JPH04366612A - Manufacture of plastic molded product - Google Patents

Manufacture of plastic molded product

Info

Publication number
JPH04366612A
JPH04366612A JP16889491A JP16889491A JPH04366612A JP H04366612 A JPH04366612 A JP H04366612A JP 16889491 A JP16889491 A JP 16889491A JP 16889491 A JP16889491 A JP 16889491A JP H04366612 A JPH04366612 A JP H04366612A
Authority
JP
Japan
Prior art keywords
temperature
mold
plastic
deformation
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16889491A
Other languages
Japanese (ja)
Other versions
JP2842709B2 (en
Inventor
Hisaaki Oseko
久秋 小瀬古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3168894A priority Critical patent/JP2842709B2/en
Publication of JPH04366612A publication Critical patent/JPH04366612A/en
Application granted granted Critical
Publication of JP2842709B2 publication Critical patent/JP2842709B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding

Abstract

PURPOSE:To constitute the title method so that a time required for heating and gradual cooling is reduced and a plastic molded product superior in mirror face transfer properties is obtained, by a method wherein a temperature of thermoplastic plastic is made at least its thermal deformation temperature and not exceeding a softening temperature and plastic deformation processing is performed by applying compression force to the title molded product by a mold having a mirror face. CONSTITUTION:A mold 1 for optical parts compression molding having a mirror face fitted to a high pressure press machine is heated at a temperature of at least a thermal deformation temperature of a plastic basic material 3 to be inserted into a cavity 2 and not exceeding its softening temperature. Then the thermoplastic plastic basic material 3 processed into almost the final form by an injection molding method is inserted into the cavity 2 by breaking the mold 1 and mold clamping is performed by a top and bottom punches 4, 5 of the high-pressure press machine. The plastic basic material 3 has a temperature same as the mold temperature by holding within the mold 1 for a fixed time. When the plastic basic material 3 becomes identical, in temperature, with the mold 1 temperature, it is pressurized and then decompressed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はレーザービームプリンタ
ー、ファクシミリ等の光学走査系、ビデオカメラ等に用
いる高精度なプラスチック成形品の製造方法、詳しくは
プラスチックレンズ等のプラスチック成形品を短いサイ
クル時間で高精度に製造するのに好適な製造方法に関す
る。
[Industrial Application Field] The present invention relates to a method for manufacturing high-precision plastic molded products for use in laser beam printers, optical scanning systems such as facsimiles, video cameras, etc., and more specifically, the production of plastic molded products such as plastic lenses in a short cycle time. The present invention relates to a manufacturing method suitable for manufacturing with high precision.

【0002】0002

【従来の技術及び発明が解決しようとする課題】従来の
この種の製造方法はすべて、樹脂をそのガラス転移温度
以上または軟化温度以上から冷却してレンズ等の高精度
プラスチック成形品を得ている。少なくとも、軟化温度
以上から熱変形温度以下までの数十度の温度差を冷却す
るためゆっくり徐冷しないと、ひけ等がなく、残留応力
が少なく、またレンズの場合には複屈折の小さな成形品
を得るのは困難であるからである。このひけ等をなくす
ためには、熱伝導性の悪い樹脂が充填された金型キャビ
ティ内の温度をできるだけ均一にしながら冷却する必要
がある。
[Prior Art and Problems to be Solved by the Invention] In all conventional manufacturing methods of this type, high-precision plastic molded products such as lenses are obtained by cooling the resin from above its glass transition temperature or above its softening temperature. . At the very least, molded products with no sink marks, low residual stress, and small birefringence in the case of lenses must be slowly cooled to overcome the temperature difference of several tens of degrees from above the softening temperature to below the heat distortion temperature. This is because it is difficult to obtain. In order to eliminate this sink mark, etc., it is necessary to cool the mold cavity, which is filled with a resin with poor thermal conductivity, while making the temperature as uniform as possible.

【0003】図13は従来の製造方法の一例を示すグラ
フである。図中aは射出成形により成形した例の温度変
化を示す線で、金型温度を樹脂の軟化温度以上に保った
ところに高温の溶融した樹脂を射出充填し、即ゲートシ
ールしてキャビティ内に一定の内圧を発生させ、キャビ
ティ内の温度が金型温度と同等且つ均一になるまで保持
した後、このキャビティ内の温度を均一に保ちつつゆっ
くりと徐冷するものである(図中の線a’はその圧力変
化を示す)。図中bはプラスチック母材をその熱変形温
度以下に保持された金型に入れ、型締め後、加熱して軟
化温度以上とし、キャビティ内に樹脂の溶融膨張による
内圧を生じさせ、一定時間保持後、徐冷して鏡面転写性
に優れたプラスチック成形品を得る例の温度変化を示す
線である(図中の線b’はその圧力変化を示す)。
FIG. 13 is a graph showing an example of a conventional manufacturing method. Line a in the figure shows the temperature change in an example molded by injection molding, where the mold temperature is maintained above the softening temperature of the resin, high temperature molten resin is injected and filled, the gate is immediately sealed, and the inside of the cavity is filled. After generating a constant internal pressure and maintaining the temperature inside the cavity until it becomes equal and uniform to the mold temperature, the temperature inside the cavity is slowly cooled while keeping it uniform (line a in the figure). ' indicates the pressure change). In the figure, b shows the plastic base material placed in a mold held below its heat deformation temperature, and after clamping, heated to above its softening temperature, creating internal pressure in the cavity due to melting and expansion of the resin, and holding for a certain period of time. This is a line showing the temperature change in an example in which a plastic molded product with excellent mirror transfer properties is obtained by slow cooling (the line b' in the figure shows the pressure change).

【0004】このように高精度の射出成形品を得るには
、いずれの方法でも温度制御による徐冷という方法を用
いなければならないが、この徐冷には数十分を要し、生
産性が非常に悪いという問題がある。
[0004] In order to obtain such high-precision injection molded products, it is necessary to use slow cooling using temperature control in either method, but this slow cooling takes several tens of minutes and reduces productivity. The problem is that it's very bad.

【0005】従来より、キャビティユニット金型を用い
、射出成形により効率よくレンズ等高精度プラスチック
成形品を得る方法(特開昭64−36421号公報)、
金型温度を樹脂のガラス転移温度以上にて射出成形し、
レンズを歪なく冷却する方法(特開平1−200925
号公報)、射出後、圧縮を加える成形にて、軟化温度域
で一旦均一化させた後、熱変形温度域まで徐冷する方法
(特開昭61−13927号公報)、被加工部材を振動
により加熱溶融させ、押圧成形、抜き工程後、保圧冷却
する方法(特開昭64−67309号公報)等々、高精
度プラスチック成形品を効率よく成形するための技術は
多数提案されているが、これらにおいても徐冷という数
十分間を有する生産性の悪い工程を不要とし、冷却に必
要な時間を極く短時間にする方法についての提案は存在
しなかった。
Conventionally, there has been a method for efficiently obtaining high-precision plastic molded products such as lenses by injection molding using a cavity unit mold (Japanese Patent Application Laid-open No. 36421/1983);
Injection molding is carried out at a mold temperature higher than the glass transition temperature of the resin.
Method for cooling a lens without distortion (Japanese Patent Application Laid-Open No. 1-200925
(Japanese Unexamined Patent Publication No. 13927/1983), a method in which the workpiece is homogenized in the softening temperature range by compression molding after injection, and then slowly cooled to the heat distortion temperature range (Japanese Patent Application Laid-open No. 13927/1983). Many techniques have been proposed for efficiently molding high-precision plastic molded products, such as heating and melting, press molding, and cooling after holding pressure (Japanese Unexamined Patent Publication No. 64-67309). In these cases, there has been no proposal for a method that eliminates the need for slow cooling, which is an unproductive process that takes several minutes, and reduces the time required for cooling to an extremely short time.

【0006】また、本発明者等の知る所では、射出成形
工程とエージング工程に分けることにより、高精度プラ
スチック成形品を短いサイクルで得る方法が提されてい
るが、この方法では、射出成形工程は1サイクル1〜2
分と短時間で問題ないが、エージング工程に時間が掛か
るという問題が残る。エージング工程は、樹脂のガラス
転移温度以上への再加熱工程と、その後の徐冷工程から
なるが、通常は徐冷工程は成形品の内部歪等から余り時
間を短縮できず、また再加熱工程の再加熱時間をいかに
短くするかについては、従来より知られている一つの金
型内に熱媒体を通したり、埋め込みヒーターによる加熱
等による方法では、金型そのものを加熱してその熱を成
形品に伝えるため、成形品そのものが目的の温度に達す
るには少なくとも数分、普通10分前後の時間を要する
もので、冷却工程の短縮化は図れていなかった。さらに
、ミラー等のように成形品の表面のみを利用する用途や
、樹脂としてPMMA、ゼオネックス等の複屈折の低い
材料を用いた場合には、急冷により歪が大きく、ひけが
発生している表層部のみ再溶融すればよいにもかかわら
ず、従来の金型そのものを加熱する方法では、成形品全
体を再溶融してしまう為加熱時間が掛かり、エージング
工程全体としての所要時間は短縮されない。
Furthermore, to the knowledge of the present inventors, there has been proposed a method of obtaining a high-precision plastic molded product in a short cycle by separating the injection molding process and the aging process. is 1 cycle 1-2
There is no problem in a short time of minutes, but the problem remains that the aging process takes time. The aging process consists of a reheating process to a temperature above the glass transition temperature of the resin, followed by a slow cooling process, but normally the slow cooling process cannot shorten the time much due to internal distortion of the molded product, and the reheating process As for how to shorten the reheating time, conventional methods such as passing a heat medium through a single mold or heating with an embedded heater do not heat the mold itself and use the heat to form the mold. It takes at least several minutes, usually around 10 minutes, for the molded product itself to reach the desired temperature, and it has not been possible to shorten the cooling process. Furthermore, in applications where only the surface of the molded product is used, such as mirrors, or when a material with low birefringence such as PMMA or Zeonex is used as the resin, the surface layer may be severely distorted due to rapid cooling and sink marks may occur. Although it is only necessary to re-melt only a portion of the mold, conventional methods of heating the mold itself re-melt the entire molded product, which takes time to heat and does not shorten the time required for the entire aging process.

【0007】本発明はこのような従来の問題点を解決す
るために、樹脂の変形はその熱変形温度以上で生じ、ま
たその軟化温度以下であれば樹脂は固体であるため、軟
化温度を通過させることによる固相一液相のアンバラン
ス化を考えなくてよいことに着目し、樹脂温度を変化さ
せずに応答性の良い圧力制御により短時間に樹脂を塑性
変形加工することを可能とし、鏡面を転写した高精度プ
ラスチック成形品を得るようにしたものである。
[0007] In order to solve such conventional problems, the present invention deforms the resin above its heat deformation temperature, and since the resin is solid below its softening temperature, the resin does not pass through the softening temperature. Focusing on the fact that there is no need to consider the unbalance between the solid phase and the liquid phase by This is to obtain a high-precision plastic molded product with a mirror surface transferred onto it.

【0008】また本発明は、射出成形時に超音波を印加
して残留応力や歪み等を低減する目的に利用される技術
が、プラスチックレンズの賦形にも利用でき、高周波と
違って金型と成形品の界面に発生する熱により成形品を
表面より急速に溶融させ、加熱時間を10分前後から数
秒へと大幅に短縮でき、厚肉の成形品の場合には、樹脂
の熱伝導率が小さく、数秒以下の急速な表層部からの加
熱により中心部は固体で表層部の残留応力やひけの生じ
た部分を溶融体とすることができる点に着目してなした
ものである。
Furthermore, the present invention provides that the technology used to reduce residual stress, distortion, etc. by applying ultrasonic waves during injection molding can also be used to shape plastic lenses, and unlike high-frequency waves, it can be applied to molds and molds. The heat generated at the interface of the molded product melts the molded product rapidly from the surface, significantly shortening the heating time from around 10 minutes to several seconds.In the case of thick molded products, the thermal conductivity of the resin can be reduced. This was done based on the fact that by heating rapidly from the surface layer in a few seconds or less, the center part is solid and the surface layer part where residual stress or sink marks have occurred can be turned into a molten body.

【0009】[0009]

【課題を解決するための手段】本発明に係るプラスチッ
ク成形品の製造方法は上記従来の目的を達成するために
、あらかじめ略最終形状に前加工した熱可塑性プラスチ
ック母材の温度をその熱変形温度以上でかつその軟化温
度以下として、少なくとも1つの鏡面を有する光学部品
圧縮成形用金型により圧縮力を加えて塑性変形加工し、
鏡面を転写するようにしたものである。なお、上述のよ
うに樹脂の変形はその熱変形温度以上で生じ、またその
軟化温度以下であれば樹脂は固体であるため、軟化温度
を通過させることによる固相一液相のアンバランス化を
考えなくてよいが、逆に樹脂温度がその軟化温度を超え
ると樹脂は軟化しはじめるため、塑性変形加工は容易に
なるものの金型からの取り出し時に変形してしまうし、
その熱変形温度未満では金型からの取り出しは問題ない
が塑性変形加工ができないばかりか、鏡面部を含めた金
型そのものに損傷を与えてしまう。従って、樹脂温度は
その熱変形温度以上でその軟化温度以下とする必要があ
る。但しこの温度域においても樹脂には塑性変形に対す
る抵抗力が少し残っているため、塑性変形するには一定
以上の変形力が必要である。また、単に変形しただけで
は残留応力がかなり残り、たとえその時に鏡面転写性に
優れたものが得られたとしても、経時変化や温度サイク
ルにより変形してしまうという現象が生じる。このため
、変形を生じさせても残留応力が問題にならない程度の
ものにする必要がある。
[Means for Solving the Problems] In order to achieve the above-mentioned conventional object, the method for producing a plastic molded article according to the present invention sets the temperature of a thermoplastic plastic base material that has been preprocessed into a substantially final shape to its heat deformation temperature. above and below the softening temperature, plastic deformation is performed by applying compression force using a mold for compression molding optical parts having at least one mirror surface,
It is designed to transfer a mirror surface. As mentioned above, the deformation of the resin occurs above its thermal deformation temperature, and the resin remains solid below its softening temperature. You don't have to think about it, but conversely, when the resin temperature exceeds its softening temperature, the resin begins to soften, so although plastic deformation processing becomes easier, it will deform when taken out from the mold.
If the temperature is below the heat deformation temperature, there is no problem with ejecting the material from the mold, but not only is plastic deformation impossible, but the mold itself, including the mirror surface, may be damaged. Therefore, the resin temperature must be higher than its thermal deformation temperature and lower than its softening temperature. However, even in this temperature range, the resin still has some resistance to plastic deformation, so a deformation force above a certain level is required for plastic deformation. Further, if the material is simply deformed, a considerable amount of residual stress remains, and even if a product with excellent mirror transfer properties is obtained at that time, it may become deformed due to changes over time or temperature cycles. For this reason, it is necessary to ensure that residual stress does not become a problem even if deformation occurs.

【0010】また、本発明に係るプラスチック成形品の
製造方法は、あらかじめ略最終形状に前加工した熱可塑
性プラスチック母材の温度をその熱変形温度以上でかつ
その軟化温度以下として、少なくとも1つの鏡面を有す
る光学部品圧縮成形用金型により圧縮変形、延伸変形を
交互に減衰させながら与えて塑性変形加工し、鏡面を転
写するようにしたものである。
[0010] Furthermore, the method for producing a plastic molded article according to the present invention is characterized in that the temperature of the thermoplastic base material, which has been preprocessed into a substantially final shape, is set at a temperature higher than its heat deformation temperature and lower than its softening temperature, so that at least one mirror surface is formed. A mold for compression molding optical components is used to perform plastic deformation processing by applying compressive deformation and stretching deformation while attenuating them alternately, thereby transferring a mirror surface.

【0011】上記圧縮変形と延伸変形を交互に減衰させ
ながら与える方法は、金型キャビティのプラスチック母
材の圧縮方向に対する垂直方向を入駒構造とし、該入駒
の後面側にばねを配置し、圧縮力のみを減衰振動させる
ようにすることができる。
[0011] The above-mentioned method of applying compressive deformation and stretching deformation while attenuating them alternately uses a structure in which the mold cavity is inserted in the direction perpendicular to the compression direction of the plastic base material, and a spring is placed on the rear side of the inserted piece. It is possible to make only the force vibrate in a damped manner.

【0012】なお、上記熱可塑性プラスチック母材を略
最終形状に前加工するために射出成形法を用いることが
できる。
[0012] Note that an injection molding method can be used to pre-process the thermoplastic plastic base material into a substantially final shape.

【0013】即ちプラスチック母材をその熱変形温度以
上且つ軟化温度以下において、単に一方向の圧力を加え
て塑性変形させても分子配向等により残留応力が発生し
やすく、鏡面転写性に優れ且つ安定した高精度なプラス
チック成形品は得られないが、本発明に係るプラスチッ
ク成形品の製造方法は、圧縮変形と延伸変形を交互に繰
り返すことにより、分子配向を防ぐとともに、変形力を
減衰させていくことにより残留応力を取り除くようにし
ている。
That is, even if the plastic base material is plastically deformed by simply applying pressure in one direction at a temperature above its thermal deformation temperature and below its softening temperature, residual stress is likely to be generated due to molecular orientation, etc., and the mirror transfer property is excellent and stable. However, the method for manufacturing plastic molded products according to the present invention prevents molecular orientation and attenuates deformation force by alternately repeating compressive deformation and stretching deformation. This removes residual stress.

【0014】さらに本発明に係るプラスチック成形品の
製造方法は、溶融した樹脂を、該樹脂の熱変形温度以下
の温度に保持された金型キャビティ内に射出成形し、ゲ
ートシールして固化させる射出成形工程と、金型の温度
を上記樹脂の熱変形温度以下に保持したまま、超音波振
動を印加して樹脂のガラス転移温度以上に加熱して溶融
させ、その後冷却するエージング工程からなるものとす
ることができる。
Furthermore, the method for manufacturing a plastic molded article according to the present invention includes an injection molding process in which a molten resin is injection molded into a mold cavity maintained at a temperature below the heat distortion temperature of the resin, and the molded resin is solidified by sealing the gate. The molding process consists of a molding process, and an aging process of applying ultrasonic vibration to heat the resin to a temperature higher than the glass transition temperature of the resin to melt it while maintaining the temperature of the mold below the thermal deformation temperature of the resin, and then cooling it. can do.

【0015】そして上記エージング工程は、上記射出成
形工程で得られた成形品を上記金型から取り出し、該金
型のキャビティと形状及び容積が同等のキャビティを有
する型内に入れて実施することができる。即ち、超音波
により残留応力やひけの生じた成形品の表層部分のみを
溶融させ、この溶融部を徐冷するものである。この表層
部のみ溶融させることは、均肉且つ薄肉成形品のエージ
ング工程と同等な挙動を示すことになり、冷却速度を増
してもひけ発生しないため、徐冷時間の短縮が可能とな
る。
[0015] The aging step may be carried out by taking out the molded product obtained in the injection molding step from the mold and placing it in a mold having a cavity having the same shape and volume as the cavity of the mold. can. That is, only the surface layer portion of the molded product where residual stress or sink marks have occurred is melted by ultrasonic waves, and this melted portion is slowly cooled. Melting only this surface layer shows the same behavior as the aging process of a uniform-walled and thin-walled molded product, and since no sink marks occur even if the cooling rate is increased, it is possible to shorten the annealing time.

【0016】[0016]

【実施例】図1ないし図3は本発明に係るプラスチック
成形品の製造方法の第一実施例を示す。まず図1に示す
ように高圧プレス機に取付けられた金型1を、そのキャ
ビティ2内に挿入するプラスチック母材3の熱変形温度
以上でかつその軟化温度以下に加熱しておく。そして射
出成形法により略最終形状に加工された熱可塑性のプラ
スチック母材3を、金型1を開いてキャビティ2内に挿
入し、高圧プレス機の上、下パンチ4、5により型締め
する。プラスチック母材3は金型1内に一定時間保持す
ることにより金型温度と同等になるが、前もって熱変形
温度近くまで加熱しておいてもよい。プラスチック母材
3が金型1の温度と同等になったところで、0.1to
n/cm2/secの速度で加圧し(図2中のI)、3
ton/cm2の高圧状態で約10秒間保持(図2中の
2)した後(約10秒)、0.05ton/cm2/s
ecの速度で減圧する。(図2中の3)。この工程によ
り鏡面精度に優れたプラスチック成形品を得た。
Embodiment FIGS. 1 to 3 show a first embodiment of the method for manufacturing a plastic molded article according to the present invention. First, as shown in FIG. 1, a mold 1 mounted on a high-pressure press is heated to a temperature above the heat deformation temperature of the plastic base material 3 to be inserted into the cavity 2 and below its softening temperature. Then, the thermoplastic plastic base material 3 processed into a substantially final shape by injection molding is inserted into the cavity 2 with the mold 1 opened, and the mold is clamped by upper and lower punches 4 and 5 of a high-pressure press machine. By holding the plastic base material 3 in the mold 1 for a certain period of time, the temperature becomes equal to the mold temperature, but it may be heated in advance to near the heat distortion temperature. When the temperature of the plastic base material 3 is equal to that of the mold 1, the temperature of 0.1 to
Pressure was applied at a rate of n/cm2/sec (I in Figure 2), and 3
After maintaining the high pressure state of ton/cm2 for about 10 seconds (2 in Figure 2) (about 10 seconds), 0.05ton/cm2/s
Depressurize at a rate of ec. (3 in Figure 2). Through this process, a plastic molded product with excellent mirror surface accuracy was obtained.

【0017】即ち、本方法では圧縮圧力を0.5〜10
ton/cm2と通常の射出圧縮成形や押圧成形時の圧
縮圧力に対して数倍から数十倍の圧力を与え、プラスチ
ック母材3を塑性変形させることにより塑性変形領域の
樹脂に見かけ上で流動挙動を与えて、変形力解除後のわ
ずかなもどりをなくし、鏡面転写性を向上させている。 圧縮圧力が上記の値未満では転写が不十分となるし、こ
れを超えると金型1の寿命が著しく短くなり実用的では
ない。 また、本方法では圧縮速度及び減圧速度を0.01〜1
ton/cm2/secとゆっくりと圧縮変形及び変形
解除することにより残留応力を少なくしている。これを
超えては残留応力が大きくてで使用できず、これ未満で
は時間が掛かりすぎて実用上好ましくない。
That is, in this method, the compression pressure is set to 0.5 to 10
ton/cm2, several times to several tens of times the compression pressure during normal injection compression molding or press molding, is applied to plastically deform the plastic base material 3, causing apparent flow to the resin in the plastically deformed area. By imparting this behavior, the slight rebound after the deformation force is released is eliminated, and mirror transfer properties are improved. If the compression pressure is less than the above value, the transfer will be insufficient, and if it exceeds this value, the life of the mold 1 will be significantly shortened, making it impractical. In addition, in this method, the compression speed and decompression speed are set to 0.01 to 1.
Residual stress is reduced by slowly deforming and releasing the deformation at a rate of ton/cm2/sec. If it exceeds this range, the residual stress will be so large that it cannot be used, and if it is less than this range, it will take too much time and is not preferred in practice.

【0018】図3は、図2の方法の変形例で、図2と同
じ条件で加圧・保圧・減圧を行うが、その際に0.3H
zの周波数で、その加圧力を振動させるようにしたもの
である。振動幅は加圧、保圧、減圧時の各圧力の1/2
0としている。即ち、圧力振幅が10〜100Kg/c
m2で0.1〜10kHzの振動を重量印加することに
より内部応力を減少させるのであるが、振動を重量印加
する場合に、加圧から減圧に至るまでの全ての時間に印
加してもよいが、加圧時のみとか、減圧時のみとか、使
用する樹脂の物性や成形品形状に応じて振動の印加する
時期を変えて実施してもよい。印加振動の振幅と振動数
も、樹脂物性や成形品形状に応じて変える必要があるが
、この振動によって樹脂発熱が生じ、キャビティ内の温
度がその軟化温度以上にならないようにする必要がある
。なお、使用する樹脂としては、熱可塑性樹脂であれば
特に限定されないが、軟化温度がガラス転移温度に近い
アクリル、ポリカーボネイト、ポリスチレン、アモルフ
ァスポリオレフィン等の非晶質樹脂が好ましい。
FIG. 3 shows a modification of the method shown in FIG. 2, in which pressurization, pressure holding, and depressurization are performed under the same conditions as in FIG.
The pressure force is made to oscillate at a frequency of z. The vibration width is 1/2 of each pressure during pressurization, holding pressure, and depressurization.
It is set to 0. That is, the pressure amplitude is 10 to 100 Kg/c
The internal stress is reduced by applying vibrations of 0.1 to 10 kHz at m2 by weight, but when applying vibrations by weight, it may be applied all the time from pressurization to depressurization. The vibration may be applied at different times depending on the physical properties of the resin used and the shape of the molded product, such as only when applying pressure or only when reducing pressure. The amplitude and frequency of the applied vibrations also need to be changed depending on the physical properties of the resin and the shape of the molded product, but this vibration causes heat generation of the resin and it is necessary to prevent the temperature inside the cavity from rising above its softening temperature. Note that the resin to be used is not particularly limited as long as it is a thermoplastic resin, but amorphous resins such as acrylic, polycarbonate, polystyrene, and amorphous polyolefin, whose softening temperature is close to the glass transition temperature, are preferable.

【0019】また、プラスチック母材3の温度をその熱
変形温度以上にもっていくには、熱媒体やヒーターによ
りあらかじめその温度に加熱、保持された金型に挿入し
て、熱電動により加熱する方法を用いてもよいし、高周
波により金型1のキャビティ2周辺部を加熱したり、超
音波によりキャビティ内のプラスチック母材そのものを
直接加熱する方法を用いてもよい。超音波加熱や高周波
加熱により数秒〜数十秒と短時間でプラスチック母材3
の温度をその熱変形温度以上でその軟化温度以下に加熱
することができる。さらに、略最終形状に前加工する方
法として射出成形法を用いることにより、プラスチック
母材の寸法、重量が安定したものを安価に作製すること
ができた。
[0019] Furthermore, in order to bring the temperature of the plastic base material 3 above its thermal deformation temperature, it is inserted into a mold that has been heated and maintained at that temperature in advance by a heating medium or heater, and then heated by a thermoelectric device. Alternatively, a method may be used in which the periphery of the cavity 2 of the mold 1 is heated by high frequency waves, or the plastic base material itself in the cavity is directly heated by ultrasonic waves. Plastic base material 3 can be formed in a short time from a few seconds to several tens of seconds using ultrasonic heating or high-frequency heating.
can be heated to a temperature above its heat distortion temperature and below its softening temperature. Furthermore, by using injection molding as a pre-processing method into a substantially final shape, it was possible to produce a plastic base material with stable dimensions and weight at a low cost.

【0020】図4ないし図9は本発明に係るプラスチッ
ク成形品の製造方法の第二実施例を示す。なお、先の実
施例と共通する部分、事項については重複するせつめい
を省略する。まず、図4に示すように高圧プレス機に取
付けられた金型10を、そのキャビティ11内に挿入す
るプラスチック母材12の熱変形温度以上で且つその軟
化温度以下に加熱しておく。そして射出成形法により略
最終形状に前加工した熱可塑性プラスチック母材12を
、その熱変形温度以上でかつその軟化温度以下に水、油
等の熱媒やヒーター等を用いて保持された金型10のキ
ャビティ11内に入れる。なお、金型10は室温とし、
高周波によりキャビティ11の近傍を加熱してプラスチ
ック母材12をこの目標とする温度にしてもよいし、ま
た超音波により、キャビティ11内のプラスチック母材
12のみをこの目標とする温度にすればより時間短縮が
可能である。
4 to 9 show a second embodiment of the method for manufacturing a plastic molded article according to the present invention. It should be noted that overlapping details regarding parts and matters common to the previous embodiments will be omitted. First, as shown in FIG. 4, a mold 10 attached to a high-pressure press is heated to a temperature higher than the thermal deformation temperature of the plastic base material 12 to be inserted into the cavity 11 and lower than its softening temperature. The thermoplastic base material 12, which has been pre-processed into a substantially final shape by injection molding, is held in a mold using a heating medium such as water or oil or a heater at a temperature above its thermal deformation temperature and below its softening temperature. 10 into the cavity 11. Note that the mold 10 is at room temperature,
The vicinity of the cavity 11 may be heated with high frequency to bring the plastic base material 12 to this target temperature, or it is better to bring only the plastic base material 12 inside the cavity 11 to this target temperature using ultrasonic waves. It is possible to save time.

【0021】金型10そのものは、断熱板13を介して
高圧プレス機の型締めダイプレート14に固定されてい
る。図示の例では金型の2面(一方向)からの加圧、減
圧が可能なように高圧プレス機の上、下パンチ15、1
6が取付けられた構造となっている。またこの金型10
は、キャビティ11のプラスチック母材12の圧縮方向
に対して垂直となる方向で可動に入駒17、17を配し
た入駒構造となっている。そして入駒17の後面側には
ばね18、18が配置してある。
The mold 10 itself is fixed to a clamping die plate 14 of a high-pressure press via a heat insulating plate 13. In the illustrated example, the upper and lower punches 15 and 1 of the high-pressure press are designed to enable pressurization and depressurization from two sides (one direction) of the mold.
6 is attached. Also, this mold 10
has an insert piece structure in which insert pieces 17, 17 are movable in a direction perpendicular to the compression direction of the plastic base material 12 of the cavity 11. Further, springs 18, 18 are arranged on the rear side of the input piece 17.

【0022】図5及び図6は、図4に示す金型構造によ
る本発明の実施動を示す。高圧プレス機のパンチ15、
16により金型10に対して圧縮方向Xで加圧すると、
プラスチック母材12には加圧方向Xに圧縮変形が生じ
、その垂直方向Yでは入駒17に対するばね18の力と
バランスをとりながら延伸変形する。一定の圧縮変形後
、加圧方向Xの圧力を減圧してゼロ近くまでもっていく
と、ばね18の垂直方向Yの力の方が大きくなり、今度
は逆に延伸した方向Yが入駒17に押されて圧縮変形し
、圧縮した方向Xで延伸変形する。加圧力を減衰させな
がらこのような圧縮変形、延伸変形を繰り返させる(図
6参照)。これによってプラスチック母材12の分子配
向や残留応力は実用上問題ならない程度に小さく抑えら
れ、鏡面転写性に優れたプラスチック成形品となる。
FIGS. 5 and 6 illustrate the operation of the present invention using the mold structure shown in FIG. High pressure press machine punch 15,
16 pressurizes the mold 10 in the compression direction X,
Compressive deformation occurs in the plastic base material 12 in the pressurizing direction X, and elongation deformation occurs in the vertical direction Y while balancing the force of the spring 18 against the input piece 17. After a certain amount of compressive deformation, when the pressure in the pressing direction It is compressed and deformed by being pushed, and then stretched and deformed in the compressed direction X. Such compressive deformation and stretching deformation are repeated while attenuating the pressing force (see FIG. 6). As a result, the molecular orientation and residual stress of the plastic base material 12 are suppressed to a level that poses no practical problems, resulting in a plastic molded product with excellent mirror transfer properties.

【0023】図7及び図8は圧縮、延伸を対象的に行う
例を概念的に示す。X方向から加圧により圧縮変形させ
ると同時にそれと垂直のY方向は減圧して延伸変形を生
じさせることにより、キャビティ内の圧力は正だがさほ
ど大きくはならず、次に延伸変形させた側から加圧して
、圧縮変形させた側は減圧し、逆方向に圧縮変形と延伸
変形を生じさせる。そして、この変形量を減少させなが
ら、交互にこれを繰り返す。当然キャビティ11内の圧
力は、圧縮と延伸のバランスでもって大きく変化しない
し、またこの圧力は小さい。このように圧縮変形と延伸
変形を減衰させながら交互に繰り返すことにより樹脂の
分子配向や、残留応力をより良く除くことができるし、
またキャビティ11内圧力はごく小さくおさえておける
ためこの内圧の残圧による応力残等も実用上問題になら
ない程度小さくすることができる。
FIGS. 7 and 8 conceptually show an example in which compression and stretching are performed symmetrically. By compressing and deforming by applying pressure from the X direction and at the same time reducing the pressure in the Y direction perpendicular to it to cause stretching deformation, the pressure inside the cavity is positive but not very large, and then the pressure is applied from the side that was stretched and deformed. The side that was compressed and deformed is depressurized, and compressive deformation and stretching deformation occur in the opposite direction. This is then repeated alternately while decreasing the amount of deformation. Naturally, the pressure within the cavity 11 does not vary greatly due to the balance between compression and stretching, and this pressure is small. By repeating compression deformation and stretching deformation alternately while attenuating them in this way, the molecular orientation of the resin and residual stress can be better removed.
Furthermore, since the internal pressure of the cavity 11 can be kept very low, residual stress due to the residual internal pressure can also be reduced to a level that does not pose a problem in practice.

【0024】図9は以上の2例の応力−ひずみ線図であ
る。図中のA点では単なる圧縮変形のためかなりの残留
応力が残り、B点では残留応力大で、最終形状を超えた
変形を生じる。ところが応力をC点にもって行くと、ひ
ずみはB点よりも小さく逆方向のものとなり、以下点D
から点Hまで順に圧縮、延伸を繰り返すと、ヒステリシ
スの減少により、最終寸法で残留応力のない成形品を作
ることができる。
FIG. 9 is a stress-strain diagram of the above two examples. At point A in the figure, a considerable amount of residual stress remains due to mere compressive deformation, and at point B, the residual stress is large, causing deformation that exceeds the final shape. However, when the stress is brought to point C, the strain becomes smaller and in the opposite direction than point B, and below point D
By repeating compression and stretching from point H to point H, it is possible to produce a molded article with no residual stress in its final dimensions due to the reduction in hysteresis.

【0025】図10ないし図12は本発明の第三実施例
を示す。図10はエージング工程の実施状態を示し、金
型20は加熱プレス機の型締めプレート21、21間に
固定されており、金型下型22内には超音波発振器23
が取付けられ、金型上型24との間にキャビティ25を
形成する入駒26を超音波加熱できるようになっている
。図中27は超音波発振器である。即ち、金型20の温
度をプラスチック母材28の熱変形温度以下の一定温度
に保持するために、ヒーター内蔵の加熱プレスを使用し
、キャビティ25内でのプラスチック母材28の膨張に
よる圧力に耐えるよう一定圧力を上下方向に加えられる
ようになっている。
FIGS. 10 to 12 show a third embodiment of the present invention. FIG. 10 shows the implementation state of the aging process, in which the mold 20 is fixed between clamping plates 21 and 21 of a hot press machine, and an ultrasonic oscillator 23 is installed in the lower mold 22.
is attached so that the inserting piece 26 forming the cavity 25 between the upper die 24 and the upper die 24 can be ultrasonically heated. In the figure, 27 is an ultrasonic oscillator. That is, in order to maintain the temperature of the mold 20 at a constant temperature below the thermal deformation temperature of the plastic base material 28, a heating press with a built-in heater is used to withstand the pressure caused by the expansion of the plastic base material 28 within the cavity 25. A constant pressure can be applied in the vertical direction.

【0026】本例では、まず射出成形工程で得られたプ
ラスチック母材28を、その金型温度がプラスチック母
材28の熱変形温度以下の一定温度に保持された、射出
成形工程のキャビティと形状容積が同等のキャビティ2
5内に入れる。そしてプラスチック母材28の溶融膨張
に耐えられる圧力で型締めし、金型下型22内の入駒2
6に連結した超音波発振器27により超音波振動を印加
し、プラスチック母材28の表層部から急速に加熱溶融
させる。この発熱でプラスチック母材28及び金型上型
24、同下型22のキャビティ25に面するところは高
温化するが、超音波振動を止めると熱は金型全体に伝熱
し、冷却される。冷却速度は、キャビティ25を構成す
る入駒26と金型上型24、同下型22との間に空気等
の断熱層を設けたり、熱伝導率の小さい材質を使用した
りすることにより変えられる。
In this example, first, the plastic base material 28 obtained in the injection molding process is molded into the cavity and shape of the injection molding process, where the mold temperature is maintained at a constant temperature below the heat deformation temperature of the plastic base material 28. Cavity 2 with equal volume
Put it within 5. Then, the mold is clamped with a pressure that can withstand the melting and expansion of the plastic base material 28, and the inserted pieces 2 in the lower mold 22 are
Ultrasonic vibrations are applied by an ultrasonic oscillator 27 connected to the plastic base material 28, and the plastic base material 28 is rapidly heated and melted from the surface layer. Due to this heat generation, the plastic base material 28 and the parts of the upper mold 24 and lower mold 22 facing the cavity 25 become hot, but when the ultrasonic vibration is stopped, the heat is transferred to the entire mold and is cooled down. The cooling rate can be changed by providing a heat insulating layer such as air between the insert piece 26 forming the cavity 25 and the upper mold 24 and lower mold 22, or by using a material with low thermal conductivity. It will be done.

【0027】こうして、プラスチック母材28の熱変形
温度以下になったら、金型20を開いてプラスチック母
材28を取り出す。もちろん、金型20を一定温度、一
定型締めするために加熱プレスを用いたが、他の同様の
方法を用いることができる。図11は、本方法によるエ
ージング工程と従来方法による同工程の樹脂温度の変化
時間を示しており、図中線A1、A2が本方法による温
度変化、Bが従来法による変化で、本方法は従来法に比
べて加熱及び冷却の両方の時間が短縮できている。なお
線A1はプラスチック母材の表層温度を、A2は同中心
部温度を示す。中心部温度はまだ樹脂のガラス転移温度
以下となっている点が、従来法と異なる。なお、ポリカ
ーボネイト樹脂のように内部歪が残りやすい材料を用い
て高精度なレンズを作るような場合は、成形品は超音波
振動で完全溶融した後、徐冷する必要があるため、加熱
時間のみの短縮する。
[0027] When the temperature becomes lower than the heat deformation temperature of the plastic base material 28, the mold 20 is opened and the plastic base material 28 is taken out. Of course, although a heated press was used to clamp the mold 20 at a constant temperature, other similar methods may be used. FIG. 11 shows the change time of resin temperature in the aging process according to the present method and the same process according to the conventional method. Lines A1 and A2 in the figure are the temperature changes according to the present method, and B is the change according to the conventional method. Compared to conventional methods, both heating and cooling times can be reduced. Note that the line A1 indicates the surface temperature of the plastic base material, and the line A2 indicates the temperature at the center. This differs from the conventional method in that the temperature at the center is still below the glass transition temperature of the resin. In addition, when making high-precision lenses using materials that tend to retain internal distortion, such as polycarbonate resin, the molded product must be completely melted by ultrasonic vibration and then slowly cooled, so the heating time is limited. to shorten.

【0028】図12(A)、(B)は、表層部30のみ
加熱溶融された場合の成形品断面の変化を示す。溶融部
31の肉厚が均一になってその外周に固化部32が形成
されており、図12(C)、(D)の成形品のように全
体が溶融して表面から固化した場合に、溶融部33の肉
厚が不均一でその外周に固化部34が形成されるものと
違っている。
FIGS. 12A and 12B show changes in the cross section of the molded product when only the surface layer 30 is heated and melted. When the thickness of the molten part 31 becomes uniform and a solidified part 32 is formed on its outer periphery, and the entire part melts and solidifies from the surface as in the molded products shown in FIGS. 12(C) and 12(D), This is different from the case where the thickness of the melted part 33 is non-uniform and the solidified part 34 is formed around the outer periphery.

【0029】[0029]

【発明の効果】請求項1及び2のプラスチック成形品の
製造方法においては、プラスチック母材の熱変形温度以
上でその軟化温度以下で塑性変形を短時間で生じさせる
ため、従来の方法に比べて加熱、徐冷に要する時間が短
縮でき且つ鏡面転写性に優れたプラスチック成形品を得
ることができるという効果がある。
[Effects of the Invention] In the method for manufacturing a plastic molded product according to claims 1 and 2, plastic deformation is caused in a short time at a temperature above the thermal deformation temperature of the plastic base material and below its softening temperature, so that it is better than conventional methods. The effect is that the time required for heating and slow cooling can be shortened, and a plastic molded product with excellent mirror transfer properties can be obtained.

【0030】請求項3のプラスチック成形品の製造方法
においては、上記共通の効果に加え、一方向の圧縮力の
みを変化させるだけで圧縮変形、延伸変形を生じさせ、
鏡面転写性に優れたプラスチック成形品を得ることがで
き、金型構造を簡単なものにすることができるという効
果がある。
In addition to the above-mentioned common effects, the method for manufacturing a plastic molded product according to claim 3 causes compressive deformation and stretching deformation by changing only the compressive force in one direction,
It is possible to obtain a plastic molded product with excellent mirror transfer properties, and the mold structure can be simplified.

【0031】請求項4のプラスチック成形品の製造方法
においては、上記共通の効果に加え、プラスチック母材
を略最終形状に加工する方法として射出成形を用いてい
るので、低コストで品質上安定したプラスチック成形品
を得ることができるため、鏡面転写性に優れたプラスチ
ック成形品を低コストで、安定した品質のものを得るこ
とができるという効果がある。
In addition to the above-mentioned common effects, the method for manufacturing a plastic molded product according to claim 4 uses injection molding as a method for processing the plastic base material into a substantially final shape, so that it can be produced at low cost and with stable quality. Since a plastic molded product can be obtained, it is possible to obtain a plastic molded product with excellent mirror transfer properties at a low cost and with stable quality.

【0032】請求項5のプラスチック成形品の製造方法
においては、超音波を用いて樹脂のガラス転移温度以上
に短時間で加熱溶融することができるため、生産性の向
上しいては製品の低コスト化ができるという効果がある
[0032] In the method for manufacturing a plastic molded product according to claim 5, it is possible to heat and melt the resin to a temperature higher than the glass transition temperature of the resin in a short time using ultrasonic waves, thereby improving productivity and lowering the cost of the product. It has the effect of being able to change.

【0033】請求項6のプラスチック成形品の製造方法
においては、上記共通の効果に加え、エージング工程を
射出成形工程と分離することにより、生産性向上、製品
の低コスト化ができるという効果がある。
[0033] In addition to the above-mentioned common effects, the method for manufacturing a plastic molded product according to claim 6 has the effect of improving productivity and reducing product costs by separating the aging process from the injection molding process. .

【図面の簡単な説明】[Brief explanation of drawings]

【図1】図1は本発明に係るプラスチック成形品の製造
方法の第一実施例に用いる金型の断面図である。
FIG. 1 is a sectional view of a mold used in a first embodiment of the method for manufacturing a plastic molded article according to the present invention.

【図2】図2は同キャビティ内圧力の時間変化を示すグ
ラフである。
FIG. 2 is a graph showing a change in the pressure inside the cavity over time.

【図3】図3は同キャビティ内圧力の時間変化の他の例
を示すグラフである。
FIG. 3 is a graph showing another example of the temporal change in the pressure inside the cavity.

【図4】図4は本発明に係るプラスチック成形品の製造
方法の第二実施例に用いる金型の断面図である。
FIG. 4 is a sectional view of a mold used in a second embodiment of the method for manufacturing a plastic molded article according to the present invention.

【図5】図5は本発明の第二実施例の方法を概念的に示
す斜視図である。
FIG. 5 is a perspective view conceptually showing a method according to a second embodiment of the present invention.

【図6】図6は図5の方法における変形とキャビティ内
圧力の変化を示すグラフである。
FIG. 6 is a graph showing changes in deformation and cavity pressure in the method of FIG. 5;

【図7】図7は圧縮、延伸変形方向を2方向とした場合
の本発明の第二実施例の方法を概念的に示す斜視図であ
る。
FIG. 7 is a perspective view conceptually showing a method according to a second embodiment of the present invention in which the compression and stretching deformation directions are two directions.

【図8】図8は図7の方法における変形とキャビティ内
圧力の変化を示すグラフである。
FIG. 8 is a graph showing changes in deformation and cavity pressure in the method of FIG. 7;

【図9】図9は本発明の第二実施例における応力−ひず
み線図である。
FIG. 9 is a stress-strain diagram in a second embodiment of the present invention.

【図10】図10は本発明に係るプラスチック成形品の
製造方法の第三実施例に用いる金型の断面図である。
FIG. 10 is a sectional view of a mold used in a third embodiment of the method for manufacturing a plastic molded article according to the present invention.

【図11】図11は本発明の第三実施例における樹脂温
度の時間変化を従来方法と比較して示すグラフである。
FIG. 11 is a graph showing the change in resin temperature over time in a third embodiment of the present invention in comparison with a conventional method.

【図12】図12は、本発明の第三実施例における成形
品の内部構造を従来方法によるものと比較して示す断面
図である。
FIG. 12 is a cross-sectional view showing the internal structure of a molded product according to a third embodiment of the present invention in comparison with a molded product according to a conventional method.

【図13】図13は、従来のプラスチック成形品の製造
方法の温度変化及びキャビティ内圧変化を示すグラフで
ある。
FIG. 13 is a graph showing temperature changes and cavity internal pressure changes in a conventional method for manufacturing plastic molded products.

【符号の説明】[Explanation of symbols]

1、10、20  金型 2、11、25  キャビティ 3、12、28  プラスチック母材 13            断熱板 17、26      入駒 18            ばね 1, 10, 20 Mold 2, 11, 25 Cavity 3, 12, 28 Plastic base material 13               Insulation board 17, 26                18 Spring

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  あらかじめ略最終形状に前加工した熱
可塑性プラスチック母材の温度をその熱変形温度以上で
かつその軟化温度以下として、少なくとも1つの鏡面を
有する光学部品圧縮成形用金型により圧縮力を加えて塑
性変形加工し、鏡面を転写することを特徴とするプラス
チック成形品の製造方法。
Claim 1: The temperature of the thermoplastic base material, which has been preprocessed into a substantially final shape, is set at a temperature higher than its thermal deformation temperature and lower than its softening temperature, and a compressive force is applied using a mold for compression molding optical components having at least one mirror surface. A method for producing a plastic molded product, which is characterized by adding plastic deformation processing to transfer a mirror surface.
【請求項2】  あらかじめ略最終形状に前加工した熱
可塑性プラスチック母材の温度をその熱変形温度以上で
かつその軟化温度以下として、少なくとも1つの鏡面を
有する光学部品圧縮成形用金型により圧縮変形、延伸変
形を交互に減衰させながら与えて塑性変形加工し、鏡面
を転写することを特徴とするプラスチック成形品の製造
方法。
2. Compressively deform the thermoplastic base material, which has been preprocessed into a substantially final shape, at a temperature above its thermal deformation temperature and below its softening temperature using a mold for compression molding optical parts having at least one mirror surface. A method for manufacturing a plastic molded product, characterized in that plastic deformation is performed by applying stretching deformation while attenuating it alternately, and a mirror surface is transferred.
【請求項3】  金型キャビティのプラスチック母材の
圧縮方向に対する垂直方向を入駒構造とし、該入駒の後
面側にばねを配置し、圧縮力のみを減衰振動させること
により、上記圧縮変形と延伸変形を交互に減衰させなが
ら与えることを特徴とする請求項2のプラスチック成形
品の製造方法。
3. The compression deformation and elongation are achieved by forming a piece structure in the direction perpendicular to the compression direction of the plastic base material of the mold cavity, and arranging a spring on the rear side of the piece to dampen and oscillate only the compressive force. 3. The method of manufacturing a plastic molded product according to claim 2, wherein the deformation is applied while being alternately attenuated.
【請求項4】  上記熱可塑性プラスチック母材を略最
終形状に前加工するために射出成形法を用いることを特
徴とする請求項1ないし3のプラスチック成形品の製造
方法。
4. The method of manufacturing a plastic molded article according to claim 1, wherein an injection molding method is used to pre-process the thermoplastic plastic base material into a substantially final shape.
【請求項5】  溶融した樹脂を、該樹脂の熱変形温度
以下の温度に保持された金型キャビティ内に射出成形し
、ゲートシールして固化させる射出成形工程と、金型の
温度を上記樹脂の熱変形温度以下に保持したまま、超音
波振動を印加して樹脂のガラス転移温度以上に加熱して
溶融させ、その後冷却するエージング工程からなるプラ
スチック成形品の製造方法。
5. An injection molding step in which the molten resin is injected into a mold cavity maintained at a temperature below the thermal deformation temperature of the resin, the gate is sealed, and the resin is solidified; A method for manufacturing plastic molded products, which comprises an aging process in which the resin is heated to a temperature above the glass transition temperature of the resin to melt it while the resin is maintained below the thermal distortion temperature of , and then cooled.
【請求項6】  上記射出成形工程で得られた成形品を
上記金型から取り出し、該金型のキャビティと形状及び
容積が同等のキャビティを有する型内に入れて上記エー
ジング工程を実施することを特徴とする請求項4のプラ
スチック成形品の製造方法。
6. The molded product obtained in the injection molding step is taken out from the mold, and placed in a mold having a cavity having the same shape and volume as the cavity of the mold, and the aging step is performed. The method for manufacturing a plastic molded product according to claim 4.
JP3168894A 1991-06-13 1991-06-13 Manufacturing method of plastic molded products Expired - Fee Related JP2842709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3168894A JP2842709B2 (en) 1991-06-13 1991-06-13 Manufacturing method of plastic molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3168894A JP2842709B2 (en) 1991-06-13 1991-06-13 Manufacturing method of plastic molded products

Publications (2)

Publication Number Publication Date
JPH04366612A true JPH04366612A (en) 1992-12-18
JP2842709B2 JP2842709B2 (en) 1999-01-06

Family

ID=15876542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3168894A Expired - Fee Related JP2842709B2 (en) 1991-06-13 1991-06-13 Manufacturing method of plastic molded products

Country Status (1)

Country Link
JP (1) JP2842709B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127032A (en) * 1994-11-02 1996-05-21 Ricoh Co Ltd Manufacture of plastic molded product
CN109927273A (en) * 2019-01-22 2019-06-25 杭州友凯船艇有限公司 A kind of molding technical solution of plastic plate reprocessing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5652027B2 (en) 2010-07-15 2015-01-14 株式会社リコー Plastic molded product, method for molding plastic molded product, and optical scanning device having the plastic molded product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148518A (en) * 1982-02-12 1983-09-03 ジ−メンス・アクチエンゲゼルシヤフト Switch unit
JPS6049906A (en) * 1983-07-12 1985-03-19 バイエル・アクチエンゲゼルシヤフト Manufacture of contact optical molded product
JPS6131216A (en) * 1984-07-25 1986-02-13 Hitachi Ltd Plastic lens shaping method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148518A (en) * 1982-02-12 1983-09-03 ジ−メンス・アクチエンゲゼルシヤフト Switch unit
JPS6049906A (en) * 1983-07-12 1985-03-19 バイエル・アクチエンゲゼルシヤフト Manufacture of contact optical molded product
JPS6131216A (en) * 1984-07-25 1986-02-13 Hitachi Ltd Plastic lens shaping method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127032A (en) * 1994-11-02 1996-05-21 Ricoh Co Ltd Manufacture of plastic molded product
CN109927273A (en) * 2019-01-22 2019-06-25 杭州友凯船艇有限公司 A kind of molding technical solution of plastic plate reprocessing

Also Published As

Publication number Publication date
JP2842709B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
US6521146B1 (en) Compression molding of optical lenses
JP3512595B2 (en) Molding method of plastic molded article and mold for molding plastic molded article
JP3267073B2 (en) Method of molding optical element and molded optical element
KR20120038964A (en) Device and method for producing thick-walled plastic molded parts having reduced shrinkage sites by injection molding or embossing
JPH04366612A (en) Manufacture of plastic molded product
JP3130099B2 (en) Manufacturing method of plastic molded products
JPH06328451A (en) Resin molding method
JP3350581B2 (en) In-mold vibration processing method and apparatus
JP2821093B2 (en) Manufacturing method of plastic molded article and molding die
JP3719757B2 (en) Mold and molding method
JPH0354608B2 (en)
JP2000015676A (en) Method for molding resin
JPH07148795A (en) Plastic part and molding thereof
JP4895348B2 (en) Plastic molded product, manufacturing apparatus and manufacturing method thereof
JP2001260139A (en) Mold for molding, molding apparatus, method for molding optical element, and optical element
JP2009034907A (en) Mold for molding, optical element array, and optical element
JP4574900B2 (en) Plastic optical element injection molding method and injection mold
JPH07323486A (en) Manufacture of plastic molded product
KR20010016654A (en) Molding product fabricating apparatus and fabricating method thereof
JPH01210334A (en) Method for molding lens
JPH10249874A (en) Molding machine for plastic
JPH11291261A (en) Production of plastic molded product
JP4751818B2 (en) Mold for forming and manufacturing method thereof
JPH08127065A (en) Mold
JP2799253B2 (en) Plastic molding equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees