JPH04367563A - Sic-based oxide sintered compact and its production - Google Patents

Sic-based oxide sintered compact and its production

Info

Publication number
JPH04367563A
JPH04367563A JP3167472A JP16747291A JPH04367563A JP H04367563 A JPH04367563 A JP H04367563A JP 3167472 A JP3167472 A JP 3167472A JP 16747291 A JP16747291 A JP 16747291A JP H04367563 A JPH04367563 A JP H04367563A
Authority
JP
Japan
Prior art keywords
sic
temperature
sintered body
powder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3167472A
Other languages
Japanese (ja)
Other versions
JP2944787B2 (en
Inventor
Mamoru Omori
守 大森
Toshio Hirai
平井 敏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3167472A priority Critical patent/JP2944787B2/en
Publication of JPH04367563A publication Critical patent/JPH04367563A/en
Application granted granted Critical
Publication of JP2944787B2 publication Critical patent/JP2944787B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To improve strength and reliability by forming a mixture of a rare earth oxide with SiC at a specific weight ratio, rapidly heating the formed mixture to a specific temperature, holding the formed mixture at the temperature for a prescribed time and synthesizing the subject sintered compact. CONSTITUTION:With 95-5wt.% rare earth oxide powder such as Y2O3, is mixed 5-95wt.% Al2O3 powder. The resultant mixed oxide powder in an amount of 80-10wt.% is then mixed with 20-90wt.% SiC powder and the obtained mixture is added and mixed with an aqueous solution of a polymer such as PVA at 2-30wt.% concentration. The prepared mixture is subsequently dried and formed. The formed compact is then rapidly heated to 1700-2100 deg.C in a nonoxidizing atmosphere such as Ar gas and kept at the aforementioned temperature for 0.1-30min to provide an SiC-based oxide sintered compact. The resultant sintered compact is further subjected to hot isostatic pressing treatment at 1600-2000 deg.C under 0.2-10 MPa in a nonoxidizing atmosphere. Thereby, the objective SiC-based oxide sintered compact free of fine defects is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、強度や信頼性低下の原
因となるセラミックス中のポアやマイクロクラックをな
くすことによって、高い強度と信頼性をもつ組織的に均
一なSiC系酸化物セラミックスの焼結体、特にSiC
−希土類酸化物−アルミナ系焼結体とそれを製造する方
法に関するものである。
[Industrial Application Field] The present invention creates structurally uniform SiC-based oxide ceramics with high strength and reliability by eliminating pores and microcracks in ceramics that cause a decrease in strength and reliability. Sintered bodies, especially SiC
-Rare earth oxide-alumina sintered body and method for producing the same.

【0002】0002

【従来の技術】セラミックス材料は、高温での強度が大
きく、耐熱性, 耐酸化性および耐食性に優れているた
め、構造材料として有望視されている。特に、金属の使
用限界を超えた温度で使用される構造材料へのセラミッ
クスの応用には多大の関心が寄せられている。こうした
セラミックスの中でも、SiCは耐熱性や耐酸化性に優
れているため、高温でも使用できる構造材料の1つとし
て極めて有望である。
[Prior Art] Ceramic materials are considered promising as structural materials because they have high strength at high temperatures and are excellent in heat resistance, oxidation resistance, and corrosion resistance. In particular, there is a great deal of interest in the application of ceramics to structural materials that are used at temperatures exceeding the service limits of metals. Among these ceramics, SiC has excellent heat resistance and oxidation resistance, so it is extremely promising as a structural material that can be used even at high temperatures.

【0003】しかしながら、このSiCは、一般に焼結
しにくいため、助剤の添加なしでは緻密な焼結体を得る
ことが極めて困難である。例えば、このような困難を克
服する技術として、従来、SiC粉に焼結助剤として金
属Alを加えてホットプレスする技術が、R.A.Al
liegroやL.B.Coffinらによって提案さ
れている(J.Am.CERAM.Soc.,39 (
1956) 386−89 参照)。しかし、SiCに
単に金属Alのみを添加することでは、無加圧下での焼
結によって優れた特性を有する焼結体を生成させること
はできない。
However, since SiC is generally difficult to sinter, it is extremely difficult to obtain a dense sintered body without adding an auxiliary agent. For example, as a technique to overcome such difficulties, a conventional technique in which metal Al is added as a sintering aid to SiC powder and then hot pressed has been proposed by R. A. Al
Liegro and L. B. It has been proposed by Coffin et al. (J. Am. CERAM. Soc., 39 (
1956) 386-89). However, by simply adding metal Al to SiC, it is not possible to produce a sintered body having excellent properties by sintering under no pressure.

【0004】また、無加圧下でのSiC焼結体は、硼素
と炭素とを添加して合成された例が、S.Procha
zka によって報告されている(Special C
eramics No.6  P171−182,19
75参照)。さらに、焼結助剤として金属Alとともに
炭素を加えることで、SiC粉を無加圧下で焼結できる
技術が、W.BockerやH.Landferman
n らの報告にかかる「Powder Met. In
t., 11(1979) 83−85) 」で提案さ
れている。
[0004] Furthermore, an example of a SiC sintered body synthesized under no pressure by adding boron and carbon is S. Procha
reported by zka (Special C
eramics No. 6 P171-182, 19
75). Furthermore, a technology that allows SiC powder to be sintered without pressure by adding carbon together with metal Al as a sintering aid was developed by W. Bocker and H. Landferman
“Powder Met.
t. , 11 (1979) 83-85).

【0005】また、SiC粉に焼結助剤としてAl2O
3 を添加してもホットプレスにより緻密な焼結体を合
成することができる技術が提案されている(U.S.P
at.No.3520656)。さらには、SiC粉に
焼結助剤としてAl2O3 を添加し、無加圧下200
0℃以下の温度に10時間保持することにより97〜9
8%の緻密体を得る技術も提案されている( 鈴木恵一
朗, 炭化珪素セラミックス, P. 345−366
, 内田, 老鶴圃参照) 。
[0005] Also, Al2O is added to SiC powder as a sintering aid.
A technique has been proposed that allows synthesis of a dense sintered body by hot pressing even if 3 is added (U.S.P.
at. No. 3520656). Furthermore, Al2O3 was added as a sintering aid to the SiC powder, and the
97-9 by holding at a temperature below 0℃ for 10 hours
A technique to obtain an 8% dense body has also been proposed (Keiichiro Suzuki, Silicon Carbide Ceramics, P. 345-366
, Uchida, Rokakuba).

【0006】ところが、硼素と炭素,あるいはAlと炭
素を焼結助剤とするものは固相焼結でポアが残りやすい
。また、Al2O3 を焼結助剤として得られたSiC
焼結体は、液相焼結による緻密な焼結体にはなるが、A
l2O3 とSiCとの反応のためポアが生成する。そ
の結果、強度600MPa以下、破壊靱性値5 MPa
・m1/2といずれも小さく、しかもセラミックスの信
頼性を示す指標であるワイブル係数のm値が10以下と
小さいため、信頼性の乏しい材料といえるものであった
However, when boron and carbon or Al and carbon are used as sintering aids, pores tend to remain during solid phase sintering. In addition, SiC obtained using Al2O3 as a sintering aid
Although the sintered body becomes a dense sintered body by liquid phase sintering,
Pores are generated due to the reaction between 12O3 and SiC. As a result, the strength was 600 MPa or less, and the fracture toughness was 5 MPa.
- Both m1/2 were small, and the Weibull coefficient m value, which is an index showing the reliability of ceramics, was small at 10 or less, so it could be said that it was a material with poor reliability.

【0007】これに対して、SiCを他のセラミックス
と複合化することにより、SiC焼結体の強度および靱
性値を向上させ信頼性を改善する技術が、先に、本発明
者らの一人によって提案されている。例えば、無加圧下
の焼結によって、緻密なSiC−希土類酸化物−アルミ
ナ系複合焼結体を製造する技術が、大森や武居らの報告
にかかる「 J,Am.Ceram.Soc., 65
 (1982) C−92) 」で提案されている。ま
た、前記焼結のおいて、焼成温度を2150℃と高くし
、Al金属とSi半導体とを生成させることによって緻
密なSiC−希土類酸化物−アルミナ系複合焼結体を製
造する技術も提案されている( 大森,武居, J.M
ater.Sci, 23(1988) 3744−3
749参照) 。
[0007] On the other hand, one of the present inventors previously proposed a technique for improving the strength and toughness of a SiC sintered body and improving its reliability by compositing SiC with other ceramics. Proposed. For example, a technology for producing a dense SiC-rare earth oxide-alumina composite sintered body by sintering under no pressure was reported by Omori and Takei et al. in "J, Am. Ceram. Soc., 65.
(1982) C-92). Furthermore, a technique has been proposed in which a dense SiC-rare earth oxide-alumina composite sintered body is manufactured by increasing the firing temperature to 2150°C to generate Al metal and Si semiconductor in the sintering process. (Omori, Takei, J.M.
ater. Sci, 23 (1988) 3744-3
749).

【0008】ところが、この方法で合成されたものでは
小さな欠陥が焼結体内部に存在し、それを起点に破壊が
始まるため、材料としての信頼性に欠け、実用的な使用
に大きな問題があった。
However, in products synthesized by this method, small defects exist inside the sintered body, and destruction starts from these defects, resulting in a lack of reliability as a material and a major problem in practical use. Ta.

【0009】[0009]

【発明が解決しようとする課題】このSiC−希土類酸
化物−アルミナ系焼結体の生成機構は次のように考えら
れる。まず、第1段階で、希土類酸化物とアルミナから
酸化物固溶体、あるいは酸化物の化合物を生成し、次い
で、第2段階では、上記SiCが前記酸化物中に固溶,
 拡散してSiC粒の粒成長が図られ収縮して緻密な焼
結体が生成する。
[Problems to be Solved by the Invention] The formation mechanism of this SiC-rare earth oxide-alumina based sintered body is thought to be as follows. First, in the first step, an oxide solid solution or an oxide compound is generated from the rare earth oxide and alumina, and then, in the second step, the SiC is solid-dissolved in the oxide.
The SiC grains are diffused, grow, and contracted to form a dense sintered body.

【0010】ところが、前記第2段階では、SiC粉は
酸化物に固溶すると同時に化学反応が起こり、SiCが
アルミナと反応してCO, CO2およびSi0 など
のガスを発生する。その結果、焼結体中にボイドやポア
などの欠陥が生じ、SiCと酸化物との界面の強度が低
下するという欠点があった。
However, in the second stage, a chemical reaction occurs at the same time that the SiC powder is dissolved in the oxide, and SiC reacts with alumina to generate gases such as CO, CO2 and Si0. As a result, defects such as voids and pores occur in the sintered body, resulting in a decrease in the strength of the interface between SiC and the oxide.

【0011】本発明の目的は、このSiC−希土類酸化
物−アルミナ系焼結体について、上述したようなボイド
やポアなどの欠陥のない、高強度、高靭性で信頼性の高
い焼結体とすると共に、その有利な製造方法についての
新規な技術を提案することにある。
The object of the present invention is to develop this SiC-rare earth oxide-alumina sintered body into a high-strength, high-toughness, and highly reliable sintered body free of defects such as voids and pores as described above. At the same time, it is an object of the present invention to propose a new technique for an advantageous manufacturing method thereof.

【0012】0012

【課題を解決するための手段】上掲の目的を実現するた
めに鋭意研究した結果、焼結体の加熱昇温速度が重要な
ファクターとなることを突き止め、次のような要旨構成
で本発明を完成した。すなわち、本発明は、希土類酸化
物95〜5重量%およびAl2O3 5〜95重量%か
らなる混合酸化物粉80〜10重量%と;SiC 粉2
0〜90重量%と;を混合し、その混合物を成形した後
、非酸化性雰囲気中において、1700〜2100℃の
温度にまで達する時間が60分以内である急速昇温の加
熱を施し、次いでその温度に 0.1〜30分間保持し
て合成することを特徴とするSiC系酸化物焼結体の製
造方法とそれによって合成されるSiC系酸化物焼結体
,および、このSiC系酸化物焼結体を、さらに160
0〜2000℃の温度、0.2 〜10 MPaの圧力
でHIP処理することを特徴とするSiC系酸化物焼結
体の製造方法とそれによって合成されるSiC系酸化物
焼結体,を提供する。
[Means for Solving the Problems] As a result of intensive research in order to achieve the above object, it was found that the heating rate of the sintered body is an important factor, and the present invention has been developed as follows. completed. That is, the present invention combines 80-10% by weight of mixed oxide powder consisting of 95-5% by weight of rare earth oxide and 5-95% by weight of Al2O3;
After mixing 0 to 90% by weight and shaping the mixture, heating is performed in a non-oxidizing atmosphere at a rapid temperature increase in which the time to reach a temperature of 1700 to 2100 ° C. is within 60 minutes, and then A method for producing a SiC-based oxide sintered body, characterized in that the synthesis is carried out by holding the temperature at that temperature for 0.1 to 30 minutes, a SiC-based oxide sintered body synthesized thereby, and this SiC-based oxide sintered body. Add another 160 sintered bodies.
Provided is a method for producing a SiC-based oxide sintered body characterized by HIP treatment at a temperature of 0 to 2000°C and a pressure of 0.2 to 10 MPa, and a SiC-based oxide sintered body synthesized thereby. do.

【0013】[0013]

【作用】本発明者らは、SiC系酸化物焼結体のような
複合材料では、SiCと酸化物との界面および組織の制
御が重要であり、この結合の制御は焼成の温度条件によ
って行われる、ことに気づき、さらに鋭意研究した結果
、適正焼成温度で、かつ急速昇温による短時間での焼結
を施すことが、強度や信頼性低下の原因となる焼結体中
のポアやボイドの防止に有効であることを見出し、本発
明に想到した。
[Operation] The present inventors have discovered that in composite materials such as SiC-based oxide sintered bodies, it is important to control the interface and structure between SiC and oxide, and that this bonding can be controlled by the firing temperature conditions. As a result of further intensive research, we found that sintering at an appropriate firing temperature and in a short time due to rapid heating can eliminate pores and voids in the sintered body, which can cause a decrease in strength and reliability. The present invention was developed based on the discovery that it is effective in preventing.

【0014】本発明の第一の方法は、まず、希土類酸化
物粉95〜5重量%とAl2O3 粉 5〜95重量%
からなる混合酸化物粉80〜10重量%と、SiC粉2
0〜90重量%とを混合する。
[0014] In the first method of the present invention, first, 95 to 5% by weight of rare earth oxide powder and 5 to 95% by weight of Al2O3 powder are
80 to 10% by weight of mixed oxide powder consisting of SiC powder 2
0 to 90% by weight.

【0015】ここに、希土類酸化物としては、Sc2O
3,Y2O3, La2O3, CeO2, Pr2O
3, Nd2O3, Sm2O3,Eu2O3, Gd
2O3, Tb2O3, Dy2O3, Ho2O3,
 Er2O3, Tm2O3, Yb2O3,Lu2O
3が用いられる。
Here, as the rare earth oxide, Sc2O
3, Y2O3, La2O3, CeO2, Pr2O
3, Nd2O3, Sm2O3, Eu2O3, Gd
2O3, Tb2O3, Dy2O3, Ho2O3,
Er2O3, Tm2O3, Yb2O3, Lu2O
3 is used.

【0016】前記混合酸化物粉中の希土類酸化物粉とA
l2O3 粉との混合割合は、希土類酸化物粉95〜5
重量%およびAl2O3 粉5〜95重量%とすること
が好ましい。これは、Al2O3 粉が5%未満では焼
結効果が小さく、95%を超えると緻密な焼結体が得ら
れなくなるからである。そして、SiC粉と前記混合酸
化物粉との混合割合は、混合酸化物粉80〜10重量%
とSiC粉20〜90重量%とすることが好ましい。こ
れは、SiC粉が20%未満ではSiCの複合効果が発
揮されず、また90%を超える値ではSiCが多くなり
緻密な焼結体とならないからである。
Rare earth oxide powder in the mixed oxide powder and A
The mixing ratio with l2O3 powder is rare earth oxide powder 95-5
% by weight and Al2O3 powder is preferably 5 to 95% by weight. This is because if the Al2O3 powder content is less than 5%, the sintering effect is small, and if it exceeds 95%, a dense sintered body cannot be obtained. The mixing ratio of the SiC powder and the mixed oxide powder is 80 to 10% by weight of the mixed oxide powder.
and SiC powder is preferably 20 to 90% by weight. This is because if the SiC powder content is less than 20%, the composite effect of SiC is not exhibited, and if the content exceeds 90%, the SiC content increases and a dense sintered body cannot be obtained.

【0017】前記混合酸化物粉とSiC粉との混合に当
っては、粉体の混合あるいは混練に用いられる通常の機
械を使用することができる。なお、この混合は、2〜3
0重量%の有機高分子( ポリエチレングリコール, 
ポリビニルアルコール, でん粉等) を溶解した溶液
に入れて混合することが好ましい。その理由は、2%以
下では有機高分子による結合効果が小さく、30%以上
ではこの高分子を除去するのが困難だからである。
[0017] For mixing the mixed oxide powder and SiC powder, a conventional machine used for mixing or kneading powders can be used. In addition, this mixture is 2 to 3
0% by weight of organic polymers (polyethylene glycol,
It is preferable to mix it in a solution containing polyvinyl alcohol, starch, etc.). The reason for this is that if it is less than 2%, the binding effect of the organic polymer is small, and if it is more than 30%, it is difficult to remove this polymer.

【0018】次に、上述のようにして得られた混合原料
を乾燥し、成形して、所望の生成形体を得る。このとき
の成形は、一般に使用されている従来成形技術を適用す
ることができる。また、この成形時に用いる加圧は、従
来の片押プレス,両押プレス,静水圧プレス,その他の
方式を用いることができる。
Next, the mixed raw material obtained as described above is dried and molded to obtain a desired shaped product. For molding at this time, conventional molding techniques that are generally used can be applied. Moreover, the pressurization used during this molding can be performed using conventional single-press presses, double-press presses, isostatic presses, or other methods.

【0019】次に、前記生成形体を、1700〜210
0℃の温度にまで達する時間が60分以内という短時間
で急速昇温させ、そして、その温度に 0.1〜30分
間保持して焼結体とする。このような焼成方法というの
は、焼結に有効なものは希土類酸化物とAl2O3 か
らなる酸化物固溶体または酸化物化合物が重要な作用を
担う。すなわち、この酸化物固溶体または化合物は、焼
成温度近傍においてSiCとの反応性が大きく、しかも
、焼成温度に長く保持すると、SiCとアルミナとの反
応によってCO,CO2およびSiO などのガスが生
成する。その結果、生成したガスは、焼結体中のボイド
, ポア等の欠陥になる。そして、このような欠陥は、
焼結体の材料としての信頼性を極端に下げ、強度と靭性
とを低下させる原因となる。
[0019] Next, the above-mentioned formed body is
The temperature is rapidly increased within 60 minutes to reach a temperature of 0° C., and the temperature is maintained for 0.1 to 30 minutes to form a sintered body. In such a firing method, an oxide solid solution or an oxide compound consisting of a rare earth oxide and Al2O3 plays an important role in sintering. That is, this oxide solid solution or compound has high reactivity with SiC near the firing temperature, and when kept at the firing temperature for a long time, gases such as CO, CO2, and SiO are generated by the reaction between SiC and alumina. As a result, the generated gas becomes defects such as voids and pores in the sintered body. And such defects are
This extremely reduces the reliability of the sintered body as a material, and causes a decrease in strength and toughness.

【0020】すなわち、本発明において、急速昇温する
理由というのは、まさに上記欠陥の発生を防ぐためであ
り、適性な焼成温度と昇温時間とを含めた焼結時間の厳
密な制御が必要となる所以である。
[0020] That is, in the present invention, the reason for rapidly increasing the temperature is precisely to prevent the occurrence of the above-mentioned defects, and it is necessary to strictly control the sintering time, including the appropriate firing temperature and heating time. This is why.

【0021】このように、希土類酸化物とAl2O3 
との反応による固溶体あるいは化合物の生成を素早く行
い、SiCの粒結合を均一に行わせ、かつSiCと酸化
物との反応を制御するためには、室温から焼成温度まで
の昇温速度を急速に行わなければならないのである。好
ましくは、焼成温度までの到達時間が1〜60分の範囲
であることが必要である。この範囲は、可能な限り短い
時間(1分未満)を下限とし、上限の60分はそれを超
える時間になると、SiCの分解が顕著になり上記欠陥
が発生し易くなることから制限される。
[0021] In this way, rare earth oxides and Al2O3
In order to quickly generate a solid solution or compound by reaction with SiC, uniformly bond grains of SiC, and control the reaction between SiC and oxide, it is necessary to rapidly raise the temperature from room temperature to the firing temperature. It must be done. Preferably, it is necessary that the time required to reach the firing temperature is in the range of 1 to 60 minutes. The lower limit of this range is the shortest possible time (less than 1 minute), and the upper limit of 60 minutes is limited because if the time exceeds this, the decomposition of SiC becomes noticeable and the above-mentioned defects are likely to occur.

【0022】次に、焼成温度は、1700〜2100℃
の範囲が好ましい。これは、1700℃より低いと緻密
な焼結体は得られず、一方、2100℃より高いとSi
Cの分解が顕著になり、上記欠陥が多く発生するからで
ある。なお、この焼成温度は希土類酸化物の種類, A
l2O3 との混合割合、さらにはSiCと混合酸化物
との混合割合によって異なるものである。
[0022] Next, the firing temperature is 1700 to 2100°C.
A range of is preferred. If the temperature is lower than 1700°C, a dense sintered body cannot be obtained, while if the temperature is higher than 2100°C, Si
This is because the decomposition of C becomes noticeable and many of the above defects occur. Note that this firing temperature depends on the type of rare earth oxide, A
It differs depending on the mixing ratio with 12O3 and the mixing ratio between SiC and mixed oxide.

【0023】次に、焼成時の雰囲気としては、酸素の含
有量の少ない窒素ガス, アルゴンガス, ヘリウムガ
ス, などの非酸化性雰囲気または真空が望ましい。
Next, the atmosphere during firing is preferably a non-oxidizing atmosphere such as nitrogen gas, argon gas, helium gas, etc. with a low oxygen content, or vacuum.

【0024】次に、焼成温度での保持時間は、0.1 
〜30分の範囲であることが好ましい。これは、30分
を超える保持時間ではSiCの分解が顕著になり、上記
欠陥が発生しやすくなるからであり、下限の 0.1分
は、焼成温度に到達したと同時に加熱を停止する条件で
ある。
Next, the holding time at the firing temperature is 0.1
It is preferable that it is in the range of 30 minutes. This is because if the holding time exceeds 30 minutes, the decomposition of SiC becomes noticeable and the above-mentioned defects are likely to occur. be.

【0025】このような本発明の第一の方法で合成され
た焼結体は、大きい欠陥がほとんどなく、きわめて信頼
性が大きく、平均強度と靭性値の大きい材料となった。 さらに、本発明の焼結体の曲げ強度をワイブルプロット
して得られる、”セラミックスの信頼性を示す指標であ
るワイブル係数(m) ”は、20以上を示し、この点
、通常焼結法で得られるSiC焼結体のワイブル係数m
は10前後であるので、本発明の方法で合成されたSi
C焼結体のこのm値は、その2倍以上に改善されている
ことが判った。しかも、このような方法によって得られ
た焼結体の組織は均一であった。これは、急速昇温によ
り、均一に混合された粉体が急速に焼結されるため、組
織の偏析が起こらなかったためと考えられる。
The sintered body synthesized by the first method of the present invention has almost no large defects, is extremely reliable, and has high average strength and toughness values. Furthermore, the ``Weibull coefficient (m)'', which is an index indicating the reliability of ceramics, obtained by Weibull plotting the bending strength of the sintered body of the present invention is 20 or more, which is different from the normal sintering method. Weibull coefficient m of the obtained SiC sintered body
is around 10, so the Si synthesized by the method of the present invention
It was found that the m value of the C sintered body was improved by more than twice that value. Furthermore, the structure of the sintered body obtained by such a method was uniform. This is considered to be because the uniformly mixed powder was rapidly sintered due to the rapid temperature rise, so no segregation of the structure occurred.

【0026】次に、上記SiC系酸化物焼結体に発生す
る数少ない小さな欠陥をも問題とされる用途においては
、本発明の第二の方法によって合成されるSiC系希土
類酸化物−アルミナ系焼結体が好適に用いられる。
Next, in applications where even a few small defects occurring in the SiC-based oxide sintered body are a problem, the SiC-based rare earth oxide-alumina-based sintered body synthesized by the second method of the present invention is used. Solids are preferably used.

【0027】すなわち、本発明の第二の方法は、第一の
方法で合成されたSiC系酸化物焼結体を、さらに熱間
静水圧プレス(HIP)処理を施すことにより、焼結体
の微小欠陥を除去するものである。
That is, in the second method of the present invention, the SiC-based oxide sintered body synthesized in the first method is further subjected to hot isostatic pressing (HIP) treatment, thereby improving the sintered body. This removes minute defects.

【0028】通常HIP処理8圧力が高いほど大きい欠
陥まで容易に除くことができる。しかし、圧力が高いと
装置が高価になり、その圧力保持も困難になってくる。 本発明の第一の方法で合成されるSiC系酸化物焼結体
は、発生する欠陥の大きさが小さく、かつ非常に少ない
ため、低圧力でのHIP処理によって欠陥を完全に除去
することができる。すなわち、合成されたSiC系酸化
物焼結体を1600〜2000℃の温度で、圧力0.2
 〜10MPaの不活性ガスでHIP処理することで、
かかる欠陥を除去できる。
Normally, HIP processing 8 The higher the pressure, the easier it is to remove even large defects. However, if the pressure is high, the equipment becomes expensive and it becomes difficult to maintain the pressure. Since the SiC-based oxide sintered body synthesized by the first method of the present invention has small and very few defects, it is not possible to completely remove the defects by HIP treatment at low pressure. can. That is, the synthesized SiC-based oxide sintered body was heated at a temperature of 1600 to 2000°C and a pressure of 0.2
By HIPing with ~10MPa inert gas,
Such defects can be removed.

【0029】ここに、不活性ガスの圧力は0.2 〜1
0MPaの範囲が好ましい。これは、0.2 MPa未
満ではHIP処理しても欠陥を除くことができないから
である。また、 10MPaを超える圧力では、圧力容
器の価格が高くなり実用的でないからである。
Here, the pressure of the inert gas is 0.2 to 1
A range of 0 MPa is preferred. This is because defects cannot be removed even by HIP treatment at less than 0.2 MPa. Moreover, if the pressure exceeds 10 MPa, the price of the pressure vessel becomes high and it is not practical.

【0030】このような本発明の第二の方法で合成され
た焼結体は、数少ない微小欠陥も完全に除去され、前述
した焼結体の材料としての信頼性は一段と高くなり、相
対的に平均強度は大きくなる。
[0030] In the sintered body synthesized by the second method of the present invention, even a few minute defects are completely removed, and the reliability as a material for the sintered body described above is further increased, and the sintered body is relatively The average intensity increases.

【0031】[0031]

【実施例】【Example】

(実施例1)α型SiC粉 500g,Y2O3粉 4
25gおよびAl2O3 粉75gを5%のポリエチレ
ングリコール水溶液に入れ、10時間湿式混合し、その
後、乾燥した。次に、この乾燥粉体を成形して生成形体
を得、これを電気炉に入れて、アルゴンガス中で室温か
ら1950℃まで10分で昇温し、この温度に5分間保
持して焼結体を得た。
(Example 1) α-type SiC powder 500g, Y2O3 powder 4
25 g and 75 g of Al2O3 powder were placed in a 5% polyethylene glycol aqueous solution, wet mixed for 10 hours, and then dried. Next, this dry powder is molded to obtain a green body, which is placed in an electric furnace and heated from room temperature to 1950°C in 10 minutes in argon gas, and held at this temperature for 5 minutes to sinter. I got a body.

【0032】得られた焼結体を研磨し、光学顕微鏡で欠
陥の存在を調べたが、欠陥は存在しなかった。また、曲
げ強度試験を行った結果、強度値をワイブルプロットし
て求めたワイブル係数の値はm=21であり、強度およ
び破壊靭性値は、それぞれ1200MPa,10MP・
m1/2であった。この試料を0.9 MPaのArガ
ス圧下,1850℃で1時間HIP処理した結果、m値
は25に上昇した。
The obtained sintered body was polished and examined for the presence of defects using an optical microscope, but no defects were found. In addition, as a result of the bending strength test, the Weibull coefficient obtained by Weibull plotting the strength values was m = 21, and the strength and fracture toughness values were 1200 MPa and 10 MPa, respectively.
It was m1/2. When this sample was subjected to HIP treatment at 1850° C. for 1 hour under an Ar gas pressure of 0.9 MPa, the m value increased to 25.

【0033】(実施例2)α型SiC粉 250g,S
m2O3 粉 700gおよびAl2O3 粉50gを
4%のポリエチレングリコール水溶液に入れ撹拌混合し
、その後、乾燥した。次に、この乾燥粉体を成形して生
成形体を得、これを電気炉に入れて、室温から1920
℃まで40分で昇温し、この温度に1分間保持して焼結
体を得た。
(Example 2) α-type SiC powder 250g, S
700 g of m2O3 powder and 50 g of Al2O3 powder were placed in a 4% polyethylene glycol aqueous solution, mixed with stirring, and then dried. Next, this dry powder is molded to obtain a green body, which is placed in an electric furnace and heated from room temperature to 1920 m
The temperature was raised to .degree. C. over 40 minutes and maintained at this temperature for 1 minute to obtain a sintered body.

【0034】得られた焼結体の曲げ強度試験を行った結
果、ワイブル係数の値はm=22であり、強度および破
壊靭性値は、それぞれ1100MPa,11MP・m1
/2であった。この試料を10MPaのArガス圧下,
1800℃で30分間HIP処理した結果、m値は28
に上昇した。
As a result of the bending strength test of the obtained sintered body, the value of the Weibull coefficient was m=22, and the strength and fracture toughness values were 1100 MPa and 11 MP·m1, respectively.
/2. This sample was heated under an Ar gas pressure of 10 MPa.
As a result of HIP treatment at 1800℃ for 30 minutes, the m value was 28.
rose to

【0035】(実施例3)β型SiC粉 700g,L
a2O3 粉 228gおよびAl2O3 粉72gを
3%のポリエチレングリコール水溶液に入れ撹拌混合し
、その後、乾燥した。次に、この乾燥粉体を成形して生
成形体を得、これを電気炉に入れて、窒素ガス中で室温
から1900℃まで30分で昇温し、この温度に2分間
保持して焼結体を得た。
(Example 3) β-type SiC powder 700g, L
228 g of a2O3 powder and 72 g of Al2O3 powder were placed in a 3% polyethylene glycol aqueous solution, mixed with stirring, and then dried. Next, this dry powder is molded to obtain a green body, which is placed in an electric furnace and heated in nitrogen gas from room temperature to 1900°C in 30 minutes, and held at this temperature for 2 minutes to sinter. I got a body.

【0036】得られた焼結体を加工し、曲げ強度用の試
料を作製し、曲げ強度試験を行った。その結果、ワイブ
ル係数の値はm=22であり、強度および破壊靭性値は
、それぞれ1100MPa,11MP・m1/2であっ
た。この試料を0.9 MPaのArガス圧下,185
0℃で10分間HIP処理した結果、m値は26に上昇
した。
The obtained sintered body was processed to prepare a sample for bending strength, and a bending strength test was conducted. As a result, the Weibull coefficient value was m=22, and the strength and fracture toughness values were 1100 MPa and 11 MP·m1/2, respectively. This sample was heated under Ar gas pressure of 0.9 MPa at 185
As a result of HIP treatment at 0° C. for 10 minutes, the m value increased to 26.

【0037】(実施例4)α型SiC粉(平均粒径 0
.3μm) 200 g,Yb2O3 粉 720gお
よびAl2O3 粉80gをアルコールと混合し、ボー
ルミルを使って24時間湿式混合し、その後、アルコー
ルを除去し乾燥した。次に、この乾燥粉体を6%のポリ
エチレングリコール水溶液に入れて撹拌混合し、その後
、乾燥した。そして、この乾燥粉体を成形して生成形体
を得、これを電気炉に入れて、アルゴンガス中で室温か
ら1950℃まで30分で昇温し、この温度に1分間保
持して焼結体を得た。
(Example 4) α-type SiC powder (average particle size 0
.. 3 μm) 200 g, 720 g of Yb2O3 powder, and 80 g of Al2O3 powder were mixed with alcohol, wet mixed using a ball mill for 24 hours, and then the alcohol was removed and dried. Next, this dry powder was added to a 6% polyethylene glycol aqueous solution and mixed by stirring, and then dried. Then, this dry powder is molded to obtain a green body, which is placed in an electric furnace and heated from room temperature to 1950°C in 30 minutes in argon gas, and held at this temperature for 1 minute to form a sintered body. I got it.

【0038】得られた焼結体の曲げ強度試験を行った結
果、ワイブル係数の値はm=23であり、強度および破
壊靭性値は、それぞれ1050MPa,10MP・m1
/2であった。この試料を0.8 MPaのArガス圧
下,1700℃で2時間HIP処理した結果、m値は2
7に上昇した。
As a result of the bending strength test of the obtained sintered body, the value of the Weibull coefficient was m=23, and the strength and fracture toughness values were 1050 MPa and 10 MP·m1, respectively.
/2. As a result of HIPing this sample at 1700°C for 2 hours under Ar gas pressure of 0.8 MPa, the m value was 2.
It rose to 7.

【0039】(実施例5)α型SiC粉 800g,H
o2O3 粉40g, Al2O3 粉 160gをア
ルコールと混合し、ボールミルを使って24時間湿式混
合し、その後、乾燥した。次に、この乾燥粉体を成形し
て生成形体を得、これを電気炉に入れて、窒素ガス中で
室温から2000℃まで3分で昇温し、この温度に 0
.1分間保持して焼結体を得た。そして、得られた焼結
体を98MPaのアルゴンガス圧下で1800℃で30
分間、HIP処理を施した。
(Example 5) α-type SiC powder 800g, H
40 g of o2O3 powder and 160 g of Al2O3 powder were mixed with alcohol, wet mixed using a ball mill for 24 hours, and then dried. Next, this dry powder was molded to obtain a green body, which was placed in an electric furnace and heated from room temperature to 2000°C in 3 minutes in nitrogen gas, and then heated to this temperature at 0.
.. A sintered body was obtained by holding for 1 minute. The obtained sintered body was heated at 1800°C for 30 minutes under an argon gas pressure of 98 MPa.
HIP treatment was performed for 1 minute.

【0040】得られた焼結体の曲げ強度試験を行った結
果、ワイブル係数の値はm=28であり、強度および破
壊靭性値は、それぞれ1500MPa,12MP・m1
/2であった。
As a result of conducting a bending strength test on the obtained sintered body, the value of the Weibull coefficient was m=28, and the strength and fracture toughness values were 1500 MPa and 12 MP·m1, respectively.
/2.

【0041】このように、従来の方法で得られるSiC
焼結体のワイブル係数の値がm=10以下であり、強度
および破壊靭性値が、それぞれ 600MPa以下,5
MP・m1/2であることから考えると、この実施例で
得られた本発明に係るSiC焼結体の前記物性値は、全
て従来材より優れることが確認できた。
In this way, SiC obtained by the conventional method
The value of the Weibull coefficient of the sintered body is m = 10 or less, and the strength and fracture toughness values are respectively 600 MPa or less, 5
Considering that the SiC sintered body according to the present invention obtained in this example had a value of MP·m1/2, it was confirmed that all the physical property values of the SiC sintered body according to the present invention obtained in this example were superior to conventional materials.

【0042】(実施例6)α型SiC粉45g,Y2O
3粉44.9g, Al2O3 粉10.1gを常法に
従って混合し成形した後、アルゴンガス雰囲気中で10
0 ℃/分の昇温速度で1950℃まで温度を上げ、1
950℃に10分間保持して焼結体を得た。得られた焼
結体を研磨し、この試料の研磨面の走査型電子顕微鏡写
真を図1に示す。この写真から明らかなように、SiC
の黒い粒子は、白い酸化物マトリックス中に均一に分散
されポアは見られない。しかも、得られた焼結体の曲げ
強度試験を行った結果、ワイブル係数の値はm=21で
あり、強度および破壊靭性値は、それぞれ 800MP
a,8MP・m1/2であった。この試料を3MPaの
Arガス圧下,1800℃に30分間HIP処理した結
果、m値は26に上昇した。
(Example 6) α-type SiC powder 45g, Y2O
After mixing and molding 44.9 g of Al2O3 powder and 10.1 g of Al2O3 powder according to a conventional method,
Raise the temperature to 1950℃ at a heating rate of 0℃/min,
A sintered body was obtained by maintaining the temperature at 950°C for 10 minutes. The obtained sintered body was polished, and a scanning electron micrograph of the polished surface of this sample is shown in FIG. As is clear from this photo, SiC
The black particles are uniformly dispersed in the white oxide matrix with no visible pores. Furthermore, as a result of conducting a bending strength test on the obtained sintered body, the value of the Weibull coefficient was m = 21, and the strength and fracture toughness values were each 800 MP.
a, 8MP・m1/2. When this sample was subjected to HIP treatment at 1800° C. for 30 minutes under an Ar gas pressure of 3 MPa, the m value increased to 26.

【0043】(比較例)実施例6と同一の原料から作っ
た生成形体を、6℃/分の昇温速度で1950℃まで昇
温し、1950に10分間保持して焼結体を得た。得ら
れた焼結体を研磨し、この試料の研磨面の走査型電子顕
微鏡写真を図2に示す。この写真から明らかなように、
白い酸化物マトリックスとSiCが反応して生成したポ
アが多く存在している。しかも、得られた焼結体の曲げ
強度試験を行った結果、強度は150MPaと著しく低
下していることが判った。
(Comparative Example) A green body made from the same raw materials as in Example 6 was heated to 1950°C at a heating rate of 6°C/min and held at 1950°C for 10 minutes to obtain a sintered body. . The obtained sintered body was polished, and a scanning electron micrograph of the polished surface of this sample is shown in FIG. As is clear from this photo,
There are many pores generated by the reaction between the white oxide matrix and SiC. Moreover, as a result of conducting a bending strength test on the obtained sintered body, it was found that the strength was significantly lowered to 150 MPa.

【0044】[0044]

【発明の効果】以上述べたように本発明によれば、強度
や信頼性低下の原因となるセラミックス中のポアやボイ
ドの発生を、適正焼結温度で、かつ急速昇温による短時
間焼結を施すことによって阻止し、緻密で高い強度と信
頼性をもつ組織的に均一なSiC−希土類酸化物−アル
ミナ系焼結体を容易に得ることができる。しかも、本発
明のSiC−希土類酸化物−アルミナ系焼結体は、無加
圧焼結で製品とすることができるため、経済的である。
As described above, according to the present invention, the generation of pores and voids in ceramics, which cause a decrease in strength and reliability, can be prevented by sintering at an appropriate sintering temperature and in a short time by rapid temperature rise. By applying this method, it is possible to easily obtain a dense, structurally uniform SiC-rare earth oxide-alumina sintered body having high strength and reliability. Moreover, the SiC-rare earth oxide-alumina-based sintered body of the present invention is economical because it can be made into a product by pressureless sintering.

【0045】なお、本発明のSiC−希土類酸化物−ア
ルミナ系複合炭化珪素焼結成形体は、ガスタービン翼,
球状体,ガスタービン用部品,腐食性液体用装置部品,
坩堝,ボールミル内張,高温炉用熱交換器および耐火材
,発熱体,燃焼管,ダイカスト用ポンプ,薄肉管,核融
合炉材料,原子炉用材料,太陽炉材料,工具およびその
部品,研削用材料,熱遮蔽物,単結晶用基体電子材料,
電子回路用基体,絶縁材料その他の広い分野で有効に用
いられる。
[0045] The SiC-rare earth oxide-alumina composite silicon carbide sintered compact of the present invention can be used for gas turbine blades,
Spherical bodies, gas turbine parts, equipment parts for corrosive liquids,
Crucibles, ball mill linings, heat exchangers and refractories for high-temperature reactors, heating elements, combustion tubes, die-casting pumps, thin-walled tubes, fusion reactor materials, nuclear reactor materials, solar reactor materials, tools and their parts, for grinding Materials, heat shields, single crystal substrate electronic materials,
It is effectively used in a wide range of fields including electronic circuit substrates, insulating materials, and other fields.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明方法で得られた焼結体研磨面の結晶構造
を示す電子顕微鏡写真である。
FIG. 1 is an electron micrograph showing the crystal structure of the polished surface of a sintered body obtained by the method of the present invention.

【図2】従来方法で得られた焼結体研磨面の結晶構造を
示す電子顕微鏡写真である。
FIG. 2 is an electron micrograph showing the crystal structure of a polished surface of a sintered body obtained by a conventional method.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  希土類酸化物95〜5重量%およびA
l2O3 5〜95重量%からなる混合酸化物80〜1
0重量%と;SiC 20〜90重量%と;の混合物を
、成形した後、非酸化性雰囲気中において、1700〜
2100℃の温度にまで達する時間が60分以内である
急速昇温の加熱を施し、次いでその温度に0.1 〜3
0分間保持して合成されるSiC系酸化物焼結体。
Claim 1: 95-5% by weight of rare earth oxide and A
Mixed oxide 80-1 consisting of 5-95% by weight of l2O3
After molding a mixture of 0% by weight and 20 to 90% by weight of SiC, a mixture of
Heating is carried out at a rapid temperature increase that takes less than 60 minutes to reach a temperature of 2100 °C, and then the temperature is increased by 0.1 to 3
SiC-based oxide sintered body synthesized by holding for 0 minutes.
【請求項2】  希土類酸化物95〜5重量%およびA
l2O3 5〜95重量%からなる混合酸化物80〜1
0重量%と;SiC 20〜90重量%と;の混合物を
、成形した後、非酸化性雰囲気中において、1700〜
2100℃の温度にまで達する時間が60分以内である
急速昇温の加熱を施し、次いでその温度に0.1 〜3
0分間保持して合成されたSiC系酸化物焼結体を、さ
らに1600〜2000℃の温度で、0.5 〜10 
MPaの圧力でHIP処理して製造されたSiC系酸化
物焼結体。
Claim 2: 95-5% by weight of rare earth oxide and A
Mixed oxide 80-1 consisting of 5-95% by weight of l2O3
After molding a mixture of 0% by weight and 20 to 90% by weight of SiC, a mixture of
Heating is carried out at a rapid temperature increase that takes less than 60 minutes to reach a temperature of 2100 °C, and then the temperature is increased by 0.1 to 3
The SiC-based oxide sintered body synthesized by holding for 0 minutes was further heated at a temperature of 1600 to 2000°C for 0.5 to 10 minutes.
A SiC-based oxide sintered body manufactured by HIP treatment at a pressure of MPa.
【請求項3】  希土類酸化物95〜5重量%およびA
l2O3 5〜95重量%からなる混合酸化物粉80〜
10重量%と,SiC 粉20〜90重量%とを混合し
、その混合物粉を成形した後、非酸化性雰囲気中におい
て、1700〜2100℃の温度にまで達する時間が6
0分以内である急速昇温の加熱を施し、次いでその温度
に 0.1〜30分間保持して合成することを特徴とす
るSiC系酸化物焼結体の製造方法。
3. 95-5% by weight of rare earth oxide and A
Mixed oxide powder consisting of 5-95% by weight of l2O3 80~
After mixing 10% by weight of SiC powder and 20 to 90% by weight of SiC powder and molding the mixed powder, it takes 6 hours to reach a temperature of 1700 to 2100°C in a non-oxidizing atmosphere.
1. A method for producing a SiC-based oxide sintered body, characterized in that synthesis is carried out by applying rapid temperature rise within 0 minutes and then maintaining that temperature for 0.1 to 30 minutes.
【請求項4】  請求項3に記載の方法によって製造さ
れたSiC系酸化物焼結体を、さらに1600〜200
0℃の温度で、0.2 〜10MPaの圧力でHIP処
理することを特徴とするSiC系酸化物焼結体の製造方
法。
4. The SiC-based oxide sintered body produced by the method according to claim 3 is further heated to a temperature of 1,600 to 200
A method for producing a SiC-based oxide sintered body, comprising performing HIP treatment at a temperature of 0° C. and a pressure of 0.2 to 10 MPa.
JP3167472A 1991-06-13 1991-06-13 SiC-based oxide sintered body and method for producing the same Expired - Lifetime JP2944787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3167472A JP2944787B2 (en) 1991-06-13 1991-06-13 SiC-based oxide sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3167472A JP2944787B2 (en) 1991-06-13 1991-06-13 SiC-based oxide sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04367563A true JPH04367563A (en) 1992-12-18
JP2944787B2 JP2944787B2 (en) 1999-09-06

Family

ID=15850314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3167472A Expired - Lifetime JP2944787B2 (en) 1991-06-13 1991-06-13 SiC-based oxide sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2944787B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6616890B2 (en) * 2001-06-15 2003-09-09 Harvest Precision Components, Inc. Fabrication of an electrically conductive silicon carbide article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6616890B2 (en) * 2001-06-15 2003-09-09 Harvest Precision Components, Inc. Fabrication of an electrically conductive silicon carbide article

Also Published As

Publication number Publication date
JP2944787B2 (en) 1999-09-06

Similar Documents

Publication Publication Date Title
Bhandhubanyong et al. Forming of silicon nitride by the HIP process
CN109553419A (en) A kind of air pressure solid-phase sintering boron carbide complex phase ceramic and preparation method thereof
JPH01301565A (en) Sintered sialon having high strength and high oxidation resistance
CA2162379A1 (en) Sintered self-reinforced silicon nitride
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JPH0222175A (en) Production and sintering of reaction bonded silicon nitride composite material containing silicon carbide whisker or silicon nitride powder
JPS60186475A (en) Silicon nitride sintered body and manufacture
JP2507480B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
CN115073186B (en) Silicon nitride ceramic sintered body and preparation method thereof
JPH04367563A (en) Sic-based oxide sintered compact and its production
JP2773439B2 (en) Method for producing silicon carbide-containing silicon nitride composite
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
JP4065589B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP2960591B2 (en) Silicon carbide-silicon nitride-mixed oxide-based sintered body and method for producing the same
JP2581128B2 (en) Alumina-sialon composite sintered body
JPH0227306B2 (en)
JP2890849B2 (en) Method for producing silicon nitride sintered body
JP3036207B2 (en) Method for producing silicon nitride sintered body
JP3007731B2 (en) Silicon carbide-mixed oxide sintered body and method for producing the same
JPH0456791B2 (en)
JPH03174364A (en) Silicon nitride-based sintered body
JPH06166569A (en) Production of sintered silicon nitride
JPS63151682A (en) Silicon nitride sintered body and manufacture
JPH04124068A (en) Method for thermally crystallizing silicon nitride sintered product
JPH0782032A (en) Silicon nitride sintered compact and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 12

EXPY Cancellation because of completion of term