JPH0436554B2 - - Google Patents

Info

Publication number
JPH0436554B2
JPH0436554B2 JP62190402A JP19040287A JPH0436554B2 JP H0436554 B2 JPH0436554 B2 JP H0436554B2 JP 62190402 A JP62190402 A JP 62190402A JP 19040287 A JP19040287 A JP 19040287A JP H0436554 B2 JPH0436554 B2 JP H0436554B2
Authority
JP
Japan
Prior art keywords
synthetic resin
allyl carbonate
scratch resistance
molded product
antireflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62190402A
Other languages
Japanese (ja)
Other versions
JPS6434729A (en
Inventor
Masahiro Amano
Shingo Matsuoka
Yasuji Kida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP62190402A priority Critical patent/JPS6434729A/en
Publication of JPS6434729A publication Critical patent/JPS6434729A/en
Publication of JPH0436554B2 publication Critical patent/JPH0436554B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

〔産業䞊の利甚分野〕 本発明は、䞀分子䞭にアリルカヌボネヌト基を
個以䞊有する化合物の重合䜓よりなる成型品の
衚面に反射防止剀を被膜した衚面硬床、耐擊傷
性、反射防止等に優れた合成暹脂成型品に関す
る。 〔埓来の技術およびその問題点〕 䞀般に合成暹脂は軜量、易加工性、耐衝撃性が
良奜なため䜿甚分野も広くなり、無色透明な合成
暹脂は県鏡甚レンズなどのレンズ、各皮窓、カバ
ヌガラス、などに倚く甚いられおいる。しかしな
がら、このような合成暹脂はガラスに比べ、衚面
硬床、特に耐擊傷性が悪いずいう欠点を有し、た
た透明性が良くおも尚数パヌセントの反射光があ
り、ガラスの堎合ず同じく反射光による各皮欠点
を有しおいる。 埓来、これらの欠点を解決する目的で、合成暹
脂基材の衚面に真空蒞着なずで金属酞化物、フツ
化物などの無機硬質物の被膜を圢成する方法が行
なわれおおり、特に反射防止を目的に屈折率の異
なる無機化合物を光孊的厚みに単局あるいは倚局
に被膜を圢成するのが䞀般的である。しかしなが
ら、このような無機硬化物質の被膜により反射防
止効果は十分満足するこずが出来るが、埗られる
合成暹脂成型品は衚面硬床、耐擊傷性に乏しいた
め、倱透や擊傷によ぀お透明性が損われ易い問題
があ぀た。 〔問題点を解決するための手段〕 埓぀お、本発明者らは䞊蚘に鑑み、衚面硬床、
耐擊傷性、反射防止および透明性に優れた合成暹
脂成型品の開発を進めた結果、䞀分子䞭にアリル
カヌボネヌト基を個以䞊有する化合物の重合䜓
よりなる成型品の衚面に反射防止剀の被膜を圢成
するこずによ぀お、埓来の反射防止剀の被膜を圢
成した成型品よりも特に衚面硬床、耐擊傷性に優
れた成型品を埗るこずが出来、所期の目的が達成
されるこずを芋い出し本発明を完成するに至぀
た。即ち、本発明は䞀分子䞭にアリルカヌボネヌ
ト基を個以䞊有する化合物の重合䜓よりなる成
型品の衚面に反射防止剀を被膜した透明性合成暹
脂成型品である。 本発明によれば、耐擊傷が良奜な䞊蚘の特定し
た䞀分子䞭に個以䞊のアリルカヌボネヌト基を
有するアリルカヌボネヌト化合物の重合䜓以
䞋、単にアリルカヌボネヌト重合䜓ずもいうよ
りなる合成暹脂基材の衚面に反射防止剀を被膜す
るこずによ぀お衚面硬床、耐擊傷性、反射防止に
優れた透明性の合成暹脂成型品を埗るこずができ
る。即ち、本発明の透明性合成暹脂成型品は耐擊
傷性に優れたカヌボネヌト重合䜓の合成暹脂を基
材ずするが、該合成暹脂基材の耐擊傷性が反射防
止性被膜した合成暹脂成型品の衚面にも珟われ、
極めお高い耐擊傷性を瀺すため、擊傷によ぀お透
明性が損われるこずもない。 本発明においお、合成暹脂基材の原料であるカ
ヌボネヌト化合物は、䞀分子䞭に個以䞊の
[Industrial Application Field] The present invention relates to the surface hardness, scratch resistance, antireflection, etc. of a molded product made of a polymer of a compound having three or more allyl carbonate groups in one molecule, coated with an antireflection agent. Concerning synthetic resin molded products with excellent properties. [Conventional technology and its problems] In general, synthetic resins are lightweight, easy to process, and have good impact resistance, so they are used in a wide range of fields, and colorless and transparent synthetic resins are used in lenses such as eyeglass lenses, various windows, and cover glasses. , etc., are often used. However, such synthetic resins have the disadvantage of poor surface hardness, especially poor scratch resistance, compared to glass, and even if they have good transparency, they still reflect a few percent of light; It has various drawbacks due to Conventionally, in order to solve these drawbacks, a method has been used to form a coating of inorganic hard materials such as metal oxides and fluorides on the surface of synthetic resin substrates by vacuum deposition. For this purpose, it is common to form a single layer or multiple layers of inorganic compounds having different refractive indexes to an optical thickness. However, although the anti-reflection effect can be sufficiently satisfied with the coating of such an inorganic hardened substance, the resulting synthetic resin molded product has poor surface hardness and scratch resistance, and its transparency may deteriorate due to devitrification and scratches. There was a problem that could easily be damaged. [Means for Solving the Problems] Therefore, in view of the above, the present inventors have determined the surface hardness,
As a result of developing synthetic resin molded products with excellent scratch resistance, antireflection, and transparency, we have applied an antireflection agent to the surface of molded products made from polymers of compounds that have three or more allyl carbonate groups in one molecule. By forming a film, it is possible to obtain a molded product with particularly superior surface hardness and scratch resistance compared to molded products formed with a conventional anti-reflective coating, thereby achieving the intended purpose. This discovery led to the completion of the present invention. That is, the present invention is a transparent synthetic resin molded product in which the surface of a molded product made of a polymer of a compound having three or more allyl carbonate groups in one molecule is coated with an antireflection agent. According to the present invention, a synthetic resin group made of a polymer of the above specified allyl carbonate compound having three or more allyl carbonate groups in one molecule (hereinafter also simply referred to as an allyl carbonate polymer) having good scratch resistance. By coating the surface of the material with an antireflection agent, a transparent synthetic resin molded product with excellent surface hardness, scratch resistance, and antireflection can be obtained. That is, the transparent synthetic resin molded product of the present invention uses a carbonate polymer synthetic resin with excellent scratch resistance as a base material, but the scratch resistance of the synthetic resin base material is improved by the synthetic resin molded product coated with an antireflection coating. It also appears on the surface of
Because it exhibits extremely high scratch resistance, transparency is not impaired by scratches. In the present invention, the carbonate compound that is the raw material for the synthetic resin base material has three or more carbonate compounds in one molecule.

【匏】で瀺されるアリル カヌボネヌト基を有するものであれば特に制限さ
れない。具䜓的には、次の劂き化合物が挙げられ
る。 (1) 䞀般匏 〔䜆し、は氎玠原子、眮換若しくは非眮換の
アルキル基、眮換若しくは非眮換のアリヌル基、
ハロゲン原子、ニトロ基又はアルコキシ基であ
り、R′は−CH2− n又は−OCHR″CHR−l
䜆し、R″及びは倫々同皮又は異皮の氎玠原
子又はアルキル基であり、は以䞊の敎数であ
り、は以䞊の敎数である。で瀺される基で
あり、は又はである。〕で瀺されるアリル
カヌボネヌト化合物。 ここで、アルキル基及びアルコキシ基ずしお
は、炭玠数の制限はないが、重合しお埗られる暹
脂の衚面硬床等を勘案すれば、炭玠数は〜10の
範囲であるこずが奜たしい。たた、アリヌル基ず
しおは、プニル基、トリル基、キシリル基、ナ
フチル基、アンスリル基、プナンスリル基、ベ
ンゞル基等が挙げられる。これらのアルキル基及
びアリヌル基の眮換基ずしおは、ハロゲン原子、
氎酞基、アルコキシ基、゚ポキシ基等を挙げるこ
ずができる。さらに、前蚘䞀般匏〔〕䞭、は
以䞊の敎数であれば良いが、埗られる暹脂の硬
床の点から、は〜30の敎数であるこずが奜た
しい。たた、は以䞊の敎数であれば良いが、
〜20の敎数であるこずが奜たしい。 (2) 䞀般匏 〔䜆し、R1R2R3R4R5及びR6は倫々ハ
ロゲン原子、氎酞基又はアリルカヌボネヌト基で
あ぀お、䞔぀これらのうち個以䞊のアリルカヌ
ボネヌト基であり、は以䞊の敎数である。〕 で瀺されるアリルカヌボネヌト化合物。 䞊蚘䞀般匏〔〕䞭、R1R2R3R4R5及
びR6で瀺されるハロゲン原子ずしおは、フツ玠、
塩玠、臭玠、ペり玠の各原子が採甚される。た
た、は以䞊の敎数であれば良いが、䞊蚘䞀般
匏〔〕で瀺されるアリルカヌボネヌト化合物の
粘床を適圓な倀ずしお取扱いを容易にするために
は、は〜の敎数であるこずが奜たしい。 (3) 䞀般匏〔〕 〔䜆し、R7R8R9R10R11及びR12は、
倫々氎玠原子又はアリルカヌボネヌトメチル基で
あ぀お、䞔぀これらのうち個以䞊はアリルカヌ
ボネヌトメチル基であり、は〜の敎数であ
る。〕 で瀺されるアリルカヌボネヌト化合物。 (4) 炭氎化物の氎酞基が個以䞊アリルカヌボネ
ヌト基で眮換されたアリルカヌボネヌト化合
物。 䞊蚘の炭氎化物ずしおは、グリセリン、グルコ
ヌス、フラクトヌス、マンノヌス、ガラクトヌ
ス、グルコピラノヌス、キシロピラノヌス、アラ
ビノヌス、フルクトピラノヌス、キシルロヌス、
キシルロヌス−リン酞、゜ルビトヌル、マルト
ヌス、セロビオヌス、む゜マルトヌス、ラクトヌ
ス、スクロヌス、アミロヌス等である。 本発明においお甚いるアリルカヌボネヌト化合
物ずしおは、その重合䜓の透明性、耐擊傷性等の
点から、前蚘䞀般匏〔〕及び〔〕で瀺される
アリルカヌボネヌト化合物が奜適であり、特に前
蚘䞀般匏〔〕で瀺されるアリルカヌボネヌト化
合物が最も奜適である。このような本発明におい
お奜適に䜿甚されるアリルカヌボネヌト化合物を
具䜓的に䟋瀺すれば、䟋えば
There are no particular restrictions as long as it has an allyl carbonate group represented by the formula. Specifically, the following compounds may be mentioned. (1) General formula [However, R is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group,
It is a halogen atom, nitro group or alkoxy group, and R′ is (-CH 2 ) -n or (-OCHR″CHR) -l
(However, R'' and R are the same or different hydrogen atoms or alkyl groups, m is an integer of 0 or more, and l is an integer of 1 or more.), and n is 3 or 4.] Here, there is no limit to the number of carbon atoms in the alkyl group and alkoxy group, but if the surface hardness of the resin obtained by polymerization is taken into consideration, the number of carbon atoms is The range is preferably from 1 to 10.Also, examples of the aryl group include phenyl group, tolyl group, xylyl group, naphthyl group, anthryl group, phenanthryl group, benzyl group, etc.These alkyl groups and aryl groups As substituents, halogen atoms,
Examples include hydroxyl group, alkoxy group, and epoxy group. Further, in the general formula [], m may be an integer of 0 or more, but from the viewpoint of the hardness of the resulting resin, m is preferably an integer of 0 to 30. Also, l may be an integer greater than or equal to 1, but
It is preferably an integer from 1 to 20. (2) General formula [However, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each a halogen atom, a hydroxyl group or an allyl carbonate group, and three or more of these are allyl carbonate groups, and k is It is an integer greater than or equal to 1. ] An allyl carbonate compound represented by In the above general formula [], the halogen atoms represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 include fluorine,
Chlorine, bromine, and iodine atoms are employed. Further, k may be an integer of 1 or more, but in order to easily handle the viscosity of the allyl carbonate compound represented by the above general formula [] at an appropriate value, k is an integer of 1 to 3. It is preferable. (3) General formula [] [However, R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are
Each is a hydrogen atom or an allyl carbonate methyl group, and three or more of these are allyl carbonate methyl groups, and l is an integer of 2 to 4. ] An allyl carbonate compound represented by (4) Allyl carbonate compounds in which three or more hydroxyl groups of carbohydrates are substituted with allyl carbonate groups. The above carbohydrates include glycerin, glucose, fructose, mannose, galactose, glucopyranose, xylopyranose, arabinose, fructopyranose, xylulose,
These include xylulose 5-phosphate, sorbitol, maltose, cellobiose, isomaltose, lactose, sucrose, amylose, and the like. As the allyl carbonate compound used in the present invention, from the viewpoint of the transparency and scratch resistance of the polymer, allyl carbonate compounds represented by the above general formulas [] and [] are suitable, and especially the allyl carbonate compounds shown by the above general formula [] The allyl carbonate compound represented by is the most preferred. Specific examples of such allyl carbonate compounds suitably used in the present invention include, for example:

【匏】【formula】

等を挙げるこずができる。 たた、本発明においおは䞊蚘した劂きアリルカ
ヌボネヌト化合物ずずもに、合成暹脂基材ずしお
の耐擊傷性を損わない皋床に共重合可胜な化合物
を添加するこずが出来る。このような共重合可胜
な化合物ずしおは、䟋えば合成暹脂基材の耐衝撃
性を向䞊させるために゚チレングリコヌルビスア
リルカヌボネヌトEG−BAC、ゞ゚チレング
リコヌルビスアリルカヌボネヌトDEG−
BAC、ポリ゚チレングリコヌルの分子量が200
300400600であるポリ゚チレングリコヌルビ
スアリルカヌボネヌトそれぞれPEG−200−
BACPEG−300−BACPEG−400−BAC
PEG−600−BACず略蚘するなど、たた合成暹
脂基材の屈折率を向䞊させるためにスチレン、ゞ
ビニルベンれン、クロロメチルスチレン、ゞアリ
ルテレフタレヌト、ベンゞルメタクリレヌト、ビ
スプノヌルゞメタクリレヌトなどの屈折率が
1.5以䞊の共重合可胜な化合物が甚いられる。 本発明の合成暹脂基材ずする䞊蚘した劂き化合
物の重合䜓たたは該化合物ず他の化合物ずの共重
合䜓は、ラゞカル重合開始剀の存圚あるいは玫倖
線や攟射線の照射䞋などで公知のラゞカル重合方
法を特に制限なく甚いお埗られる。 たた、重合に際しお離型剀、玫倖線吞収剀、酞
化防止剀、着色防止剀、垯電防止剀、ケむ光染料
等の各皮安定剀、添加剀を必芁に応じお遞択しお
䜿甚するこずができる。 さらに、本発明においおは合成暹脂基材の耐擊
傷性を向䞊させるために公知の硬化性物質を被膜
するこずができる。その際、硬化性物質の皮類、
被膜方法は特に制限がなく、必芁に応じお遞択し
お䜿甚すればよい。 本発明の分子䞭にアリルカヌボネヌト基を
個以䞊有する化合物の重合䜓よりなる成型品の衚
面に、反射防止剀である無機硬質物の被膜を圢成
する方法は公知の方法が特に制限なく䜿甚され
る。䟋えば、真空蒞着法、むオンプレヌテむング
法、スパツタリング法等のドラむプレヌテむング
法が䞀般的である。無機硬質物の被膜の厚みは、
目的に応じお異なるため特に限定されないが、䞀
般に0.1Ό〜10Όがある。 本発明の被膜を圢成する無機硬質物ずしおは、
䞀般に䞊蚘した劂きドラむプレヌテむング法で合
成暹脂基材の衚面に析出させるこずができる無機
物質が制限なく䜿甚でき、その目的に応じお適宜
遞択すればよい。䟋えば耐擊傷性を付䞎するため
には酞化ケむ玠SiOx〜、酞化アル
ミニりム等が䞀般に䜿甚される。たた反射防止性
を付䞎するためには、䜎屈折率物を単局にあるい
は䜎屈折率物ず高屈折率物ずを亀互に光孊的厚み
に積局すればよい。 このような本発明に䜿甚される具䜓的な反射防
止膜の構成する無機硬質の物質ずしおは䟋えば酞
化ケむ玠、酞化アルミニりム、酞化ゞルコニり
ム、酞化チタン、酞化マグネシりム、酞化セリり
ム、酞化むレゞりム、酞化タンタル、酞化ハフニ
りム等の金属酞化物フツ化マグネシりム、フツ
化セリりム、フツ化リチりム、フツ化ランタン、
フツ化ナトリりム、フツ化ネオゞりム等の金属フ
ツ化物が挙げられる。その他に、アルミニりム、
金、銀、クロム等の金属、そしお硫化亜鉛等の䞊
蚘以倖の無機化合物も良奜な被膜が圢成できる。 曎に、耐擊傷性を同時に付䞎されるために、ア
モルフアスカヌボン䞭にダむダモンド埮結晶が散
圚したダむダモンド状カヌボン膜を被芆しおも反
射防止可胜である。 〔発明の効果〕 このようにしお本発明によれば、䞀分子䞭にア
リルカヌボネヌト基が、個以䞊有する化合物の
重合䜓よりなる耐擊傷性に優れる基材の成型品に
耐久性の良い無機硬質物の被膜を被芆した極めお
耐擊傷性に優れ、反射防止の向䞊した合成暹脂成
型品を提䟛するこずが出来る。 〔実斜䟋〕 以䞋、本発明を具䜓的に説明するために、実斜
䟋及び比范䟋を瀺すが、本発明はこれら実斜䟋に
限定されるものではない。 なお、䞀分子䞭にアリルカヌボネヌト基を個
以䞊有する化合物の重合䜓よりなる成型品の衚面
に、反射防止剀を被膜した合成暹脂成型品の衚面
特性の評䟡は䞋蚘の方法によ぀お実斜した。 (1) 耐擊傷性 犏田機械工業株匏䌚瀟補の耐擊傷性詊隓噚に
0000のスチヌルりヌルを取り付け、Kg荷重䞋
で詊料衚面を10回埀埩させた埌、衚面の傷぀き床
合を目芖により芳察し、党く傷぀かなか぀た状態
を、およびゞ゚チレングリコヌルビスアリルカ
ヌボネヌト暹脂生地の非垞に傷぀き易い状態を
ずしお、その〜の間をず区分しお
段階に評䟡した。 (2) 可芖光線透過率 厚さmmの詊隓片に぀いお、分光光床蚈で波長
400〜700nmの透過率を枬定した。 (3) 密着性詊隓 先端が鋭利なカツタヌナむフで詊料の衚面に
mm×mmのマス目を100個぀けた埌、垂販のセロ
テヌプを貌り付けお、次いで玠早く剥した時の被
膜の剥れ状態を目芖で芳察し、100個のマス目の
内剥れずに残぀たマス目の数で評䟡した。 (4) 耐候性詊隓 スガ詊隓機株匏䌚瀟補のキセノンランププヌ
ドメヌタヌを甚いお500時間の照射埌における膜
の倉化を評䟡し、党く倉化しないものを○、クラ
ツクの入぀たものを×で衚した。 実斜䟋及び比范䟋に䜿甚した反射防止剀及びそ
の被膜方法を以䞋に瀺す。  所定の成型品の衚面に真空蒞着装眮日
本真空技術株匏䌚瀟補EBS−10Aにより10-6
トヌルで第局ずしおAl2O3を膜厚280nmに真
空蒞着し、第局ずしおMgF2を膜厚140nmに
真空蒞着した。  所定の成型品の衚面に真空蒞着装眮によ
り、SiO2ZrO2からなる膜厚300nmの反射防止
局を斜した。  所定の成型品の衚面に電撃型むオン源を
甚いたむオンプレヌテむング装眮により真空到
達床4.5×10-6トヌル、むオン化率、極間
電圧8kVの条件で硅玠を1ÎŒm被芆し、掗浄埌そ
の䞊に同条件でタングステンを0.5ÎŒm被芆し
た。  γ−グリシドキシメチル゚トキシシラン
ずプニルトリメトキシシランの混合液を加氎
分解し、゚ポキシ暹脂“゚ピクロン750”倧日
本むンキ化孊株匏䌚瀟補品、ベンゞルアルコ
ヌル、ゞアセトアルコヌル及びシリコヌン系界
面掻性剀を加えた。さらにメタノヌル分散コロ
むド状シリカ日産化孊株匏䌚瀟補品“メタノ
ヌルシリカゟル”アルミニりムアセチルアセ
トナヌト及びメタノヌルをこの順に加えた。こ
れらを十分攪拌混合しお塗料ずし、所定の成型
品の衚面に浞挬法で塗垃した。コヌテむングさ
れた成型品90℃の熱颚也燥機で時間加熱した
埌、掻性化ガス凊理装眮IPC瀟補IPC1003B
型䜎枩灰化装眮 出力50W 酞玠流量50c.c.
分で210秒間凊理を行な぀た。 実斜䟋  䞀分子䞭にアリルカヌボネヌト基を個以䞊有
する化合物の重合䜓よりなる成型品ずしお、トリ
メチロヌルプロパントリアリルカヌボネヌトにラ
ゞカル重合開始剀ずしお、ゞむ゜プロピルパヌオ
キシゞカヌボネヌト以䞋、IPPず略蚘するを
2.2重量郚添加しお通垞の泚型重合に補造した耐
擊傷に優れた板状䜓を甚いた。 たず、板状䜓をアセトンで掗浄しお十分に颚也
し枅柄な状態にした埌、無機硬質物による凊理方
法に䟛しお反射防止被
膜を圢成させた。被膜した合成暹脂成型品の評䟡
結果を衚に瀺す。
etc. can be mentioned. Further, in the present invention, a copolymerizable compound can be added together with the allyl carbonate compound as described above to the extent that the scratch resistance as a synthetic resin base material is not impaired. Examples of such copolymerizable compounds include ethylene glycol bisallyl carbonate (EG-BAC) and diethylene glycol bisallyl carbonate (DEG-BAC) to improve the impact resistance of synthetic resin base materials.
BAC), the molecular weight of polyethylene glycol is 200,
300, 400, 600 polyethylene glycol bisallyl carbonate (PEG-200-
BAC, PEG-300-BAC, PEG-400-BAC,
(abbreviated as PEG-600-BAC), etc. Also, to improve the refractive index of the synthetic resin base material, styrene, divinylbenzene, chloromethylstyrene, diallyl terephthalate, benzyl methacrylate, bisphenol A dimethacrylate, etc.
A copolymerizable compound of 1.5 or more is used. A polymer of the above-mentioned compound or a copolymer of the compound and another compound to be used as the synthetic resin base material of the present invention can be produced by a known radical polymerization method in the presence of a radical polymerization initiator or under irradiation with ultraviolet rays or radiation. can be obtained by using without any particular restriction. Further, during polymerization, various stabilizers and additives such as a mold release agent, ultraviolet absorber, antioxidant, anti-coloring agent, antistatic agent, and fluorescent dye can be selected and used as necessary. Furthermore, in the present invention, a known curable substance can be coated to improve the scratch resistance of the synthetic resin base material. At that time, the type of curable substance,
The coating method is not particularly limited and may be selected and used as required. 3 allyl carbonate groups in one molecule of the present invention
As a method for forming a coating of an inorganic hard substance, which is an antireflection agent, on the surface of a molded article made of a polymer of a compound having 1 or more compounds, any known method can be used without particular limitation. For example, dry plating methods such as vacuum evaporation method, ion plating method, and sputtering method are common. The thickness of the inorganic hard material coating is
Although it is not particularly limited as it varies depending on the purpose, it generally ranges from 0.1Ό to 10Ό. The inorganic hard material forming the coating of the present invention includes:
In general, any inorganic substance that can be deposited on the surface of a synthetic resin base material by the dry plating method described above can be used without any restriction, and it may be selected as appropriate depending on the purpose. For example, silicon oxide (SiOx, x=1-2), aluminum oxide, etc. are generally used to impart scratch resistance. Further, in order to impart antireflection properties, a single layer of a low refractive index material or a layer of a low refractive index material and a high refractive index material may be alternately laminated to an optical thickness. Examples of the inorganic hard substances constituting the specific antireflection film used in the present invention include silicon oxide, aluminum oxide, zirconium oxide, titanium oxide, magnesium oxide, cerium oxide, iredium oxide, tantalum oxide, and tantalum oxide. Metal oxides such as hafnium; magnesium fluoride, cerium fluoride, lithium fluoride, lanthanum fluoride,
Examples include metal fluorides such as sodium fluoride and neodymium fluoride. In addition, aluminum
Good films can also be formed using metals such as gold, silver, and chromium, and inorganic compounds other than those mentioned above, such as zinc sulfide. Furthermore, since scratch resistance is imparted at the same time, antireflection can be achieved even if amorphous carbon is coated with a diamond-like carbon film in which diamond microcrystals are interspersed. [Effects of the Invention] As described above, according to the present invention, a molded article of a base material having excellent scratch resistance made of a polymer of a compound having three or more allyl carbonate groups in one molecule is made of a durable inorganic material. It is possible to provide a synthetic resin molded product coated with a hard material film, which has excellent scratch resistance and improved antireflection. [Example] In order to specifically explain the present invention, Examples and Comparative Examples are shown below, but the present invention is not limited to these Examples. In addition, the surface characteristics of a synthetic resin molded product made of a polymer of a compound having three or more allyl carbonate groups in one molecule and coated with an antireflection agent were evaluated using the following method. . (1) Scratch resistance Attach #0000 steel wool to a scratch resistance tester manufactured by Fukuda Machinery Co., Ltd., and after moving the sample surface back and forth 10 times under a 1 kg load, visually observe the degree of scratches on the surface. , A is the completely undamaged state, and E is the very brittle state of the diethylene glycol bisallyl carbonate resin fabric.
The grades A to E were divided into B, C, and D and evaluated in five stages. (2) Visible light transmittance The wavelength of a 2 mm thick test piece was measured using a spectrophotometer.
The transmittance was measured from 400 to 700 nm. (3) Adhesion test Use a cutter knife with a sharp tip to test the surface of the sample.
After attaching 100 squares of mm x 1 mm, commercially available cellophane tape was applied and then quickly peeled off, and the state of peeling of the film was visually observed. Evaluation was based on the number of squares. (4) Weather resistance test The changes in the film after 500 hours of irradiation were evaluated using a xenon lamp fade meter manufactured by Suga Test Instruments Co., Ltd. Those with no change were marked with ○, and those with cracks were marked with ×. did. The antireflective agents used in Examples and Comparative Examples and their coating methods are shown below. () 10 -6 on the surface of the specified molded product using a vacuum evaporation device (EBS-10A manufactured by Japan Vacuum Technology Co., Ltd.)
Al 2 O 3 was vacuum-deposited as a first layer to a thickness of 280 nm using Thor, and MgF 2 was vacuum-deposited as a second layer to a thickness of 140 nm. () An antireflection layer made of SiO 2 ZrO 2 with a thickness of 300 nm was applied to the surface of a predetermined molded product using a vacuum evaporation device. () The surface of the specified molded product is coated with 1 ÎŒm of silicon using an ion plating device using an electric shock type ion source under the conditions of vacuum attainment of 4.5 × 10 -6 Torr, ionization rate of 3%, and electrode gap voltage of 8 kV, and then cleaned. Thereafter, tungsten was coated to a thickness of 0.5 ÎŒm under the same conditions. () Hydrolyze a mixture of γ-glycidoxymethylethoxysilane and phenyltrimethoxysilane to form an epoxy resin (“Epicron 750” product of Dainippon Ink Chemical Co., Ltd.), benzyl alcohol, diacet alcohol, and a silicone-based interface. Added activator. Further, methanol-dispersed colloidal silica ("Methanol Silica Sol" manufactured by Nissan Chemical Co., Ltd.), aluminum acetylacetonate, and methanol were added in this order. These were sufficiently stirred and mixed to form a paint, which was applied to the surface of a predetermined molded product by a dipping method. After heating the coated molded product for 4 hours in a hot air dryer at 90℃,
Type low temperature ashing equipment Output 50W Oxygen flow rate 50c.c./
The treatment was carried out for 210 seconds. Example 1 As a molded product made of a polymer of a compound having three or more allyl carbonate groups in one molecule, diisopropyl peroxydicarbonate (hereinafter abbreviated as IPP) was added to trimethylolpropane triallyl carbonate as a radical polymerization initiator. )of
A plate-shaped body with excellent abrasion resistance manufactured by ordinary cast polymerization with the addition of 2.2 parts by weight was used. First, the plate-shaped body was washed with acetone and thoroughly air-dried to a clear state, and then subjected to the treatment method (), (), (), () using an inorganic hard material to form an antireflection coating. Table 1 shows the evaluation results of the coated synthetic resin molded products.

【衚】 実斜䟋  䞀分子䞭にアリルカヌボネヌト基を個以䞊有
する化合物の重合䜓よりなる成型品ずしお、トリ
メチロヌルプロパン−トリアリルカヌボネヌトず
衚に瀺す各皮のポリアルキレングリコヌルビス
アリルカヌボネヌト、たた衚に瀺す各皮の屈折
率が1.5以䞊の共重合可胜な化合物のそれぞれの
混合液をIPP2.2重量郚を添加しお泚型重合により
補造した板状䜓に぀いお、アセトンで十分に掗浄
しお十分に颚也し枅柄にした埌、無機硬質物によ
る凊理方法に䟛した反射防止被膜を圢成さ
せた。 いずれの合成暹脂成型品に぀いおも、耐擊傷性
は、可芖光線透過率96.5、密着性はすべお
100であり、耐候性に぀いおもすべお○であ぀た。
[Table] Example 2 As a molded product made of a polymer of a compound having three or more allyl carbonate groups in one molecule, trimethylolpropane-triallyl carbonate and various polyalkylene glycol bisallyl carbonates shown in Table 2, and A plate-shaped body was produced by cast polymerization by adding 2.2 parts by weight of IPP to each mixture of copolymerizable compounds with a refractive index of 1.5 or more shown in Table 3, and thoroughly washed with acetone. After thorough air drying and clarification, an antireflection coating was formed which was subjected to a treatment method (2) using an inorganic hard material. For all synthetic resin molded products, the scratch resistance is B, the visible light transmittance is 96.5%, and the adhesion is all
100, and weather resistance was also all ○.

【衚】【table】

【衚】 実斜䟋  合成暹脂基材ずしお衚に瀺す各皮の分子䞭
にアリルカヌボネヌト基を個以䞊有する化合物
にIPPを2.2重量郚を添加しお通垞の泚型重合によ
り補造した板状䜓を甚いた。 たず、板状䜓をアセトンで掗浄しお十分に颚也
し枅柄な状態にした埌、無機硬質物による凊理方
法に䟛しお反射防止被膜を圢成させた。被
膜した合成暹脂成型品の評䟡結果を衚に瀺す。
[Table] Example 3 A plate-shaped plate produced by ordinary cast polymerization by adding 2.2 parts by weight of IPP to various compounds having three or more allyl carbonate groups in one molecule shown in Table 4 as a synthetic resin base material. I used my body. First, the plate-shaped body was washed with acetone and thoroughly air-dried to a clear state, and then subjected to a treatment method (2) using an inorganic hard material to form an antireflection coating. Table 4 shows the evaluation results of the coated synthetic resin molded products.

【衚】 実斜䟋  実斜䟋の耐擊傷に優れるトリメチロヌルプロ
パントリアリルカヌボネヌトの重合䜓よりなる合
成暹脂板状䜓をアセトンで掗浄しお十分に颚也し
枅柄な状態にした埌、硬化性物質を被膜するため
に、たず前凊理ずしお10NaOH氎溶液に10分
間浞挬し、次いで氎掗也燥した。 その埌、ビスγ−トリメトキシシリルプロピ
ルカヌボネヌト20重量郚、γ−グリシドキシプ
ロピルトリメトキシシラン10重量郚、コロむドシ
リカ日産化孊瀟補メタノヌルゟル30重量郚、
メチセロ30重量郚、0.05芏定塩酞10重量郚、硬化
觊媒ずしお過塩玠酞アンモニりム0.25重量郚より
なる硬化性物質䞭に所定の成型品を浞挬しお被芆
し、これを宀枩で充分颚也した埌、130℃で時
間加熱しお硬化した。 さらに、この成型品に無機硬質物に凊理方法
に䟛しお反射防止被膜を圢成させた。その
結果を衚−に瀺す。
[Table] Example 4 The synthetic resin plate of Example 1 made of a polymer of trimethylolpropane triallyl carbonate, which has excellent scratch resistance, was washed with acetone and thoroughly air-dried to a clear state. To coat the material, it was first immersed in a 10% NaOH aqueous solution for 10 minutes as a pretreatment, then washed with water and dried. Then, 20 parts by weight of bis(γ-trimethoxysilylpropyl) carbonate, 10 parts by weight of γ-glycidoxypropyltrimethoxysilane, 30 parts by weight of colloidal silica (methanol sol manufactured by Nissan Chemical Co., Ltd.),
A prescribed molded product was dipped and coated in a curable substance consisting of 30 parts by weight of meticello, 10 parts by weight of 0.05N hydrochloric acid, and 0.25 parts by weight of ammonium perchlorate as a curing catalyst, and after thoroughly air-dried at room temperature, It was cured by heating at ℃ for 1 hour. Furthermore, this molded article was subjected to the inorganic hard material treatment method () to form an antireflection coating. The results are shown in Table-5.

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  個以䞊のアリルカヌボネヌト基を有する化
合物の重合䜓よりなる成型品の衚面に反射防止剀
を被膜した透明性合成暹脂成型品。
1. A transparent synthetic resin molded product made of a polymer of a compound having 3 or more allyl carbonate groups, and the surface of which is coated with an antireflection agent.
JP62190402A 1987-07-31 1987-07-31 Formed object made of transparent synthetic resin Granted JPS6434729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62190402A JPS6434729A (en) 1987-07-31 1987-07-31 Formed object made of transparent synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62190402A JPS6434729A (en) 1987-07-31 1987-07-31 Formed object made of transparent synthetic resin

Publications (2)

Publication Number Publication Date
JPS6434729A JPS6434729A (en) 1989-02-06
JPH0436554B2 true JPH0436554B2 (en) 1992-06-16

Family

ID=16257550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62190402A Granted JPS6434729A (en) 1987-07-31 1987-07-31 Formed object made of transparent synthetic resin

Country Status (1)

Country Link
JP (1) JPS6434729A (en)

Also Published As

Publication number Publication date
JPS6434729A (en) 1989-02-06

Similar Documents

Publication Publication Date Title
US5015523A (en) Coated synthetic resin lens
KR20120004474A (en) Scratch-resistant coatings with improved adhesion to inorganic thin film coatings
AU3627799A (en) Coating composition and method for preparing the same, and scuff-resistant plastic lense
JPH0559401B2 (en)
JP2748413B2 (en) Low reflection processing agent
JPWO2020137588A1 (en) Composition for forming a hard coat layer, spectacle lens
JPH0436554B2 (en)
JPH01275130A (en) Low reflection transparent molded piece
JP2684364B2 (en) High refractive index coating film
JP2001315262A (en) Antireflection film
JPS6381033A (en) Antireflection article and manufacture thereof
JPS60262833A (en) Coated synthetic resin material
JPH0511101A (en) Optical member having antireflection film
JPH095679A (en) Plastic lens for spectacles
JP3220906B2 (en) Composition for coating
JPH0338561B2 (en)
JPH0921901A (en) Optical member with cured film
JPS6385701A (en) Antireflection article and its production
JPH01103613A (en) Organic glass for optics
JP3027675B2 (en) Optical member having cured coating
JP2712235B2 (en) Synthetic resin lens
JPH0625272B2 (en) Synthetic resin molding manufacturing method
JPH08176535A (en) Production of antistatic plastic molded product
JPS63305176A (en) Coating composition
JPS6126638A (en) Manufacture of molded article of resin having high refractive index

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees