径を1.0μm以下とするこ
とが、本発明の焼結体の特性を維持する上での必要条件
であることが明らかになった。
Next, the influence of the particle size of the powder of the compound to be added was investigated. The compound studied was samarium oxide. The powder particle size of samarium oxide is 0.5
μm, 1.0μm, 2.0μm, 3.0μm and 5.0
Five types of μm were prepared. The amount added was 1% by weight, and the sintering temperature was 1550°C. Table 3 shows the sintered density and room temperature bending strength of sintered bodies to which samarium oxide of various particle sizes was added. As is clear from this table, when the powder particle size of samarium oxide is 5.0 μm, the sintered body density is slightly lowered and the room temperature bending strength is also lowered. From this result, the characteristics of the sintered body of the present invention can be maintained by setting the powder particle size of the compound to be added to 3.0 μm or less, and more preferably setting the average particle size of the compound to 1.0 μm or less. It turns out that the above is a necessary condition.

【表3】[Table 3]

【0015】(2)以上の焼結温度低温化のための添加
化合物選定試験の結果、酸化ジルコニウム及び酸化サマ
リウムが焼結温度低温化に有効であることが明らかとな
ったので、これらの化合物を用いて炭化珪素ウイスカを
添加した窒化珪素の焼結試験を行うこととした。先ず、
炭化珪素ウイスカの添加量を内数で10重量%と固定し
、添加する酸化ジルコニウム及び酸化サマリウムの適正
添加量について検討を行った。試験方法、試験条件、特
性評価方法等は前述の試験と同様である。酸化ジルコニ
ウムを添加した場合の焼結体密度、室温曲げ強さ、高温
曲げ強さ、硬さの酸化ジルコニウム添加量依存性を図1
に示す。同様に酸化サマリウムの添加量への依存性を図
2に示す。焼結温度について化合物無添加で炭化珪素ウ
イスカを10重量%添加した窒化珪素の焼結温度が17
50℃程度であり、前述の試験結果より化合物添加によ
り焼結温度を約100℃低温化できると考えられること
から、焼結温度は1650℃に固定して試験を行った。
(2) As a result of the above tests for selecting additive compounds for lowering the sintering temperature, it became clear that zirconium oxide and samarium oxide are effective in lowering the sintering temperature. We decided to conduct a sintering test on silicon nitride to which silicon carbide whiskers were added. First of all,
The amount of silicon carbide whiskers added was fixed at 10% by weight, and the appropriate amounts of zirconium oxide and samarium oxide to be added were investigated. The test method, test conditions, characteristic evaluation method, etc. are the same as the above-mentioned test. Figure 1 shows the dependence of sintered compact density, room temperature bending strength, high temperature bending strength, and hardness on the amount of zirconium oxide added when zirconium oxide is added.
Shown below. Similarly, dependence on the amount of samarium oxide added is shown in FIG. Regarding the sintering temperature, the sintering temperature of silicon nitride with no compound added and 10% by weight of silicon carbide whiskers is 17
Based on the test results described above, it is thought that the sintering temperature can be lowered by about 100°C by adding a compound, so the test was conducted with the sintering temperature fixed at 1650°C.

【0016】図1より明らかな通り、酸化ジルコニウム
を添加した場合には添加量0.3重量%から5重量%の
範囲で酸化ジルコニウム無添加の場合と同程度以上の物
性を示している。特に顕著に特性が向上するのは添加量
が0.5重量%から3重量%の範囲である。添加量が多
くなると、これらの化合物は添加している焼結助剤と反
応し粒界に存在するガラス相となるが、このガラス相の
量が増加するために高温曲げ強さが低下するものと考え
られる。また、図2より明らかな通り、酸化サマリウム
を添加した場合にも酸化ジルコニウムを添加した場合と
ほぼ同様の傾向となるが、特性面で顕著な向上が認めら
れる添加量は内数で0.5重量%から3重量%の範囲で
ある。なお、酸化サマリウムと酸化ジルコニウムの複合
添加も同様に有効である。
As is clear from FIG. 1, when zirconium oxide is added, the physical properties are comparable to or better than when no zirconium oxide is added in the range of 0.3% to 5% by weight. In particular, the properties are significantly improved when the amount added is in the range of 0.5% by weight to 3% by weight. When the amount added is large, these compounds react with the added sintering aid and form a glass phase that exists at the grain boundaries, but as the amount of this glass phase increases, the high temperature bending strength decreases. it is conceivable that. Furthermore, as is clear from Figure 2, when samarium oxide is added, the tendency is almost the same as when zirconium oxide is added, but the amount of addition at which a significant improvement in properties is recognized is 0.5. It ranges from 3% to 3% by weight. Note that the combined addition of samarium oxide and zirconium oxide is similarly effective.

【0017】次いで、炭化珪素ウイスカの最適添加量に
ついての検討を行った。添加した化合物は酸化ジルコニ
ウムであり、その添加量は内数が1重量%とした。また
、焼結温度は1650℃として炭化珪素ウイスカの添加
量を内数で1重量%から40重量%まで変化させた。 得られた焼結体の焼結密度、室温曲げ強さ、高温曲げ強
さ(1200℃)、硬さの炭化珪素ウイスカ添加量依存
性を図3に示す。
Next, the optimum amount of silicon carbide whiskers to be added was investigated. The added compound was zirconium oxide, and the amount added was 1% by weight. Further, the sintering temperature was set at 1650° C., and the amount of silicon carbide whiskers added was varied from 1% by weight to 40% by weight. FIG. 3 shows the dependence of the sintered density, room temperature bending strength, high temperature bending strength (1200° C.), and hardness on the amount of silicon carbide whisker added of the obtained sintered body.

【0018】図3より明らかな通り、炭化珪素ウイスカ
添加量が3重量%以上で高温曲げ強さの向上が認められ
ると共に硬さの顕著な向上が認められる。しかし、炭化
珪素添加量が30重量%以上では焼結温度1650℃に
おいては十分緻密化せず焼結体密度が低下してしまう。 炭化珪素ウイスカの添加量の最適添加量としては、高温
曲げ強さ及び硬さが顕著に向上しかつ室温曲げ強さが炭
化珪素ウイスカ無添加の窒化珪素とほぼ同程度以上であ
ることから判断すると内数で5重量%から20重量%で
ある。
As is clear from FIG. 3, when the amount of silicon carbide whiskers added is 3% by weight or more, the high temperature bending strength is improved and the hardness is also significantly improved. However, if the amount of silicon carbide added is 30% by weight or more, the sintered body will not be sufficiently densified at a sintering temperature of 1650° C., resulting in a decrease in the density of the sintered body. The optimum amount of silicon carbide whiskers to be added is determined from the fact that the high temperature bending strength and hardness are significantly improved, and the room temperature bending strength is approximately the same or higher than that of silicon nitride without silicon carbide whiskers. The total amount is from 5% to 20% by weight.

【0019】次いで、ホットプレスの焼結条件に関して
の検討を行った。炭化珪素ウイスカ添加量を10重量%
、添加化合物として酸化ジルコニウムを内数で1重量%
として、焼結温度1650℃とした条件で加圧力を50
kg/cm2 から500kg/cm2 の範囲で変化
させ焼結試験を行った。焼結密度、室温曲げ強さ、硬さ
の加圧力依存性を図4に示す。
Next, the hot press sintering conditions were investigated. Silicon carbide whisker addition amount is 10% by weight
, 1% by weight of zirconium oxide as an additive compound
As a result, the sintering temperature was 1650°C and the pressure was 50°C.
A sintering test was conducted by varying the weight from kg/cm2 to 500 kg/cm2. Figure 4 shows the dependence of sintered density, room temperature bending strength, and hardness on pressing force.

【0020】図4より明らかな通り、ホットプレス焼結
時の加圧力として200kg/cm2 以上が必要であ
り、これ以上の加圧力でホットプレス焼結を行っても特
性面の向上は認められず、また、逆にこれ以下の加圧力
では、この焼結温度では十分緻密化せず、化合物を添加
して焼結温度を低温化し、炭化珪素ウイスカの焼結時の
損傷を防ぐ目的を満足しないため、ホットプレス焼結時
の加圧力としては最低200kg/cm2 必要である
ことが明らかとなった。
As is clear from FIG. 4, a pressure of 200 kg/cm2 or more is required during hot press sintering, and no improvement in properties is observed even if hot press sintering is performed with a pressure higher than this. Conversely, if the pressure is lower than this, the sintering temperature will not sufficiently densify, and the purpose of adding a compound to lower the sintering temperature and preventing damage to silicon carbide whiskers during sintering will not be achieved. Therefore, it has become clear that a minimum pressure of 200 kg/cm2 is required during hot press sintering.

【0021】さらに、確認のためホットプレス焼結温度
の影響についての検討を行った。炭化珪素ウイスカの添
加量を内数で10重量%、添加化合物として酸化ジルコ
ニウムを内数で1重量%添加し、加圧力250kg/c
m2 の条件でホットプレス焼結試験を行った。焼結体
密度、室温曲げ強さ、硬さの焼結温度依存性を図5に示
す。
Furthermore, for confirmation, the influence of hot press sintering temperature was investigated. The amount of silicon carbide whiskers added was 10% by weight, the additive compound zirconium oxide was 1% by weight, and the pressing force was 250 kg/c.
A hot press sintering test was conducted under the conditions of m2. Figure 5 shows the dependence of the sintered body density, room temperature bending strength, and hardness on the sintering temperature.

【0022】図5より明らかな通り、焼結温度を高くし
ていくと曲げ強さは若干低下していく傾向となる。問題
となるのは硬さであり、焼結温度が1700℃以上では
炭化珪素ウイスカ無添加のものと比較して低下する傾向
となり、炭化珪素ウイスカ添加の効果が認められなくな
る。以上の結果から判断して、これらの炭化珪素ウイス
カを添加した窒化珪素系の耐摩耗性セラミックスの製造
に当たっては、ホットプレス焼結温度を1700℃以下
(この温度は化合物無添加の窒化珪素のホットプレス焼
結温度1750℃と比較しても50℃低い温度である)
で行う必要があることが明らかになった。
As is clear from FIG. 5, as the sintering temperature is increased, the bending strength tends to decrease slightly. The problem is hardness, and when the sintering temperature is 1700° C. or higher, the hardness tends to be lower than that without the addition of silicon carbide whiskers, and the effect of adding silicon carbide whiskers is no longer recognized. Judging from the above results, when producing silicon nitride-based wear-resistant ceramics to which these silicon carbide whiskers are added, the hot press sintering temperature should be kept at 1700°C or lower (this temperature is lower than the hot (This is 50°C lower than the press sintering temperature of 1750°C.)
It became clear that this needed to be done.

【0023】(3)以上の試験結果より、炭化珪素ウイ
スカを添加した窒化珪素系の耐摩耗性セラミックスの製
造条件が明らかになったので、以下の試験でこれらの耐
摩耗性セラミックスの有効性を摩耗試験により評価した
(3) From the above test results, the manufacturing conditions for silicon nitride-based wear-resistant ceramics to which silicon carbide whiskers have been added have been clarified.The effectiveness of these wear-resistant ceramics was tested in the following tests. Evaluation was made by a wear test.

【0024】試験はセラミックスに溶融シリカの粉末を
圧縮空気を用いて吹きつけ、セラミックスを摩耗させ、
その摩耗量を測定して耐摩耗性を評価する方法で行った
。試験条件は40μm程度の粒径の溶融シリカ粉末を用
い、この粉体の粉体濃度が50g/Nm3 、吹きつけ
速度を100m/sec、吹きつけ角度を90度、試験
温度を室温とした。試験に供したセラミックスは炭化珪
素ウイスカを10重量%添加し、添加化合物として酸化
ジルコニウム又は酸化サマリウムを1重量%添加し、焼
結温度を1650℃とし、加圧力を250kg/cm2
 としてホットプレス焼結したもの、炭化珪素ウイスカ
を10重量%添加するが添加化合物は添加せず、焼結温
度1750℃とし、加圧力を250kg/cm2 とし
てホットプレス焼結したもの及び炭化珪素ウイスカ及び
添加化合物共に無添加とし、焼結温度1650℃、加圧
力を250kg/cm2 としてホットプレス焼結した
ものの計4種類とした。試験結果を表4にまとめて示す
[0024] In the test, fused silica powder was sprayed onto the ceramic using compressed air to abrade the ceramic.
The wear resistance was evaluated by measuring the amount of wear. The test conditions were as follows: fused silica powder with a particle size of about 40 μm was used, the powder concentration was 50 g/Nm 3 , the blowing speed was 100 m/sec, the blowing angle was 90 degrees, and the test temperature was room temperature. The ceramics used in the test had 10% by weight of silicon carbide whiskers added, 1% by weight of zirconium oxide or samarium oxide as an additive compound, a sintering temperature of 1650°C, and a pressing force of 250kg/cm2.
Hot press sintered with 10% by weight of silicon carbide whiskers but no additive compounds, hot press sintered at a sintering temperature of 1750°C and a pressure of 250 kg/cm2, and silicon carbide whiskers and A total of four types were prepared by hot press sintering at a sintering temperature of 1650° C. and a pressure of 250 kg/cm 2 without any additive compounds. The test results are summarized in Table 4.

【表4】[Table 4]

【0025】表4より、炭化珪素ウイスカ及び添加化合
物を添加した本発明によるセラミックスは、比較のため
の炭化珪素ウイスカのみ添加したもの及び添加珪素ウイ
スカも添加していないものと比較して飛躍的に耐摩耗性
が向上しており、本発明の有効性が実証された。特に、
炭化珪素ウイスカを添加し、添加化合物を無添加とした
ものでは炭化珪素ウイスカ無添加のものと比較して、ほ
とんど耐摩耗性に差が認められず、本発明による添加化
合物すなわち酸化ジルコニウム、酸化サマリウムの添加
が焼結温度の低温化に有効であり、このことにより、焼
結時の炭化珪素ウイスカの損傷が防止でき、炭化珪素ウ
イスカの効果を十分に発揮させることができ、飛躍的に
耐摩耗性が向上したものと考えられる。
[0025] From Table 4, the ceramics according to the present invention to which silicon carbide whiskers and additive compounds are added are dramatically superior to those to which only silicon carbide whiskers are added and to which no additive silicon whiskers are added. The wear resistance was improved, demonstrating the effectiveness of the present invention. especially,
When silicon carbide whiskers are added and no additive compounds are added, there is almost no difference in wear resistance compared to when silicon carbide whiskers are not added. The addition of is effective in lowering the sintering temperature, which prevents damage to the silicon carbide whiskers during sintering and fully demonstrates the effects of the silicon carbide whiskers, dramatically improving wear resistance. It is thought that the characteristics have improved.

【0026】[0026]

【発明の効果】本発明による耐摩耗セラックスは従来の
耐摩耗性に優れると言われている窒化珪素系のセラミッ
クスと比較して格段に耐摩耗性が向上しており、本発明
による耐摩耗性セラミックスを自動車用エンジンのカム
、タッペト、ボイラの耐摩耗部品、製鉄機械の耐摩耗部
品の耐摩耗性を要求される各種部品に適用することによ
り、これらの部品の耐用寿命が飛躍的に延び、機械の信
頼性の向上、メンテナンスの簡略化、コストの低減等産
業分野に与える効果は多大である。
[Effects of the Invention] The wear-resistant ceramics according to the present invention have significantly improved wear resistance compared to conventional silicon nitride-based ceramics, which are said to have excellent wear resistance. By applying ceramics to various parts that require wear resistance, such as the wear-resistant parts of automobile engine cams, tappets, and boilers, and the wear-resistant parts of steel-making machinery, the service life of these parts can be dramatically extended. It has great effects on the industrial field, such as improving machine reliability, simplifying maintenance, and reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】化合物(酸化ジルコニウム)の添加量の適正化
試験結果を示す図表
[Figure 1] Chart showing the results of a test to optimize the amount of compound (zirconium oxide) added

【図2】化合物(酸化サマリウム)の添加量の適正化試
験結果を示す図表
[Figure 2] Chart showing the results of a test to optimize the amount of compound (samarium oxide) added

【図3】炭化珪素ウイスカの添加量の適正化試験結果を
示す図表
[Figure 3] Chart showing the results of a test to optimize the amount of silicon carbide whiskers added

【図4】本発明セラミックスのホットプレス焼結時の加
圧力の適正化試験結果を示す図表
[Figure 4] Chart showing the results of a test for optimizing the pressing force during hot press sintering of the ceramics of the present invention

【図5】本発明セラミックスのホットプレス焼結時の焼
結温度の適正化試験結果を示す図表
[Figure 5] Chart showing the results of a test to optimize the sintering temperature during hot press sintering of the ceramics of the present invention

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  酸化ジルコニウム及び/又は酸化サマ
リウムを0.3〜5重量%、炭化珪素ウイスカを3〜3
0重量%と窒化珪素に対して3〜15重量%の焼結助剤
と残部実質的に窒化珪素とからなることを特徴とする窒
化珪素質加圧焼結体。
Claim 1: 0.3 to 5% by weight of zirconium oxide and/or samarium oxide and 3 to 3% by weight of silicon carbide whiskers.
1. A pressurized sintered body of silicon nitride, characterized in that the sintering aid comprises 0% by weight of silicon nitride, 3 to 15% by weight of a sintering aid based on silicon nitride, and the remainder substantially silicon nitride.
【請求項2】  平均粒径3μm以下の酸化ジルコニウ
ム粉末及び/又は酸化サマリウム粉末を0.3〜5重量
%、炭化ウイスカを3〜30重量%、窒化珪素粉末に対
し3〜15重量%の焼結助剤と残部実質的に窒化珪素粉
末とからなる混合粉末を、加圧圧力200kg/cm2
 以上、焼結温度1,550〜1700℃の範囲で焼結
することを特徴とする窒化珪素質加圧焼結体の製造方法
2. Calcined zirconium oxide powder and/or samarium oxide powder with an average particle size of 3 μm or less in an amount of 0.3 to 5% by weight, carbide whiskers in an amount of 3 to 30% by weight, and silicon nitride powder in an amount of 3 to 15% by weight. A mixed powder consisting of a binder and the remainder substantially silicon nitride powder was pressed at a pressure of 200 kg/cm2.
The method for producing a pressed sintered body of silicon nitride is characterized in that sintering is carried out at a sintering temperature in the range of 1,550 to 1,700°C.
JP3141508A 1991-06-13 1991-06-13 Silicon nitride-based pressed compact and its production Pending JPH04367564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3141508A JPH04367564A (en) 1991-06-13 1991-06-13 Silicon nitride-based pressed compact and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3141508A JPH04367564A (en) 1991-06-13 1991-06-13 Silicon nitride-based pressed compact and its production

Publications (1)

Publication Number Publication Date
JPH04367564A true JPH04367564A (en) 1992-12-18

Family

ID=15293592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3141508A Pending JPH04367564A (en) 1991-06-13 1991-06-13 Silicon nitride-based pressed compact and its production

Country Status (1)

Country Link
JP (1) JPH04367564A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003084895A1 (en) * 2002-04-04 2003-10-16 Kabushiki Kaisha Toshiba Silicon nitride anti-wear member and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003084895A1 (en) * 2002-04-04 2003-10-16 Kabushiki Kaisha Toshiba Silicon nitride anti-wear member and process for producing the same
US7151066B2 (en) 2002-04-04 2006-12-19 Kabushiki Kaisha Toshiba Silicon nitride anti-wear member and process for producing the same

Similar Documents

Publication Publication Date Title
JPH07277814A (en) Alumina-based ceramic sintered compact
US4640902A (en) Low thermal conductivity Si3 N4 /ZrO2 composite ceramics
JPS649266B2 (en)
JP2005314215A (en) Dense cordierite sintered body and method of manufacturing the same
KR100459296B1 (en) A material of low volume resistivity, an aluminum nitride sintered body and a member used for the production of semiconductors
JPH04367564A (en) Silicon nitride-based pressed compact and its production
JP3091085B2 (en) Rare earth silicate based sintered body and method for producing the same
JP3550420B2 (en) Wear-resistant silicon nitride sintered body, method for producing the same, and cutting tool
JPH0826815A (en) Rare earth compound oxide-based sintered compact and its production
JPH0797256A (en) Sintered body of aluminum oxide base and its production
JP2549976B2 (en) Heat-resistant mullite sintered body
KR20200133119A (en) Zirconium Based Ceramic Material and Method of Producing the same
JPH05279129A (en) Low-thermally conductive ceramic and its production
JPH0274564A (en) Silicon nitride calcined compact
JP3704424B2 (en) Dielectric material
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
JP3176143B2 (en) Partially stabilized zirconia sintered body
JP5150020B2 (en) Method for producing AlN-Al2O3 composite material
JPS6230666A (en) High toughenss silicon nitride sintered body and manufacture
JPH08198664A (en) Alumina-base sintered body and its production
JPH0840770A (en) Zirconia sintered product and method for producing the same
JP3131537B2 (en) Alumina jig for firing
JPS60264357A (en) Antiabrasive ceramic
JPS5945969A (en) High hardness high tenacity zirconium oxide ceramic and manufacture
JPS6221763A (en) Silicon nitride base sintered body

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990721