JPH04367010A - Static reactive power generator - Google Patents

Static reactive power generator

Info

Publication number
JPH04367010A
JPH04367010A JP3168731A JP16873191A JPH04367010A JP H04367010 A JPH04367010 A JP H04367010A JP 3168731 A JP3168731 A JP 3168731A JP 16873191 A JP16873191 A JP 16873191A JP H04367010 A JPH04367010 A JP H04367010A
Authority
JP
Japan
Prior art keywords
voltage
reference signal
phase difference
reactive power
reactive current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3168731A
Other languages
Japanese (ja)
Other versions
JP3032046B2 (en
Inventor
Michihiro Furuta
古田 通博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3168731A priority Critical patent/JP3032046B2/en
Publication of JPH04367010A publication Critical patent/JPH04367010A/en
Application granted granted Critical
Publication of JP3032046B2 publication Critical patent/JP3032046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To obtain a static reactive power generator which improves transiently the response of the DC voltage control and the response of the reactive current control to the fluctuation of a reactive current. CONSTITUTION:A static reactive power generator is provided with a reactive current controller 14 which calculates a circulating angle reference signal, a DC voltage reference deciding circuit 12 which decides a DC voltage reference signal, a DC voltage controller 13 which calculates a phase difference reference signal, and a pulse width modulation control circuit 10 which controls each inverter based on the circulating angle reference signal, the phase difference reference signal, and the phase reference signal obtained by a 1st sensor. Furthermore a phase difference compensating circuit 16 is added to compensate the phase difference reference signal based on the reactive current feedback signals 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、系統の無効電力を調整
する静止形無効電力発生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a static reactive power generator for regulating reactive power in a grid.

【0002】0002

【従来の技術】図3は従来の静止形無効電力発生装置の
制御回路を示し、図において、1は系統電圧、2はリア
クトル、3は多重トランス、4は多段接続される単相イ
ンバータ、5は無効電力調整用コンデンサ、6は系統電
圧検出用PT、7は系統電流検出用CT、8は系統電圧
、系統電流からPWM位相基準φOと無効電流IQ 及
び有効電圧VP を検出するセンサ、9はコンデンサ5
の直流電圧を検出するセンサ、10はインバータ4のゲ
ートをコントロールするパルス幅変調(以下、パルス幅
変調をPWMと称す)回路、11はアナログ信号をディ
ジタル信号に変換するA/D変換器、12は系統有効電
圧VP より直流電圧基準信号Vd * を決定する直
流電圧基準決定回路、13は直流電圧基準信号Vd *
 と直流帰還信号Vd − から系統電圧と静止形無効
電力発生装置の出力電圧の位相差基準信号△φを算出し
直流電圧を制御する直流電圧コントローラ、14は無効
電流を制御する無効電流コントローラ、15はディジタ
ル回路部を示す。
2. Description of the Related Art FIG. 3 shows a control circuit for a conventional static reactive power generator. 6 is a capacitor for adjusting reactive power, 6 is a PT for detecting system voltage, 7 is a CT for detecting system current, 8 is a sensor that detects the PWM phase reference φO, reactive current IQ, and active voltage VP from the system voltage and system current, and 9 is a sensor for detecting the PWM phase reference φO, reactive current IQ, and active voltage VP. capacitor 5
10 is a pulse width modulation (hereinafter referred to as PWM) circuit that controls the gate of the inverter 4; 11 is an A/D converter that converts an analog signal into a digital signal; 12 13 is a DC voltage reference determination circuit that determines the DC voltage reference signal Vd* from the grid effective voltage VP; 13 is the DC voltage reference signal Vd*
14 is a reactive current controller that controls reactive current; 15 is a DC voltage controller that calculates a phase difference reference signal Δφ between the system voltage and the output voltage of the static reactive power generator from the DC feedback signal Vd − and controls the DC voltage; indicates a digital circuit section.

【0003】上記構成に係る動作について説明する。ま
ず、静止形無効電力発生装置の基本原理について述べる
。静止形無効電力発生装置の出力電圧(各インバータ4
の出力電圧を多重トランス3で合成したもの)の大きさ
、周波数、位相を系統電圧と同期させると、系統から静
止形無効電力発生装置に流入する電流は零で有るが、静
止形無効電力発生装置の出力電圧を制御して系統電圧よ
り高くすると静止形無効電力発生装置には進相電流が流
入し、逆に、静止形無効電力発生装置の出力電圧を系統
より低くすると静止形無効電力発生装置には遅相電流が
流入する。無効電力を制御するためには、静止形無効電
力発生装置の出力電圧を制御すれば良いが、一般に、こ
れには、インバータの通流角θを一定にしてコンデンサ
の直流電圧を可変に調整して、インバータの出力電圧を
制御するPAM方式と、コンデンサの直流電圧は一定に
してインバータ通流角θを可変に調整して、インバータ
出力電圧値を制御するPWM方式が有るが、図3は後者
のPWM方式である。また、直流電圧は系統電圧と静止
形無効電力発生装置の出力電圧との位相差より制御され
、静止形無効電力発生装置の出力電圧はインバータ通流
角θより制御される。
[0003] The operation related to the above configuration will be explained. First, the basic principle of a static reactive power generator will be described. Output voltage of static reactive power generator (each inverter 4
When the magnitude, frequency, and phase of the output voltage of If the output voltage of the device is controlled to be higher than the grid voltage, a phase-advanced current will flow into the static reactive power generator, and conversely, if the output voltage of the static reactive power generator is lower than the grid voltage, static reactive power will be generated. A slow phase current flows into the device. In order to control reactive power, it is sufficient to control the output voltage of a static reactive power generator, but generally this is done by variably adjusting the DC voltage of the capacitor while keeping the inverter's conduction angle θ constant. There is a PAM method that controls the inverter output voltage, and a PWM method that controls the inverter output voltage value by keeping the DC voltage of the capacitor constant and variably adjusting the inverter conduction angle θ. This is a PWM method. Further, the DC voltage is controlled by the phase difference between the grid voltage and the output voltage of the static reactive power generator, and the output voltage of the static reactive power generator is controlled by the inverter current angle θ.

【0004】ここで、インバータ出力電圧は次式により
表される。   VOI=4/(√2・π)・Ed・SIN(θ/2
)                (1)θ:インバ
ータ通流角 Ed:直流電圧 VOI:インバータ出力電圧の基本波実効値また、直流
電圧は、一定の直流電圧基準信号Vd * と直流電圧
帰還信号Vd−より直流電圧コントローラ13により算
出された位相差基準信号△φにより制御される。
[0004] Here, the inverter output voltage is expressed by the following equation. VOI=4/(√2・π)・Ed・SIN(θ/2
) (1) θ: Inverter conduction angle Ed: DC voltage VOI: Fundamental wave effective value of inverter output voltage Also, the DC voltage is determined by the DC voltage controller 13 from a constant DC voltage reference signal Vd* and DC voltage feedback signal Vd-. It is controlled by the phase difference reference signal Δφ calculated by.

【0005】次に、無効電力制御について述べると、無
効電流基準信号IQ*と無効電流帰還信号IQ−に基づ
き無効電流コントローラ14により、通流角基準信号θ
* が算出され、この通流角基準信号θ* がPWM回
路10に与えられ、PWM回路10にて各単相インバー
タ4のゲートパルスが決定され、各単相インバータ4に
与えられる。多重トランス3は、上記単相インバータの
出力電圧を合成し静止形無効電力発生装置の出力電圧V
I を発生する。発生した静止形無効電力発生装置の出
力電圧VI と系統電圧VS の差電圧によりリアクト
ル2を介して無効電力が発生する。
Next, regarding reactive power control, the reactive current controller 14 controls the conduction angle reference signal θ based on the reactive current reference signal IQ* and the reactive current feedback signal IQ-.
* is calculated, and this conduction angle reference signal θ* is applied to the PWM circuit 10, which determines the gate pulse of each single-phase inverter 4, and applies it to each single-phase inverter 4. The multiplex transformer 3 synthesizes the output voltages of the single-phase inverters and generates the output voltage V of the static reactive power generator.
Generate I. Reactive power is generated via the reactor 2 due to the generated differential voltage between the output voltage VI of the static reactive power generator and the system voltage VS.

【0006】定常的には以上の説明の通りであるが、系
統電圧が上昇した場合、これに対応する静止形無効電力
発生装置の出力電圧を発生させるためには通流角θが大
きくなるが、(1)式から明らかなように、通流角θの
変化に伴うほどの電圧が発生しない。そこで、系統電圧
に対応して直流電圧基準を増加させる直流電圧基準決定
回路12より直流電圧を増加させ系統電圧に対応する静
止形無効電力発生装置の出力電圧を発生させる。
As described above, in a steady state, when the grid voltage increases, the conduction angle θ becomes larger in order to generate the corresponding output voltage of the static reactive power generator. , (1), the voltage is not generated as much as the flow angle θ changes. Therefore, the DC voltage is increased by the DC voltage reference determination circuit 12, which increases the DC voltage reference in accordance with the grid voltage, to generate the output voltage of the static reactive power generator corresponding to the grid voltage.

【0007】[0007]

【発明が解決しようとする課題】従来の静止形無効電力
発生装置は以上のように構成されているので、直流電圧
制御の位相差制御と無効電流制御のインバータ通流角制
御の相互干渉により無効電流の過渡応答に対して直流電
圧が変動し無効電流制御の応答が悪くなる。また、相互
干渉を粗にするためには直流電圧制御の応答に対して無
効電流の応答を小さく調整せざるを得ないなどの問題点
があった。
[Problem to be Solved by the Invention] Since the conventional static reactive power generator is configured as described above, it becomes ineffective due to mutual interference between the phase difference control of DC voltage control and the inverter conduction angle control of reactive current control. The DC voltage fluctuates in response to the transient response of the current, and the response of reactive current control deteriorates. In addition, in order to reduce the mutual interference, there is a problem in that the response of the reactive current must be adjusted to be smaller than the response of the DC voltage control.

【0008】本発明は、上記のような問題点を解決する
ためになされたもので、無効電流の変動に対して過渡的
に直流電圧制御の応答を改善し無効電流制御の応答を改
善する静止形無効電力発生装置を提供するものである。
The present invention has been made in order to solve the above-mentioned problems, and is a static control system that transiently improves the response of DC voltage control to fluctuations in reactive current and improves the response of reactive current control. The present invention provides a reactive power generation device.

【0009】[0009]

【課題を解決するための手段】本発明に係る静止形無効
電力発生装置装置は、無効電流に対して位相差基準信号
を補償する回路を設けるように構成したものである。
SUMMARY OF THE INVENTION A static reactive power generator device according to the present invention is configured to include a circuit that compensates a phase difference reference signal for reactive current.

【0010】0010

【作用】本発明において、位相差基準補償回路は、無効
電流応答に起因する直流電圧変動に対し位相差基準を無
効電流に対して補償することにより直流電圧制御系の応
答が改善され、その結果、無効電流制御の応答が向上す
る。
[Operation] In the present invention, the phase difference reference compensation circuit improves the response of the DC voltage control system by compensating the phase difference reference for the DC voltage fluctuation caused by the reactive current response. , the response of reactive current control is improved.

【0011】[0011]

【実施例】以下、本発明の一実施例を図について説明す
る。図1は本実施例による静止形無効電力発生装置の構
成図を示し、図において、図3と同一符号は同一部分で
有り、16は無効電流帰還信号IQ−に対して位相差補
償を算出する位相差補償回路で、比例・不完全微分要素
などで構成され、出力される位相差補償信号は進相の無
効電流の時に系統電圧に対して遅れ位相となるように決
定される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration diagram of a static reactive power generator according to this embodiment. In the figure, the same symbols as in FIG. 3 indicate the same parts, and 16 calculates phase difference compensation for the reactive current feedback signal IQ-. The phase difference compensation circuit is composed of proportional and incomplete differential elements, and the output phase difference compensation signal is determined so that it has a lagging phase with respect to the system voltage when the reactive current is leading in phase.

【0012】図1に示す構成において、図3にて説明し
た従来技術の部分は同様にして動作するので省略し、本
実施例に係る無効電流に対する位相差補償回路16の部
分についてその動作を図2に示す無効電流応答の各帰還
信号の過渡特性を参照して説明する。まず、図2に示す
位相差補償回路16がない場合の動作について説明する
。無効電流基準信号IQ*のステップ応答に対して、直
流電圧基準決定回路14から出力される通流角基準信号
θ* はステップ状に変化し、これに基づき、PWM回
路10はゲートパルスを決定し各単相インバータ4を制
御する。その結果、コンデンサ5の直流電圧を検出する
センサ9の出力をA/D変換するA/D変換器11の出
力、すなわち直流電圧帰還Vd−が変動する。これを一
定に制御するように、コントローラ13による直流電圧
制御が働き位相差基準△φが動作する。この直流電圧が
変動する期間は無効電流帰還信号IQ−の立ち上がりが
遅くなる。
In the configuration shown in FIG. 1, the portion of the prior art explained in FIG. 3 operates in the same manner, so it will be omitted, and the operation of the phase difference compensation circuit 16 for reactive current according to the present embodiment will be explained. This will be explained with reference to the transient characteristics of each feedback signal of the reactive current response shown in FIG. First, the operation without the phase difference compensation circuit 16 shown in FIG. 2 will be described. In response to the step response of the reactive current reference signal IQ*, the conduction angle reference signal θ* output from the DC voltage reference determining circuit 14 changes in a stepwise manner, and based on this, the PWM circuit 10 determines the gate pulse. Each single-phase inverter 4 is controlled. As a result, the output of the A/D converter 11 that A/D converts the output of the sensor 9 that detects the DC voltage of the capacitor 5, that is, the DC voltage feedback Vd- fluctuates. In order to control this constant, the DC voltage control by the controller 13 operates to operate the phase difference reference Δφ. During this period in which the DC voltage fluctuates, the reactive current feedback signal IQ- rises slowly.

【0013】次に、この時、位相差補償回路16を入れ
てやると図2に示す点線の様になり、無効電流帰還信号
IQ−に対し位相差を補償するので、従来の直流電圧制
御の応答を補償し直流電圧変動期間が短くなり、無効電
流帰還信号IQ−の立ち上がりが改善される。
Next, if a phase difference compensation circuit 16 is inserted at this time, it will become as shown by the dotted line in FIG. The response is compensated, the DC voltage fluctuation period is shortened, and the rise of the reactive current feedback signal IQ- is improved.

【0014】[0014]

【発明の効果】以上の様に、本発明によれば、無効電流
に対して位相差基準を補償するようにしたので、無効電
力に起因する直流電圧変動を一定に制御する直流電圧の
応答を過渡的に補償することで無効電力の応答を改善す
るという効果がある。
As described above, according to the present invention, since the phase difference reference is compensated for the reactive current, the response of the DC voltage that controls the DC voltage fluctuation caused by the reactive power to be constant can be improved. Transient compensation has the effect of improving reactive power response.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例1を示すブロック図である。FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】本発明に用いる位相差基準補償回路による過渡
特性の動作を説明する波形図である。
FIG. 2 is a waveform diagram illustrating the operation of transient characteristics by the phase difference reference compensation circuit used in the present invention.

【図3】従来の技術の静止形無効電力発生装置装置を示
す。
FIG. 3 shows a conventional static reactive power generator device.

【符号の説明】[Explanation of symbols]

1      系統電圧 2      リアクトル 3      多重トランス 4      単相インバータ 5      コンデンサ 6      PT 7      CT 8      センサ 9      センサ 10    PWM回路 11    A/D変換器 12    直流電圧基準決定回路 13    直流電圧コントローラ 14    無効電流コントローラ 16    位相差基準補償回路 1      System voltage 2 Reactor 3 Multiplex transformer 4 Single phase inverter 5 Capacitor 6 PT 7 CT 8 Sensor 9 Sensor 10 PWM circuit 11 A/D converter 12 DC voltage reference determination circuit 13 DC voltage controller 14 Reactive current controller 16 Phase difference reference compensation circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  電力系統にリアクトルを介して接続さ
れた多重トランスと多重に接続された単相インバータ装
置と、無効電力調整用コンデンサと、系統電圧及び系統
電流から無効電流、系統有効電圧、及び同期用の位相基
準信号を検出する第1のセンサと、直流電圧を検出する
第2のセンサと、上記第1のセンサによる無効電流帰還
信号と与えられる無効電流基準信号に基づき無効電流を
制御すべく通流角基準信号を算出する無効電流コントロ
ーラと、上記第1のセンサによる系統有効電圧より直流
電圧基準信号を決定する直流電圧基準決定回路と、上記
第2のセンサによる直流電圧帰還信号と上記直流電圧基
準信号に基づき直流電圧を制御すべく位相差基準信号を
算出する直流電圧コントローラと、上記通流角基準信号
と位相差基準信号及び上記第1のセンサによる位相基準
信号に基づき上記各インバータのスイッチングを制御す
るパルス幅変調制御回路とを備えた静止形無効電力発生
装置において、上記無効電流帰還信号に基づき上記位相
差基準信号を補償する位相差補償回路を備えたことを特
徴とする静止形無効電力発生装置。
Claim 1: A multiplex transformer connected to a power system via a reactor, a multiplex connected single-phase inverter device, a capacitor for adjusting reactive power, and a reactive current, a system active voltage, and a system voltage from a system voltage and a system current. A first sensor detects a phase reference signal for synchronization, a second sensor detects a DC voltage, and controls a reactive current based on a reactive current feedback signal from the first sensor and a reactive current reference signal provided. a reactive current controller that calculates a current conduction angle reference signal, a DC voltage reference determination circuit that determines a DC voltage reference signal from the system effective voltage from the first sensor, and a DC voltage feedback signal from the second sensor and the A DC voltage controller that calculates a phase difference reference signal to control the DC voltage based on the DC voltage reference signal, and each of the inverters based on the conduction angle reference signal, the phase difference reference signal, and the phase reference signal from the first sensor. A stationary reactive power generator comprising a pulse width modulation control circuit for controlling switching of the stationary reactive power generator, comprising a phase difference compensation circuit for compensating the phase difference reference signal based on the reactive current feedback signal. Type reactive power generator.
JP3168731A 1991-06-13 1991-06-13 Static reactive power generator Expired - Lifetime JP3032046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3168731A JP3032046B2 (en) 1991-06-13 1991-06-13 Static reactive power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3168731A JP3032046B2 (en) 1991-06-13 1991-06-13 Static reactive power generator

Publications (2)

Publication Number Publication Date
JPH04367010A true JPH04367010A (en) 1992-12-18
JP3032046B2 JP3032046B2 (en) 2000-04-10

Family

ID=15873377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3168731A Expired - Lifetime JP3032046B2 (en) 1991-06-13 1991-06-13 Static reactive power generator

Country Status (1)

Country Link
JP (1) JP3032046B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856915A (en) * 2011-06-30 2013-01-02 上海市电力公司 DSP(digital signal processor) control device for reactive compensation controller
CN103066607A (en) * 2012-12-15 2013-04-24 安徽工程大学 STATCOM current tracking and compensation method
CN103311936A (en) * 2013-06-28 2013-09-18 江苏国源电气有限公司 Control method for 3300V five-level anti-explosion reactive power compensation device
JP2019149849A (en) * 2018-02-26 2019-09-05 富士電機株式会社 Reactive power compensator and control circuit therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611117B (en) * 2012-02-29 2014-09-10 澳门大学 LC-VSI device reactive compensation control method based on self-adaptive control DC side voltage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856915A (en) * 2011-06-30 2013-01-02 上海市电力公司 DSP(digital signal processor) control device for reactive compensation controller
CN103066607A (en) * 2012-12-15 2013-04-24 安徽工程大学 STATCOM current tracking and compensation method
CN103311936A (en) * 2013-06-28 2013-09-18 江苏国源电气有限公司 Control method for 3300V five-level anti-explosion reactive power compensation device
JP2019149849A (en) * 2018-02-26 2019-09-05 富士電機株式会社 Reactive power compensator and control circuit therefor

Also Published As

Publication number Publication date
JP3032046B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
US7683568B2 (en) Motor drive using flux adjustment to control power factor
KR930018832A (en) Energy-saving control device and control method of induction motor
JPH04367010A (en) Static reactive power generator
US4654572A (en) Load-commutated inverter for operating synchronous motor
JPH04289728A (en) Higher harmonic compensator
JP3367737B2 (en) Control device for grid-connected inverter
JPS6038960B2 (en) Inverter voltage control device
JPH05184154A (en) Parallel operation controller for ac output converter
US20050068699A1 (en) Power-supply device
JP2003244981A (en) Control device for ac motor
JP3075578B2 (en) Reactive power compensator
JP2830619B2 (en) Static var compensator
JP2827189B2 (en) Inverter output voltage control method
JPH0553668A (en) Reactive power compensator
JPH033670A (en) Method of controlling induction heating inverter
JP3053882B2 (en) Reactive power compensator
JPH08214543A (en) Dc-dc converter and controlling method therefor
JP3567700B2 (en) Waveform improvement control method in power converter
JPH0690528A (en) Static type reactive power generator
JPH0898589A (en) Current controller of three-phase inverter
JPH09154284A (en) Power converter controller
JPH07212977A (en) Reactive power compensator
JPH11178392A (en) Control system for variable frequency power supply facilities
JPH05244775A (en) Pulse width modulation inverter
JP3420911B2 (en) Power converter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12