JPS6131216A - Plastic lens shaping method - Google Patents

Plastic lens shaping method

Info

Publication number
JPS6131216A
JPS6131216A JP15291384A JP15291384A JPS6131216A JP S6131216 A JPS6131216 A JP S6131216A JP 15291384 A JP15291384 A JP 15291384A JP 15291384 A JP15291384 A JP 15291384A JP S6131216 A JPS6131216 A JP S6131216A
Authority
JP
Japan
Prior art keywords
lens
curvature
finished
radius
lens blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15291384A
Other languages
Japanese (ja)
Inventor
Masayuki Muranaka
昌幸 村中
Shoki Eguchi
江口 昭喜
Kiyoshi Wada
清 和田
Norio Yatsuda
則夫 谷津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15291384A priority Critical patent/JPS6131216A/en
Publication of JPS6131216A publication Critical patent/JPS6131216A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To manufacture a high-precision thermoplastic lens with a high rate of productivity by applying ultrasonic waves to a thermoplastic resin material. CONSTITUTION:When the radii of curvature R1, R2 are to be obtained on a lens, the top end 4 of the hole 1 is mirror-finished to the radius R1 and attached to an ultrasonic wave generating sorce. A lens blank 2 manufactured for example by injection molding is mounted on an anvil 3 having a lens shaping surface 5 which is mirror-finished to the radius of curvature R2. Then the hone 1 is dropped or the anvil 3 is lifted to apply ultrasonic vibration to the lens blank by the ultrasonic-vibrating hone 1. When the finished lens surface is convex, the lens blank 2 is a little smaller in the radius of curvature than the lens surface shaping part. When the finished lens surface is concave a little larger radius of curvature is used to the lens blank. The same basic principle is also used for an aspherical or a plane lens and the center part of the lens blank 2 first comes into contact with the anvil or the hone.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ポリメチルメタクリレート(以下アクリル樹
脂と記す)等の熱可塑性プラスチックのレンズの製造方
法に係わり、特に高精度プラスチックレンズを能率よく
製造するに好適なプラスチックレンズの賦形方法に関わ
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for manufacturing lenses made of thermoplastic plastics such as polymethyl methacrylate (hereinafter referred to as acrylic resin), and in particular, a method for efficiently manufacturing high-precision plastic lenses. It relates to a method for forming plastic lenses suitable for.

〔発明の背景〕[Background of the invention]

プラスチックレンズは、軽量で割れ難く安価である等の
特徴があり多用されるようになってきた。しかし、従来
のプラスチックレンズは、射出成形法、圧縮成形法、鋳
造成形法などにより製造されており、一般に精度が劣り
、カメラのファインダレンズ或は、中級カメラの撮影レ
ンズ等の比較的要求精度が甘いレンズにその使用範囲が
限定されているのが実状であった。一方、プラスチック
レンズの成形精度を向上させる加工法の試みも穐々なさ
れている。例えば、特願昭55−146407に詳述さ
れているように射出成形において、注入充填された樹脂
に遠心力を作用させるよう金型を回転しつつ冷却すする
方法や、レンズブランクの表層部を加熱溶融し熱圧縮す
る方法が提案されている。これらの方法は、それなりに
高精度化に有効であるが、前者においては装置が複雑に
なるとともに充填樹脂の流動性を維持するために冷却速
度をある程度以上上げることができず後者では、熱容量
の大きい金型でレンズブランクを加熱する為、無駄なエ
ネルギを使う上に加熱冷却に時間がかかり、両者とも生
産性が劣り、結果としてコストが高くなる欠点があった
Plastic lenses have come to be widely used because they are lightweight, hard to break, and inexpensive. However, conventional plastic lenses are manufactured using injection molding methods, compression molding methods, casting molding methods, etc., and are generally inferior in precision. In reality, the scope of its use was limited to soft lenses. On the other hand, many attempts have been made to process methods to improve the molding precision of plastic lenses. For example, in injection molding, as detailed in Japanese Patent Application No. 55-146407, there is a method in which the mold is cooled while rotating to apply centrifugal force to the injected resin, and a method that cools the surface layer of a lens blank. A method of heat-melting and thermal compression has been proposed. These methods are effective to a certain extent in improving precision, but the former requires complicated equipment and the cooling rate cannot be increased beyond a certain level in order to maintain the fluidity of the filled resin, and the latter increases the heat capacity. Since the lens blank is heated with a large mold, it wastes energy and takes time to heat and cool, both of which have the disadvantage of lower productivity and higher costs.

別の方法として射出成形時にキャビティのレンズ賦形面
に超音波振動を印加して精度を上げる方法も提案されて
いるが、高精度成形する場合、例えばアクリル樹脂では
金型温度が90乃至100Cに保温する必要があり、そ
れだけ高い温度で長時間の使用に耐える超音波発振子が
存在しなく、超音波発振子を型内に組れることかできず
容易に実現することが困難である。
Another method has been proposed to increase precision by applying ultrasonic vibrations to the lens shaping surface of the cavity during injection molding, but when performing high precision molding, for example, with acrylic resin, the mold temperature is 90 to 100 C. There is no ultrasonic oscillator that can withstand long-term use at such high temperatures, and it is difficult to assemble the ultrasonic oscillator in a mold, making it difficult to realize it easily.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前述した従来のプラスチックレンズの
製造上の欠点をなくし、高精度の熱可塑性プラスチック
レンズを生産性良く製造するプラスチックレンズの賦形
法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a plastic lens shaping method that eliminates the above-mentioned drawbacks in manufacturing conventional plastic lenses and that allows high-precision thermoplastic lenses to be manufactured with good productivity.

〔発明の概要〕[Summary of the invention]

本発明は、熱可塑性樹脂に超音波を印加することにより
超音波工具ホーン及びアンビル(受台)接触部近傍が局
部的に短時間に融溶賦形することができることに着目し
なされたものである。
The present invention was made based on the fact that by applying ultrasonic waves to a thermoplastic resin, the vicinity of the contact area of an ultrasonic tool horn and anvil (cradle) can be locally melted and shaped in a short time. be.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を引用し説明する。 Embodiments of the present invention will be described below with reference to the drawings.

先ず、第1図を用いて全体構成を説明する。First, the overall configuration will be explained using FIG. 1.

第1図において、1はホーン、2はレンズブランク、3
はアンビル、8は位置決め具である。
In Figure 1, 1 is a horn, 2 is a lens blank, and 3
is an anvil, and 8 is a positioning tool.

レンズの曲率半径R,、R,を得ようとする時ホーン1
の先端4を曲率半径R,に公知の方法で鏡面加工し、超
音波発生源(図示せず)に取付け、レンズ賦形面(ホー
ン対向面)5を曲率半径R1に公知の方法で鏡面加工し
たアンビル3上に、公知の方法(例えば射出成形)で製
造したレンズブランク2を載せ、ホーン1を降下又はア
ンビル5を上昇させ(第1図の二点鎖線の位置にホーン
1がくる)超音波振動したホーン1により超音波振動を
印加する。この時、ホーン先端4及びアンビルのレンズ
賦形面5の中心部近傍が先にレンズブランク2と接触さ
せることが重要である。何故ならば、ホーン先端4又は
アノビルのレンズ賦形面の周辺が先にレンズブランク2
に接触すると接触部から溶融賦形され中心部近傍に空気
だまりが生じ、レンズ面として欠陥が発生するからであ
る。そのため、仕上りレンズ面が凸面の時は、仕上り曲
率半径即ちホーン又はアンビルのレンベ面賦形部の曲率
半径よりわずかに小さい曲率半径を有するレンズブラン
クを、仕上りレンズが凹面の時は、第2図のレンズブラ
ンク2′の下面7′の如くわずかに大きな曲率半径を有
するレンズブランクを用いる必要がある。非球面又は平
面のレンズであっても基本的な考え方は同じであり第2
図のレンズブランク2′の上面6′を平面に賦形する例
を示す如く中央部が先にアンビラ又はホーンに接触する
ようなレンズブランクを用いる。その時、レンズ外周部
でのギャップlは、実験の結果′50乃至200μm1
好ましくは50〜100μmがよいことが判った。ギャ
ップがこの範囲より小さいと空気だまりが発生しやすく
なり、逆に大きいと完全に賦形されなかったり、偏心し
たりする不良が発生する。
When trying to obtain the radius of curvature R,,R, of the lens, horn 1
The tip 4 of the lens is mirror-finished to a radius of curvature R by a known method, and attached to an ultrasonic generation source (not shown), and the lens-shaping surface (horn facing surface) 5 is mirror-finished to a radius of curvature R1 by a known method. A lens blank 2 manufactured by a known method (e.g. injection molding) is placed on the anvil 3, and the horn 1 is lowered or the anvil 5 is raised (the horn 1 is at the position indicated by the two-dot chain line in Fig. 1). Ultrasonic vibrations are applied by a horn 1 that vibrates sonically. At this time, it is important that the horn tip 4 and the vicinity of the center of the lens shaping surface 5 of the anvil are brought into contact with the lens blank 2 first. This is because the horn tip 4 or the periphery of the lens shaping surface of the anobile is first formed into the lens blank 2.
This is because when it comes into contact with the lens, it is melted and shaped from the contact area, creating an air pocket near the center and causing defects on the lens surface. Therefore, when the finished lens surface is convex, a lens blank with a radius of curvature that is slightly smaller than the radius of curvature of the horn or anvil's lens surface shaping part is used, and when the finished lens is concave, the lens blank is It is necessary to use a lens blank having a slightly larger radius of curvature, such as the lower surface 7' of the lens blank 2'. The basic idea is the same whether it is an aspherical or flat lens.
As shown in the example in which the upper surface 6' of the lens blank 2' is shaped into a flat surface, a lens blank is used in which the center portion contacts the umbilar or horn first. At that time, the gap l at the outer periphery of the lens was determined to be between '50 and 200 μm1 as a result of the experiment.
It has been found that the thickness is preferably 50 to 100 μm. If the gap is smaller than this range, air pockets are likely to occur, whereas if it is larger, defects such as incomplete shaping or eccentricity may occur.

直径20閣、両面の曲率半径が20m及40m、中心厚
み5m+のアクリル樹脂両凸レンズを製造する時、両面
の曲率半径が概ね195簡及38mmで中心厚みを5.
15+mのレンズブランクを射出成形で作成、ゲート部
を仕上げたものを用いた。レンズブランクは、多少のヒ
ケがあってもかまわず、通常の射出成形品で良い。ホー
ン及びアノビルは、ステンレススチール系のアッサブス
タバックス鋼(商品名)のブロックより削り出し、ホー
ン先端を曲率半径40鱈の凹面の鏡面に仕上げ、アンビ
ルは、曲率半径20mの凹面に鏡面仕上げして用いた。
When manufacturing an acrylic resin biconvex lens with a diameter of 20mm, radius of curvature on both sides of 20m and 40m, and thickness at the center of 5m+, the radius of curvature on both sides is approximately 195mm and 38mm, and the thickness at the center is 5mm.
A 15+m lens blank was made by injection molding and the gate portion was finished. The lens blank may be a normal injection molded product, even if it has some sink marks. The horn and anvil are machined from a block of stainless steel Assub Starbucks steel (trade name), and the tip of the horn is finished with a concave mirror finish with a radius of curvature of 40 meters, and the anvil is finished with a concave mirror finish with a radius of curvature of 20 m. I used it.

ホーン1の中心軸とアンビル3の中心軸を極カ一致する
ように装置を組み、アンビh5(DVレンズ形面5に、
前記レンズブランクの曲率半径195簡を下にして載せ
、レンズブランク2の外周に120°ピツチで3ケ所設
けた位置決め具8でレンズブランク2を固定した後、1
5KHzの超音波振動な(振巾60μm)ホーン2に与
えつつ50Kfの力でホーンを押圧した。超音波発振を
、5秒印加した後、静圧(50KF)を更に10秒加え
た後、ホーン1を上昇させ除圧した。賦形したプラスチ
ックレンズは、偏心測定装置で検査し、偏心が許容値以
上発生している時は、アノビル及び位置決め具の位置を
調節して補正する。
Assemble the device so that the central axis of the horn 1 and the central axis of the anvil 3 are aligned, and attach the anvil h5 (on the DV lens shaped surface 5,
Place the lens blank with the radius of curvature of 195 mm facing down, and fix the lens blank 2 with positioning tools 8 provided at three locations at 120° pitch on the outer circumference of the lens blank 2.
While applying ultrasonic vibrations of 5 KHz (width: 60 μm) to the horn 2, the horn was pressed with a force of 50 Kf. After applying ultrasonic oscillation for 5 seconds, static pressure (50 KF) was further applied for 10 seconds, and then the horn 1 was raised to remove the pressure. The shaped plastic lens is inspected using an eccentricity measuring device, and if eccentricity exceeds a permissible value, it is corrected by adjusting the position of the anobile and positioning tool.

この時、レンズブランク面がチリ、ホコリなどで汚れて
いる時、賦形したレンズ面に同心円状の白濁が発生する
ことがある。特にレンズ径が大きくなるにつれてその傾
向が強い。これを防止するには、レンズブランクを予め
洗浄、乾燥した後公知の方法により静電除去(実験では
、コロナ放電のイオン化作用によった。去月製エルミノ
スタット8H5型使用)シ、アンビル上に載せ位置決め
具で固定した後、第6図に示すようにホーン先端、レン
ズブランク、アノビル、位置決め具を覆うフィルム状物
9を通してイオン化空気流入口(前記エルミノスタッ)
 SH5に接続したBPI型放電エアノズルを使用。空
気はクリンエア使用)10を通してイオン化空気をレン
ズブランクに吹き付けつつ超音波振動を印加するのが良
い。フィルム状物としては、軟質塩化ビニルを使用した
At this time, if the lens blank surface is dirty with dirt, dust, etc., concentric clouding may occur on the shaped lens surface. This tendency is particularly strong as the lens diameter increases. To prevent this, after cleaning and drying the lens blank in advance, remove static electricity using a known method (in the experiment, the ionization effect of corona discharge was used. Last month's Erminostat model 8H5 was used), and then place it on the anvil. After placing it on the camera and fixing it with a positioning tool, as shown in FIG.
Uses a BPI type discharge air nozzle connected to SH5. It is preferable to apply ultrasonic vibrations while blowing ionized air onto the lens blank through a clean air filter 10. Soft vinyl chloride was used as the film material.

実験によれば、超音波振巾は30〜90μm、好ましく
は50〜80μmであり、押圧力は10〜60Kfであ
った。
According to experiments, the ultrasonic amplitude was 30 to 90 μm, preferably 50 to 80 μm, and the pressing force was 10 to 60 Kf.

ホーンは、一体で作るのがよく、レンズ賦形面即ち先端
部を別途作製しホーンに取付ける(ねじ締め又は溶接)
方法では、取付は部が容易に破損する。ホーンは長さが
150調程度になる為、小さい曲率半径の面の研磨が困
難になる為ホーン側は、大きい方の曲率半径とするのが
良い。
It is best to make the horn in one piece; the lens shaping surface, i.e. the tip, is made separately and attached to the horn (screwed or welded).
In this way, the mounting part is easily damaged. Since the length of the horn is approximately 150 degrees, it is difficult to polish a surface with a small radius of curvature, so it is better to use a larger radius of curvature on the horn side.

レンズ賦形は先ずホーン側中央部でなされ、次いでホー
ン側の周辺に向うと同時にアンビル側も賦形される。そ
のため、超音波振動印加開始時、曲率半径が小さいとレ
ンズブランクが横方向に移動する力が大きく作用する。
The lens is first shaped at the center of the horn side, and then at the periphery of the horn side, and at the same time, the anvil side is also shaped. Therefore, when the radius of curvature is small at the start of application of ultrasonic vibration, a large force is applied to move the lens blank in the lateral direction.

位置決め具で固定しであるとは言え、その固定力をあま
り強くすると固定部で溶融が発生する為、強い力での固
定しかなし得ない。このことからも、最初にレンズ面賦
形が始まるホーン側の曲率半径は大なる方をもってくる
のが良い。
Although it is fixed with a positioning tool, if the fixing force is too strong, melting will occur at the fixed part, so it can only be fixed with strong force. From this point of view, it is better to have a larger radius of curvature on the horn side, where the lens surface shaping begins first.

以上のようにして、所望のレンズ面が賦形できた。In the manner described above, a desired lens surface was formed.

尚、超音波振動を印加するこの賦形法により時によりパ
リ状に溶は出しが発生することがある。そのような場合
、レンズブランクを第4図のようにツバ11を付けた構
造にし、溶は出し12が光学的に悪影響を及ぼさなくす
るか、後仕上げしてもレンズの偏心が発生しなくするの
が良いe 以上説明は、アクリル樹脂を例に上げたが、ポリスチレ
ン、ポリカーボネート、アクリロニトリルスチレン共重
合体等硬質熱可塑性材料に同様に適応できることは言う
までもない。
It should be noted that this shaping method that applies ultrasonic vibrations may sometimes cause flaky bleed-out. In such a case, the lens blank should be structured with a flange 11 as shown in Figure 4 to prevent the melting part 12 from having an adverse optical effect, or to prevent the lens from becoming eccentric even after finishing. The above explanation uses acrylic resin as an example, but it goes without saying that it can be similarly applied to hard thermoplastic materials such as polystyrene, polycarbonate, and acrylonitrile styrene copolymers.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本説明により、通常の射出成形時間
にわずかな時間(レンズ1枚当り20秒程度)をかける
だけで高精度レンズ、が容易に得られるようになった。
As described above, according to the present explanation, high-precision lenses can be easily obtained by adding a small amount of time (about 20 seconds per lens) to the normal injection molding time.

そのため、プラスチックレンズの原価の8〜9割を占め
ていた加工時間が1〜上に短縮され、コストも4割〜9
割低減できた。
As a result, the processing time, which used to account for 80-90% of the cost of plastic lenses, has been reduced to 1-9%, and the cost has also been reduced by 40%-90%.
I was able to reduce it by a certain amount.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の基本構成を示す断面図、第2図は、
別の形のレンズを賦形状況を示す断面図、第3図は、静
電除去空気吹付は含んだ実施例を説明する断面図、第4
図は、溶は出しがあっても欠陥にならぬように対策した
ツバ付レンズの断面図である。 1・・・ホーン、     2・・・レンズプラ/り、
5・・・アンビル、    8・・・位置決め具、10
・・・静電除去空気口、11・・・ツノく。 第1菌 第31!3 第4
FIG. 1 is a sectional view showing the basic configuration of the present invention, and FIG. 2 is a sectional view showing the basic configuration of the present invention.
FIG. 3 is a cross-sectional view showing a situation in which a lens of another shape is formed; FIG.
The figure is a cross-sectional view of a lens with a flange that is designed to prevent defects even if melting occurs. 1...Horn, 2...Lens plastic/ri,
5... Anvil, 8... Positioning tool, 10
...Static elimination air port, 11...horn. 1st bacteria 31st! 3rd 4th

Claims (1)

【特許請求の範囲】[Claims] 1、仕上り曲率半径がR_1およびR_2、中心厚みが
Tなる熱可塑性プラスチックレンズの製造において、仕
上りレンズが凸面なる時は、上記仕上り曲率半径よりわ
ずかに小さい曲率半径R_1−ΔR_1R_2−ΔR_
2で、また仕上りレンズが凹面なる時は、上記仕上り曲
率半径よりわずかに大きい曲率半径R_1+ΔR_1、
R_2+ΔR_2で、かつ仕上り中心厚みよりわずかに
大きい中心厚みT+ΔTを有してなるレンズブランクを
一方の仕上り曲率半径に鏡面加工したアンビル上に置き
、横方向の移動を阻止する位置決め具で横ずれを防止し
つつ、他方の曲率半径で鏡面加工した先端を有するホー
ンを介して超音波振動を前記レンズブランクに印加しつ
つ押圧し、レンズブランク中央部より順次周辺部まで賦
形することを特徴とするプラスチックレンズの賦形方法
1. In manufacturing thermoplastic lenses with finished radii of curvature R_1 and R_2 and center thickness T, when the finished lens has a convex surface, the radius of curvature R_1-ΔR_1R_2-ΔR_ is slightly smaller than the finished radius of curvature mentioned above.
2, and when the finished lens is concave, the radius of curvature R_1 + ΔR_1 is slightly larger than the finished radius of curvature.
A lens blank having R_2 + ΔR_2 and a center thickness T + ΔT slightly larger than the finished center thickness is placed on an anvil that has been mirror-finished to one finished radius of curvature, and a positioning tool that prevents lateral movement is used to prevent lateral displacement. At the same time, ultrasonic vibrations are applied to the lens blank through a horn having a mirror-finished tip with the other radius of curvature, and the lens blank is pressed, thereby shaping the lens blank sequentially from the center to the periphery. Shaping method.
JP15291384A 1984-07-25 1984-07-25 Plastic lens shaping method Pending JPS6131216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15291384A JPS6131216A (en) 1984-07-25 1984-07-25 Plastic lens shaping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15291384A JPS6131216A (en) 1984-07-25 1984-07-25 Plastic lens shaping method

Publications (1)

Publication Number Publication Date
JPS6131216A true JPS6131216A (en) 1986-02-13

Family

ID=15550879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15291384A Pending JPS6131216A (en) 1984-07-25 1984-07-25 Plastic lens shaping method

Country Status (1)

Country Link
JP (1) JPS6131216A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258220A (en) * 1988-12-21 1990-10-19 Nachi Fujikoshi Corp Method for molding friction material and the like
JPH04366612A (en) * 1991-06-13 1992-12-18 Ricoh Co Ltd Manufacture of plastic molded product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258220A (en) * 1988-12-21 1990-10-19 Nachi Fujikoshi Corp Method for molding friction material and the like
JPH04366612A (en) * 1991-06-13 1992-12-18 Ricoh Co Ltd Manufacture of plastic molded product

Similar Documents

Publication Publication Date Title
CA2145683C (en) Method of making plastic molds and process for cast molding contact lenses
KR101310619B1 (en) Molds for use in contact lens production
KR910018158A (en) Contact Lens Manufacturing Method
SG106030A1 (en) Apparatus and method for producing center gated lens molds for contact lens manufacture
JP2003508268A (en) Molds for use in the production of contact lenses
FI950982A0 (en) Method and apparatus for manufacturing optical lenses
US7383697B2 (en) Optical element molding method
TWI501856B (en) Vibratile injection molding method with in-situ hot embossing manner and molding apparatus thereof
JPS6131216A (en) Plastic lens shaping method
JPS6339410B2 (en)
JP3780758B2 (en) Manufacturing method of plastic lens
JPS6049906A (en) Manufacture of contact optical molded product
JPH06130209A (en) Production of resin joined aspherical lens
JP3350581B2 (en) In-mold vibration processing method and apparatus
JP2001150487A (en) Method for producing plastic-molded lens
JPS6211619A (en) Process of injection molding
JPH09300371A (en) Mold for optical element
JPH0552481B2 (en)
JPS6176354A (en) Method and appratus for producing plastic lens
JPH04366612A (en) Manufacture of plastic molded product
JP3203915B2 (en) Method for manufacturing optical element, molding die and method for cleaning molded article
JPS62144101A (en) Plastic optical parts
JP2002074756A5 (en)
JPH02157130A (en) Lens forming mold and lens formed by this mold
JP2006027092A (en) Mold for molding rubber molded product without burr and requiring no finishing