JPH04365829A - Tial-based intermetallic compound and production thereof - Google Patents

Tial-based intermetallic compound and production thereof

Info

Publication number
JPH04365829A
JPH04365829A JP14027791A JP14027791A JPH04365829A JP H04365829 A JPH04365829 A JP H04365829A JP 14027791 A JP14027791 A JP 14027791A JP 14027791 A JP14027791 A JP 14027791A JP H04365829 A JPH04365829 A JP H04365829A
Authority
JP
Japan
Prior art keywords
phase
tial
intermetallic compound
based intermetallic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14027791A
Other languages
Japanese (ja)
Other versions
JP3056541B2 (en
Inventor
Keizo Hashimoto
橋本 敬三
Masao Kimura
正雄 木村
Hirobumi Morikawa
博文 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3140277A priority Critical patent/JP3056541B2/en
Publication of JPH04365829A publication Critical patent/JPH04365829A/en
Application granted granted Critical
Publication of JP3056541B2 publication Critical patent/JP3056541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide the alloy having excellent strength and ductility at a high temp. by controlling the phase, structure and crystal grain size of the TiAl-based intermetallic compd. CONSTITUTION:This TiAl-based intermetallic compd. consists basically of 45% to 50% Al by atomic % and the balance Ti and is formed by producing a beta phase in equiaxial grains consisting of at least 1 kind of the elements selected from additive element groups of Nb, Mo, V or Mn, at >=1% and <=5% by atomic % and consisting of a gamma phase and alpha2 phase. This process for production of the TiAl-based intermetallic compd. consists in dissolving the intermetallic compd. having the above-mentioned components, then heat treating the soln. for >=48 hours at >=1000 deg.C and <=1250 deg.C and subjecting the soln. to hot working at <=1100 deg.C and <=1350 deg.C and to >=40% deforming at <=1X10<-2>/s straining rate to precipitate the beta phase at the grain boundaries of the equiaxial grains consisting of the gamma phase and the alpha2, phase, thereby improving the ductility and strength at the high temp.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、耐熱材料として有望な
TiAl金属間化合物とその製造方法に関するものであ
る。TiAl金属間化合物は、比強度が高く、高温耐熱
材料としてエンジン部品、各種回転体あるいは航空機に
対し応用が考えられている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a TiAl intermetallic compound that is promising as a heat-resistant material and a method for producing the same. TiAl intermetallic compounds have high specific strength and are considered to be applied as high-temperature heat-resistant materials to engine parts, various rotating bodies, and aircraft.

【0002】0002

【従来の技術】TiAl金属間化合物は、温度が上昇す
るに従って強度が上昇するという正の温度依存性を示し
、さらに比重が3.9と軽く軽量耐熱材料として航空機
への応用をめざし研究開発がされている。しかしながら
TiAl金属間化合物は一般の金属合金に比べて変形能
に乏しい特徴があり、室温での延性改善について多くの
研究がなされてきた。常温での延性改善のため、第3元
素を添加し合金設計を行った例として、Ti−34.1
重量%Al−34重量%V合金(米国特許第42946
15号)、Ti−41.7重量%Al−10重量%Ag
合金(特開昭58−123847号)がある。さらに、
TiAl金属間化合物にMnを添加して、常温における
延性を2〜3%に改善した例(特開昭61−41740
号)、Cr添加(米国特許第4842819号)、Ta
添加(米国特許第4842817号)、Si添加(米国
特許第4836983号)がある。4元系では、室温で
の延性と耐酸化性を向上させた例としてTi52−42
 Al46−50 Cr1−3 Nb1−5 (特開平
2−25534号)がある。
[Prior Art] TiAl intermetallic compounds show a positive temperature dependence in that their strength increases as the temperature rises, and they also have a specific gravity of 3.9, making them a lightweight heat-resistant material that has been researched and developed with the aim of applying them to aircraft. has been done. However, TiAl intermetallic compounds are characterized by poor deformability compared to general metal alloys, and many studies have been conducted on improving ductility at room temperature. Ti-34.1 is an example of alloy design by adding a third element to improve ductility at room temperature.
wt%Al-34wt%V alloy (U.S. Pat. No. 42946
No. 15), Ti-41.7% by weight Al-10% by weight Ag
There is an alloy (Japanese Unexamined Patent Publication No. 58-123847). moreover,
An example of improving the ductility at room temperature to 2 to 3% by adding Mn to a TiAl intermetallic compound (Japanese Patent Application Laid-Open No. 61-41740
), Cr addition (US Pat. No. 4,842,819), Ta
addition (US Pat. No. 4,842,817) and Si addition (US Pat. No. 4,836,983). In the quaternary system, Ti52-42 is an example of improved ductility and oxidation resistance at room temperature.
There is Al46-50 Cr1-3 Nb1-5 (Japanese Unexamined Patent Publication No. 2-25534).

【0003】TiAl金属間化合物は常温での延性が3
%以下であり、常温での加工が困難なため、精密鋳造技
術あるいは粉末技術によって形状を付与する方法が取ら
れている。さらに、形状付与技術として、高温で超塑性
加工することが考えられている。TiAl金属間化合物
は、成形した後、高温構造部材として、高温強度の必要
な部位に適用される。このような要求から、高温で加工
性に優れており、且つ強度も高い金属間化合物の材料設
計が要求されている。γ+α2組織とし、合金成分系と
して、Nb,Cr,Mo,Vを添加し、さらにB,Si
を粒界強化元素として小量添加し、高温強度および常温
延性を改善した例が公開されている(特開平1−298
127号)。しかし、800℃での伸びが最大4%と高
温での加工性が改善されていない。
[0003] The TiAl intermetallic compound has a ductility of 3 at room temperature.
% or less and difficult to process at room temperature, methods are used to give the shape using precision casting technology or powder technology. Furthermore, superplastic working at high temperatures is being considered as a shape imparting technology. After forming, the TiAl intermetallic compound is applied as a high-temperature structural member to areas where high-temperature strength is required. In response to these demands, there is a need to design materials for intermetallic compounds that have excellent workability at high temperatures and high strength. It has a γ+α2 structure, and Nb, Cr, Mo, and V are added as the alloy component system, and further B and Si are added.
An example has been published in which high-temperature strength and room-temperature ductility were improved by adding a small amount of grain boundary strengthening element (JP-A-1-298)
No. 127). However, the elongation at 800°C is a maximum of 4%, and the workability at high temperatures has not been improved.

【0004】添加元素による合金設計の他に熱間加工を
施し組織を微細化して、高温延性を改善した例が報告さ
れている(例えば、日本金属学会秋期大会シンポジウム
講演概要(1989)P.245)。さらに、本発明者
らは、第3元素としてCrを添加し、粒界にβ相を析出
させ、高温での延性を著しく改善した例を報告している
(日本金属学会秋期大会講演概要(1990)P.26
8)。高温での加工性と強度を向上させるためには、第
3元素を添加した効果だけでなく、溶解・熱処理・加工
熱処理といった種々のプロセスを組み合わせた、組織制
御が必要である。
In addition to alloy design using additive elements, examples have been reported in which high-temperature ductility is improved by refining the structure through hot working (for example, Japan Institute of Metals Autumn Symposium Lecture Summary (1989), p. 245 ). Furthermore, the present inventors have reported an example in which ductility at high temperatures was significantly improved by adding Cr as a third element to precipitate β phase at grain boundaries (Japan Institute of Metals Autumn Conference Presentation Summary (1990) ) P.26
8). In order to improve workability and strength at high temperatures, it is necessary to control the structure by combining various processes such as melting, heat treatment, and processing heat treatment in addition to the effect of adding a third element.

【0005】[0005]

【発明が解決しようとする課題】TiAl基金属間化合
物は状態図もはっきりしておらず、第3あるいは、第4
元素を添加し溶解・鋳造しただけではその特性を十分に
発揮させることができない。Cr添加合金では加工熱処
理を施すことにより、β相が粒界に析出し延性が向上で
きることを見い出したが、高温強度が不十分である。本
発明は、添加元素による効果を系統的に調べ、状態図を
基にした合金設計と加工熱処理を施すことによって、出
現する相、組織、結晶粒径を制御し、高温における強度
と延性が向上したTiAl基金属間化合物を提供するこ
とを目的としている。
[Problems to be Solved by the Invention] The phase diagram of TiAl-based intermetallic compounds is not clear, and the phase diagram of TiAl-based intermetallic compounds is not clear.
Simply adding elements, melting, and casting cannot fully demonstrate its properties. It has been found that by subjecting Cr-added alloys to processing heat treatment, β phase precipitates at grain boundaries and improves ductility, but high-temperature strength is insufficient. The present invention systematically investigates the effects of added elements, performs alloy design based on phase diagrams, and performs processing heat treatment to control the phases, structures, and grain sizes that appear, and improve strength and ductility at high temperatures. It is an object of the present invention to provide a TiAl-based intermetallic compound.

【0006】[0006]

【課題を解決するための手段】原子%でAl45%から
50%残部がTiを基本とするTiAl基金属間化合物
において、原子%で1%から5%のV,Mn,Nbまた
はMoの群より選ばれた元素を添加元素として少なくと
も一種以上含み、γ相を主要相として、γ相とα2 相
の等軸粒の間にβ相を析出させ、高温での強度と延性を
向上させることを目的で合金設計を行ったTiAl基金
属間化合物。
[Means for Solving the Problem] In a TiAl-based intermetallic compound in which Al is 45% to 50% by atomic% and the balance is Ti, V, Mn, Nb, or Mo is contained in an amount of 1% to 5% by atomic%. The purpose is to contain at least one selected element as an additive element, to precipitate the β phase between the equiaxed grains of the γ phase and the α2 phase, with the γ phase as the main phase, and to improve strength and ductility at high temperatures. TiAl-based intermetallic compound for which alloy design was conducted.

【0007】この化合物は、添加元素として、V,Mn
,Nb,Moを含み、β相を結晶粒界に析出させるべく
溶解後熱処理、さらに熱間加工を施す。具体的には、β
安定化元素(V,Mn,Nb,Mo)を原子%で1%以
上5%以下含み、原子%でAlを45%から50%、残
部がTiの組成をもった合金を、溶解後、熱処理を10
00℃以上1250℃以下で48時間以上行い、徐冷し
た後、熱間加工を1100℃以上1350℃以下、歪速
度1×10−2s−1以下で40%以上の変形を行うこ
とによって達成される。
[0007] This compound contains V, Mn as additive elements.
, Nb, and Mo, and is subjected to post-melting heat treatment and further hot working in order to precipitate the β phase at the grain boundaries. Specifically, β
After melting, an alloy containing stabilizing elements (V, Mn, Nb, Mo) from 1% to 5% by atomic % and having a composition of 45% to 50% Al by atomic % and the balance Ti is heat-treated. 10
This is achieved by carrying out deformation of 40% or more at a temperature of 1100°C or more and 1350°C or less and a strain rate of 1×10-2 s-1 or less after cooling slowly for 48 hours or more at 00°C or higher and 1250°C or lower. Ru.

【0008】[0008]

【作用】TiAl基金属間化合物にβ相を析出させる添
加元素として、V,Mn,NbまたはMoを添加した。 TiAl二元系合金の場合、50原子%以上のAl残部
Tiの合金はγ単相合金となる。Al量が原子%で50
%以下30%以上の場合γ+α2 相の二相となるが、
Al量が45%以上の場合α2 相の体積率が30%以
上となり、室温での強度と延性が低下する。従ってAl
量は原子%で45%以上50%以下が望ましい。原子%
でAl量45%以上50%以下、残部Tiからなる金属
間化合物の溶解後の組織は、γとα2が交互に存在する
層状組織(ラメラー組織)となる。Ti−Al二元系合
金では、1500℃以上でβ相が平衡相として存在する
が、急冷してもβ相を室温に凍結させることはできない
。β相を出させるためにはTiに対してβ相安定化元素
を添加し、三元系状態図においてβ相領域を変化させる
必要がある。
[Operation] V, Mn, Nb, or Mo was added as an additive element to precipitate the β phase in the TiAl-based intermetallic compound. In the case of a TiAl binary alloy, an alloy with Al balance Ti of 50 atomic % or more becomes a γ single-phase alloy. Al content is 50 atomic%
% or less, if it is 30% or more, there will be two phases of γ + α2 phase,
If the Al content is 45% or more, the volume fraction of the α2 phase will be 30% or more, and the strength and ductility at room temperature will decrease. Therefore, Al
The amount is preferably 45% or more and 50% or less in atomic %. atom%
The structure after dissolution of the intermetallic compound consisting of an Al content of 45% to 50% and the remainder Ti becomes a layered structure (lamellar structure) in which γ and α2 exist alternately. In the Ti-Al binary alloy, the β phase exists as an equilibrium phase at temperatures above 1500° C., but the β phase cannot be frozen to room temperature even by rapid cooling. In order to generate the β phase, it is necessary to add a β phase stabilizing element to Ti and change the β phase region in the ternary phase diagram.

【0009】原子%で、V,Mn,Nb,Moを原子%
で1%以上5%以下添加し、Al量を原子%で45%以
上50%以下、残部Tiの組成を有する金属間化合物は
、溶解したインゴットのままでは、γ+α2 層状組織
(ラメラー組織)とγ粒を含む組織となる。X線回折か
らもβ相のピークは現れない。インゴットを1000℃
以上1250℃以下で熱処理を施すと層状組織から、大
部分がγ粒とα2 粒の等軸粒からなる混晶組織を示す
。 焼鈍処理を行っても存在する相はγ相とα2 相で変化
しない。焼鈍温度について、1000℃以下では焼鈍の
効果が認められず、1250℃以上で焼鈍すると結晶粒
径が粗大化したり、針状組織が出現する。48時間以下
の場合、層状組織が残り均質な焼鈍材が得られなかった
。 γ粒とα2 粒の等軸粒からなる混晶組織をもった、第
3元素添加金属間化合物を熱間加工することによって、
γ粒が微細化するとともにβ相が析出する。図1に焼鈍
材と熱間加工材のX線回折パターンを示す。比較例とし
て、化学量論組成のTiAl金属間化合物のパターンを
示す。表1に各添加元素がTiAl金属間化合物に及ぼ
す相安定性の効果を示す。
[0009] V, Mn, Nb, Mo in atomic %
An intermetallic compound containing 1% or more and 5% or less of Al, with an Al content of 45% or more and 50% or less, and the remainder Ti, has a γ+α2 layered structure (lamellar structure) and a γ It becomes a structure containing grains. No β-phase peak appears in X-ray diffraction. Ingot at 1000℃
When the heat treatment is performed at a temperature below 1250° C., the layered structure changes to a mixed crystal structure consisting mostly of equiaxed grains of γ grains and α2 grains. Even after annealing, the existing phases remain the γ phase and α2 phase. Regarding the annealing temperature, if the annealing temperature is 1000°C or lower, no effect of annealing is observed, and if the annealing is performed at 1250°C or higher, the crystal grain size becomes coarse or an acicular structure appears. When the annealing time was 48 hours or less, a layered structure remained and a homogeneous annealed material could not be obtained. By hot working a third element-added intermetallic compound that has a mixed crystal structure consisting of equiaxed grains of γ grains and α2 grains,
As the γ grains become finer, the β phase precipitates. Figure 1 shows the X-ray diffraction patterns of the annealed material and hot-processed material. As a comparative example, a pattern of a TiAl intermetallic compound having a stoichiometric composition is shown. Table 1 shows the effect of each additive element on phase stability on the TiAl intermetallic compound.

【0010】Moを添加したTiAl金属間化合物は、
インゴット材において層状組織(ラメラー組織)が現れ
、ラメラー粒の間にβ相が形成され、β相形成能が高い
。熱間加工したMo添加金属間化合物は、微細なβ結晶
粒とγ等軸粒の混晶組織となった。微細な等軸粒組織に
おいては、粒径が微細化された効果があり、高温での延
性が向上した。Oは主としてα相に固溶してα相を強化
する作用を持つ、そのためOは重量%で0.05%以下
に抑えることが必要である。
[0010] The TiAl intermetallic compound added with Mo is
A layered structure (lamellar structure) appears in the ingot material, a β phase is formed between the lamellar grains, and the β phase forming ability is high. The hot-worked Mo-added intermetallic compound had a mixed crystal structure of fine β crystal grains and γ equiaxed grains. The fine equiaxed grain structure had the effect of making the grain size finer, resulting in improved ductility at high temperatures. O mainly acts as a solid solution in the α phase to strengthen the α phase, so it is necessary to suppress O to 0.05% by weight or less.

【0011】TiAl二元系状態図からは高温で安定な
β相は1250℃以下でα相となり室温で存在しないが
β安定化作用を持つ添加元素を加えることによりβ領域
が広がりβ相を室温まで存在させることができる。Ti
Al基金属間化合物を2相以上の多相組織にする効果と
しては、γ結晶粒成長を抑え結晶粒を微細化する効果が
ある。さらに、γ相α2 相β相の順に高温強度が低く
、高温での変形が容易である。強度の異なった相を複相
化する効果として、変形容易な相が変形を担い、強度の
高い相が、強度を高める効果をもっている。高温変形の
容易なβ相は、γ結晶粒界に析出すると、高温での加工
性を著しく高める効果がある。
From the TiAl binary system phase diagram, the β phase, which is stable at high temperatures, becomes the α phase below 1250°C, which does not exist at room temperature, but by adding an additive element that has a β stabilizing effect, the β region expands, and the β phase changes to the α phase at room temperature. can exist up to. Ti
The effect of forming the Al-based intermetallic compound into a multiphase structure having two or more phases is to suppress the growth of γ crystal grains and to make the crystal grains finer. Furthermore, the high temperature strength is low in the order of γ phase α2 phase β phase, and deformation is easy at high temperatures. The effect of converting phases with different strengths into multiple phases is that the easily deformable phase is responsible for deformation, and the high strength phase has the effect of increasing the strength. When the β phase, which is easily deformed at high temperatures, precipitates at the γ grain boundaries, it has the effect of significantly improving workability at high temperatures.

【0012】組織を変化させる方法として、加工再結晶
によって組織を微細化することは、通常の金属または合
金で行われている方法であるが、TiAl基金属間化合
物の場合、均質化熱処理ままの材料は室温から800℃
まで延性能はほとんどなく脆性的に破断した。このよう
に難加工性の材料の場合、低い温度で加工し加工歪エネ
ルギーを蓄え、熱処理によって再結晶させるという従来
の加工再結晶の利用が困難である。結晶粒を微細化する
とともに、β相を析出させる為には三元系状態図で、β
相が存在する温度以上で加工し、変形と再結晶が重複し
て起こる動的再結晶現象を利用することが考えられる。 動的再結晶現象は、変形温度、変形時の歪速度、変形量
が重要なパラメーターとなる。すなわち動的再結晶現象
を利用して、結晶粒の微細化とβ相を析出させるために
は、温度と歪速度の制御が特に重要であり、その条件を
満たす加工プロセスを選択しなければならない。
[0012] As a method for changing the structure, refining the structure by processing recrystallization is a method that is used for ordinary metals or alloys, but in the case of TiAl-based intermetallic compounds, it is possible to refine the structure by processing recrystallization. Materials range from room temperature to 800℃
It had almost no ductility and fractured brittlely. In the case of such difficult-to-process materials, it is difficult to use the conventional process-recrystallization method of processing at low temperatures, storing process strain energy, and recrystallizing by heat treatment. In order to refine the crystal grains and precipitate the β phase, in the ternary phase diagram, β
It is conceivable to process the material at a temperature higher than that at which the phase exists, and to utilize the dynamic recrystallization phenomenon in which deformation and recrystallization occur at the same time. In the dynamic recrystallization phenomenon, the important parameters are deformation temperature, strain rate during deformation, and amount of deformation. In other words, in order to refine the grains and precipitate the β phase by utilizing the dynamic recrystallization phenomenon, control of temperature and strain rate is particularly important, and a processing process that satisfies these conditions must be selected. .

【0013】TiAl基金属間化合物のα−β変態より
も高温域で、しかも低歪速度で変形し、動的再結晶によ
って結晶制御するプロセスとしては、恒温鍛造法が最も
有用である。恒温鍛造は、金型と試料の温度を同一に保
つところに特徴があり、難加工材の成形方法として用い
られている。変形温度を上昇させ、より低歪速度で変形
すると、TiAl基金属間化合物の変形は容易に起こる
が、目的とするβ相を析出させた微細結晶組織にするに
は、問題があった。すなわち、同一歪速度でありながら
、変形温度が1250℃の場合と1100℃の場合の結
晶粒径を比較すると1250℃の場合再結晶粒が成長す
る傾向にある。しかし、反対に1000℃以下で恒温鍛
造を行うと、変形帯とともに微細な結晶粒が現れるが、
未再結晶部分が存在し、不均質な結晶組織をもったもの
となった。
[0013] Isothermal forging is the most useful process for deforming TiAl-based intermetallic compounds in a higher temperature range and at a lower strain rate than the α-β transformation, and controlling crystals by dynamic recrystallization. Isothermal forging is characterized by keeping the temperature of the mold and sample the same, and is used as a method for forming difficult-to-process materials. When the deformation temperature is increased and deformation is performed at a lower strain rate, the TiAl-based intermetallic compound is easily deformed, but there is a problem in obtaining the desired microcrystalline structure in which the β phase is precipitated. That is, when comparing the crystal grain sizes when the deformation temperature is 1250°C and 1100°C at the same strain rate, recrystallized grains tend to grow at 1250°C. However, when isothermal forging is performed at temperatures below 1000℃, fine crystal grains appear along with deformation bands.
There were unrecrystallized portions, resulting in a heterogeneous crystal structure.

【0014】すなわち、恒温鍛造における温度と歪の適
切な条件としては、1100℃以上で、歪速度1×10
−2/s以下が望ましい。さらに、変形量としては、4
0%未満の場合は、未変形部分が存在し、結晶粒径の大
小の差が大きい。試料全体で均質な微細粒を得るために
は、変形量として、40%以上、好ましくは、一回で6
0%以上の大変形が必要である。この変形条件を満たす
変形として、恒温鍛造の他に熱間押出、熱間圧延等が可
能である。
In other words, appropriate conditions for temperature and strain in isothermal forging include a temperature of 1100°C or higher and a strain rate of 1×10
-2/s or less is desirable. Furthermore, the amount of deformation is 4
If it is less than 0%, an undeformed portion exists and the difference in grain size is large. In order to obtain homogeneous fine grains throughout the sample, the amount of deformation must be 40% or more, preferably 6 at a time.
A large deformation of 0% or more is required. In addition to isothermal forging, hot extrusion, hot rolling, etc. are possible as deformations that satisfy this deformation condition.

【0015】上記鍛造方法によってV,Mn,Nb,M
oを添加したTiAl基金属間化合物を40%以上恒温
鍛造した結果、再結晶組織が微細等軸粒になり、さらに
、第2相としてβ相が析出した。β相がγ相結晶粒界に
析出した場合、β相は高温での加工性を高める効果があ
る。
[0015] By the above forging method, V, Mn, Nb, M
As a result of constant temperature forging of 40% or more of the TiAl-based intermetallic compound to which o was added, the recrystallized structure became fine equiaxed grains, and a β phase precipitated as a second phase. When the β phase precipitates at the grain boundaries of the γ phase, the β phase has the effect of improving workability at high temperatures.

【0016】[0016]

【実施例】【Example】

(実施例1) Ti−48at%Al−2at%Nb 高純度チタン(99.9%)とアルミニウム(99.9
9%)を溶解原料とし、プラズマアーク溶解によって原
子%で48at%Al−2at%Nb、残部TiのNb
添加TiAl金属間化合物を溶製した。1050℃、9
6時間、真空中で均質化熱処理した結果、結晶粒径10
0μm程度の等軸粒となった。均質化熱処理を施した材
料から、直径35mm、高さ42mmの試料を放電加工
によって加工した。恒温鍛造は、真空雰囲気中で初期歪
速度5×10−4s−1、加熱温度1300℃で70%
圧下した。図2にNb添加TiAl基金属間化合物を鍛
造した後の結晶組織写真を示す。平均結晶粒径34μm
の等軸な微細粒が広い範囲にわたって得られた。恒温鍛
造した試料からX線回折によって相を同定した結果、結
晶粒界に析出した相はβ相の回折ピークを示した。鍛造
材からマルチワイヤーソーでゲージ部厚さ2mm、幅2
.5mm、長さ11.5mmの引張試験片を作成し、真
空雰囲気中で高温引張試験を行った。試料を1200℃
、歪速度1×10−3/sの条件で引張試験をした結果
353%の伸びを示した。
(Example 1) Ti-48at%Al-2at%Nb High purity titanium (99.9%) and aluminum (99.9%)
9%) was used as the melting raw material, and by plasma arc melting, 48at%Al-2at%Nb, the balance was Nb with Ti.
The added TiAl intermetallic compound was melted. 1050℃, 9
As a result of homogenization heat treatment in vacuum for 6 hours, the crystal grain size was 10.
Equiaxed grains of about 0 μm were formed. A sample with a diameter of 35 mm and a height of 42 mm was machined from a material subjected to homogenization heat treatment by electrical discharge machining. Isothermal forging is performed in a vacuum atmosphere with an initial strain rate of 5 x 10-4 s-1 and a heating temperature of 70% at 1300°C.
Pressed down. FIG. 2 shows a photograph of the crystal structure of the Nb-added TiAl-based intermetallic compound after forging. Average grain size 34μm
Equiaxed fine grains were obtained over a wide range. As a result of identifying the phase by X-ray diffraction from the isothermal forged sample, the phase precipitated at the grain boundaries showed a β phase diffraction peak. Gauge part thickness 2mm, width 2 from forged material with multi-wire saw
.. A tensile test piece with a diameter of 5 mm and a length of 11.5 mm was prepared, and a high temperature tensile test was conducted in a vacuum atmosphere. sample at 1200℃
A tensile test was conducted under the condition of a strain rate of 1 x 10-3/s, and the result showed an elongation of 353%.

【0017】(実施例2)Ti−48at%Al−2a
t%Moの組成をもった金属間化合物を同様な方法で、
溶解・均質化熱処理・熱間加工し、相および組織と高温
引張試験を行った。成分分析結果を表1に、試験結果を
表3に示す。
(Example 2) Ti-48at%Al-2a
An intermetallic compound having a composition of t%Mo was prepared in a similar manner.
It was melted, homogenized, heat-treated, and worked, and subjected to phase and structure tests and high-temperature tensile tests. The component analysis results are shown in Table 1, and the test results are shown in Table 3.

【0018】(実施例3)Ti−48at%Al−2a
t%Vの組成をもった金属間化合物を同様な方法で、溶
解・均質化熱処理・熱間加工し、相および組織と高温引
張試験を行った。成分分析結果を表1に、試験結果を表
3に示す。
(Example 3) Ti-48at%Al-2a
An intermetallic compound having a composition of t%V was melted, homogenized, and hot worked in the same manner, and subjected to phase and structure and high-temperature tensile tests. The component analysis results are shown in Table 1, and the test results are shown in Table 3.

【0019】(実施例4)Ti−48at%Al−2a
t%Mnの組成をもった金属間化合物を同様な方法で、
溶解・均質化熱処理・熱間加工し、相および組織と高温
引張試験を行った。成分分析結果を表1に、試験結果を
表3に示す。
(Example 4) Ti-48at%Al-2a
An intermetallic compound having a composition of t%Mn was prepared in a similar manner.
It was melted, homogenized, heat-treated, and worked, and subjected to phase and structure tests and high-temperature tensile tests. The component analysis results are shown in Table 1, and the test results are shown in Table 3.

【0020】(実施例5)Ti−49at%Al−1a
t%Mo 高純度チタン(99.9%)とアルミニウム(99.9
9%)を溶解原料とし、第3元素として、Moを原子%
で1%添加したTiAl金属間化合物を非消耗式アーク
溶解によって溶製した。1050℃、96時間、真空中
で均質化熱処理した結果、結晶粒径100μm程度の等
軸粒となった。均質化熱処理を施した材料から試料を加
工し恒温鍛造を行った。恒温鍛造後の組織は、γ相の等
軸粒が広い範囲にわたって得られた。X線回折より、体
積率で0.5%程度のβ相の析出がみられた。鍛造材か
らマルチワイヤーソーでゲージ部厚さ2mm、幅2.5
mm、長さ11.5mmの引張試験片を作成し、真空雰
囲気中で歪速度1×10−3/s高温引張試験を行った
。試験結果を表3に示す。
(Example 5) Ti-49at%Al-1a
t%Mo High purity titanium (99.9%) and aluminum (99.9%)
9%) as the melting raw material, and as the third element, Mo as the atomic%
A 1% TiAl intermetallic compound was melted by non-consumable arc melting. As a result of homogenization heat treatment in vacuum at 1050° C. for 96 hours, equiaxed grains with a crystal grain size of about 100 μm were obtained. A sample was processed from a material that had been subjected to homogenization heat treatment and subjected to isothermal forging. The structure after isothermal forging had equiaxed γ-phase grains over a wide range. X-ray diffraction revealed that β phase was precipitated at a volume fraction of about 0.5%. Gauge part thickness 2mm, width 2.5 with multi-wire saw from forged material
A tensile test piece with a length of 11.5 mm and a length of 11.5 mm was prepared, and a high temperature tensile test was conducted at a strain rate of 1×10 −3 /s in a vacuum atmosphere. The test results are shown in Table 3.

【0021】(実施例6)Ti−46at%Al−4a
t%Moの組成をもった金属間化合物を同様な方法で、
溶解・均質化熱処理・熱間加工し、相および組織と高温
引張試験を行った。試験結果を表3に示す。
(Example 6) Ti-46at%Al-4a
An intermetallic compound having a composition of t%Mo was prepared in a similar manner.
It was melted, homogenized, heat-treated, and worked, and subjected to phase and structure tests and high-temperature tensile tests. The test results are shown in Table 3.

【0022】(実施例7)Ti−45at%Al−5a
t%Moの組成をもった金属間化合物を同様な方法で、
溶解・均質化熱処理・熱間加工し、相および組織と高温
引張試験を行った。試験結果を表3に示す。
(Example 7) Ti-45at%Al-5a
An intermetallic compound having a composition of t%Mo was prepared in a similar manner.
It was melted, homogenized, heat-treated, and worked, and subjected to phase and structure tests and high-temperature tensile tests. The test results are shown in Table 3.

【0023】(実施例8)Ti−49at%Al−2a
t%Moの組成をもった金属間化合物を同様な方法で、
溶解・均質化熱処理・熱間加工し、相および組織と高温
引張試験を行った。試験結果を表3に示す。
(Example 8) Ti-49at%Al-2a
An intermetallic compound having a composition of t%Mo was prepared in a similar manner.
It was melted, homogenized, heat-treated, and worked, and subjected to phase and structure tests and high-temperature tensile tests. The test results are shown in Table 3.

【0024】(実施例9)Ti−47at%Al−2a
t%Nb−1at%Moの組成をもった金属間化合物を
同様な方法で、溶解・均質化熱処理・熱間加工し、相お
よび組織と高温引張試験を行った。試験結果を表3に示
す。
(Example 9) Ti-47at%Al-2a
An intermetallic compound having a composition of t%Nb-1at%Mo was melted, homogenized, and hot worked in the same manner, and subjected to phase and structure and high-temperature tensile tests. The test results are shown in Table 3.

【0025】(比較例1)Ti−50at%Alの組成
をもった金属間化合物を同様な方法で、溶解・均質化熱
処理・熱間加工し、相および組織と高温引張試験を行っ
た。試験結果を表3に示す。
(Comparative Example 1) An intermetallic compound having a composition of Ti-50at%Al was melted, homogenized, and hot worked in the same manner, and subjected to a high-temperature tensile test on phase and structure. The test results are shown in Table 3.

【0026】(比較例2)Ti−48at%Alの組成
をもった金属間化合物を同様な方法で、溶解・均質化熱
処理・熱間加工し、相および組織と高温引張試験を行っ
た。試験結果を表3に示す。
(Comparative Example 2) An intermetallic compound having a composition of Ti-48at%Al was melted, homogenized and hot-processed in the same manner, and subjected to a high-temperature tensile test on phase and structure. The test results are shown in Table 3.

【0027】(比較例3)Ti−47at%Al−3a
t%Crの組成をもった金属間化合物を同様な方法で、
溶解・均質化熱処理・熱間加工し、相および組織と高温
引張試験を行った。試験結果を表3に示す。
(Comparative Example 3) Ti-47at%Al-3a
An intermetallic compound having a composition of t%Cr was prepared in a similar manner.
It was melted, homogenized, heat-treated, and worked, and subjected to phase and structure tests and high-temperature tensile tests. The test results are shown in Table 3.

【0028】[0028]

【表1】[Table 1]

【0029】[0029]

【表2】[Table 2]

【0030】[0030]

【表3】[Table 3]

【0031】[0031]

【発明の効果】第3元素として、V,Mn,Nb,Mo
を添加したTiAl基金属間化合物を溶解・均質化焼鈍
・加工熱処理することにより、β相が析出した。とくに
、V,Mn,Nb添加合金については、β相が粒界に析
出し、高温での加工性が著しく改善されることが明かと
なった。本発明のTiAl基金属間化合物は熱間加工性
に優れており、複雑な形状の成形物を加工することが可
能であり、工業的利用分野が広い。たとえば、超塑性的
加工を利用して、ハニカム構造を製造でき航空機等の軽
量化に応用できる。熱間加工によって成形した後、熱処
理することによって、結晶粒を粗大化させ、高温でのク
リープ特性を向上させることが可能である。
[Effect of the invention] As the third element, V, Mn, Nb, Mo
The β phase was precipitated by melting, homogenizing annealing, and processing heat treating the TiAl-based intermetallic compound to which . In particular, it has been revealed that for alloys containing V, Mn, and Nb, the β phase precipitates at grain boundaries, and the workability at high temperatures is significantly improved. The TiAl-based intermetallic compound of the present invention has excellent hot workability and can be processed into molded products of complex shapes, and has a wide range of industrial applications. For example, honeycomb structures can be manufactured using superplastic processing, which can be applied to reduce the weight of aircraft. By performing heat treatment after forming by hot working, it is possible to coarsen crystal grains and improve creep characteristics at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】熱間加工したV,Mn,Nb,Moを添加した
TiAl基金属間化合物のX線回折パターン。
FIG. 1 is an X-ray diffraction pattern of a hot-processed TiAl-based intermetallic compound doped with V, Mn, Nb, and Mo.

【図2】Nb添加TiAl基金属間化合物の鍛造後の結
晶組織写真。
FIG. 2 is a photograph of the crystal structure of the Nb-added TiAl-based intermetallic compound after forging.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  原子%でAl45%から50%残部が
Tiを基本とするTiAl基金属間化合物において、V
,Mn,NbまたはMoの添加元素群より選ばれた少な
くとも一種以上の元素を、原子%で1%以上5%以下を
含み、γ相とα2 相からなる等軸粒に、β相を出現さ
せ、高温での延性と強度を向上させたTiAl基金属間
化合物。
Claim 1: In a TiAl-based intermetallic compound in which 45% to 50% of Al is based on Ti as a basis in atomic %, V
, Mn, Nb, or Mo in an amount of 1% or more and 5% or less in terms of atomic %, so that a β phase appears in equiaxed grains consisting of a γ phase and an α2 phase. , a TiAl-based intermetallic compound with improved ductility and strength at high temperatures.
【請求項2】  原子%でAl45%から50%残部が
Tiを基本とするTiAl基金属間化合物において、V
,Mn,NbまたはMoの添加元素群より選ばれた少な
くとも一種以上の元素を、原子%で1%以上5%以下を
含む金属間化合物を溶解後、熱処理を1000℃以上1
250℃以下で48時間以上行い、徐冷した後、熱間加
工を1100℃以上1350℃以下、歪速度1×10−
2s−1以下で40%以上の変形を行い、β相をγ相と
α2 相からなる等軸粒の粒界に析出させる事を特徴と
する高温での延性と強度を向上させたTiAl基金属間
化合物の製造方法。
[Claim 2] In a TiAl-based intermetallic compound in which 45% to 50% of Al is based on Ti as a basis in atomic %, V
After melting an intermetallic compound containing at least 1% to 5% by atomic percent of at least one element selected from the additive element group of , Mn, Nb, or Mo, heat treatment is performed at 1000°C to 100°C.
After 48 hours or more at 250°C or lower and slow cooling, hot working was performed at 1100°C or higher and 1350°C or lower at a strain rate of 1 x 10-
A TiAl-based metal with improved ductility and strength at high temperatures, characterized by deformation of 40% or more at 2s-1 or less and precipitation of β phase at grain boundaries of equiaxed grains consisting of γ phase and α2 phase. A method for producing an intermediate compound.
JP3140277A 1991-06-12 1991-06-12 TiAl-based intermetallic compound and method for producing the same Expired - Fee Related JP3056541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3140277A JP3056541B2 (en) 1991-06-12 1991-06-12 TiAl-based intermetallic compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3140277A JP3056541B2 (en) 1991-06-12 1991-06-12 TiAl-based intermetallic compound and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04365829A true JPH04365829A (en) 1992-12-17
JP3056541B2 JP3056541B2 (en) 2000-06-26

Family

ID=15265037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3140277A Expired - Fee Related JP3056541B2 (en) 1991-06-12 1991-06-12 TiAl-based intermetallic compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP3056541B2 (en)

Also Published As

Publication number Publication date
JP3056541B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
US4292077A (en) Titanium alloys of the Ti3 Al type
US5226985A (en) Method to produce gamma titanium aluminide articles having improved properties
US5746846A (en) Method to produce gamma titanium aluminide articles having improved properties
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JP6307623B2 (en) High strength alpha-beta titanium alloy
US5417781A (en) Method to produce gamma titanium aluminide articles having improved properties
AU2022224763B2 (en) Creep resistant titanium alloys
JPH0572452B2 (en)
JP2009114513A (en) TiAl-BASED ALLOY
JPS63171862A (en) Manufacture of heat resistant ti-al alloy
JP3374553B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
JP2734794B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
JP3056541B2 (en) TiAl-based intermetallic compound and method for producing the same
JP2686020B2 (en) Superplastically deformable β + γTiAl-based intermetallic alloy and method for producing the same
JPH04235262A (en) Manufacture of ti-al intermetallic compound-series ti alloy excellent in strength and ductility
JP3328557B2 (en) TiAl-based intermetallic compound alloy having high strength and method for producing the same
JPH10259441A (en) Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production
JPH03193851A (en) Production of tial-base alloy having extremely superfine structure
JP2729011B2 (en) TiAl-based intermetallic compound alloy having high strength and method for producing the same
JP3059313B2 (en) TiAl alloy and method for producing the same
JP2004277873A (en) Titanium alloy incorporated with boron added
JP3308615B2 (en) TiAl alloy and method for producing the same
JPH02274850A (en) Heat treatment of intermetallic compound ti-al-based alloy
JPH0116910B2 (en)
JP3331625B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080414

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees