JPH04364141A - Production of methanol by hydrogenation of carbon dioxide - Google Patents

Production of methanol by hydrogenation of carbon dioxide

Info

Publication number
JPH04364141A
JPH04364141A JP3068768A JP6876891A JPH04364141A JP H04364141 A JPH04364141 A JP H04364141A JP 3068768 A JP3068768 A JP 3068768A JP 6876891 A JP6876891 A JP 6876891A JP H04364141 A JPH04364141 A JP H04364141A
Authority
JP
Japan
Prior art keywords
zinc
carbon dioxide
catalyst
methanol
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3068768A
Other languages
Japanese (ja)
Other versions
JPH0699340B2 (en
Inventor
Yoshie Soma
相馬 芳枝
Masahiro Fujiwara
正浩 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3068768A priority Critical patent/JPH0699340B2/en
Publication of JPH04364141A publication Critical patent/JPH04364141A/en
Publication of JPH0699340B2 publication Critical patent/JPH0699340B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the subject compound in high selectivity and yield and prevent sudden deterioration in catalyst activity by using a specific double oxide catalyst in catalytically hydrogenating carbon dioxide and producing methanol. CONSTITUTION:Carbon dioxide is catalytically hydrogenated in the presence of a group IB metal-zinc-chromium double oxide catalyst prepared by mixing a complex carbonate of a group IB metal (e.g. copper, silver or gold)-zinc prepared by a coprecipitation method or a compound oxide of a group IB metal- zinc obtained by burning the aforementioned complex carbonate at 350-400 deg.C, normally at 350 deg.C temperature with an aqueous solution of chromium dioxide to afford methanol in selectivity as high as 80-100%. Furthermore, the conversion rate of the carbon dioxide exhibits a high value of 10-30% under reactional conditions of 200-250 deg.C reaction temperature and 50ml/min flow velocity which are not different from those of conventional methods without any recognized deterioration in catalyst activity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、新規調製法による原子
レベルで均一な組成を持つIB族金属―亜鉛―クロム複
合酸化物触媒を用いて、二酸化炭素と水素とを反応させ
ることによりメタノ−ルを製造する方法に関するもので
ある。
[Industrial Application Field] The present invention uses a group IB metal-zinc-chromium composite oxide catalyst with a uniform composition at the atomic level produced by a new preparation method to react methanol with carbon dioxide and hydrogen. The present invention relates to a method for manufacturing a bottle.

【0002】0002

【従来の技術】二酸化炭素の接触水素化の有効な方法は
、研究がほとんど確立されておらず、メタノールを効率
よく製造する触媒も知られていない。その中で従来の方
法としては、一酸化炭素からのメタノール合成に用いら
れる銅・亜鉛系触媒による検討が行われ、担体としてシ
リカ又はアルミナなどを用いた三元系触媒が知られてい
る(R. Kieffer, E. Ramaroso
n, A. Deluzarche, Y. Tram
bouze, React. Kinet.Catal
. Lett., 16, 207 (1981).)
。また、亜鉛の代わりにジルコニアを用いた触媒(Y.
 Amenomiya, Appl. Catal.,
 30, 57 (1987))やラネー銅合金触媒(
W.L. Marsden, M. S. Wainw
right, J. B. Friedrich, I
nd. Eng. Che. Prod. Res.D
ev., 19, 551 (1980))も開発され
ている。一方、パラジウム、白金、ロジウムを塩基性担
体に担持した触媒、例えばPd/La2O3がよい結果
を示すと報告されている(E. Ramaroson,
 R. Kieffer, A. Kienneman
n,J. Chem. Soc., Chem. Co
mmun., 645 (1982))。
BACKGROUND OF THE INVENTION Research on an effective method for catalytic hydrogenation of carbon dioxide has hardly been established, and no catalyst for efficiently producing methanol is known. As a conventional method, studies have been conducted using copper-zinc catalysts used for methanol synthesis from carbon monoxide, and ternary catalysts using silica or alumina as carriers are known (R .Kieffer, E. Ramaroso
n, A. Deluzarche, Y. Tram
bouze, React. Kinet. Catal
.. Lett. , 16, 207 (1981). )
. In addition, a catalyst using zirconia instead of zinc (Y.
Amenomiya, Appl. Catal. ,
30, 57 (1987)) and Raney copper alloy catalyst (
W. L. Marsden, M. S. Wainw
Right, J. B. Friedrich, I.
nd. Eng. Che. Prod. Res. D
ev. , 19, 551 (1980)) has also been developed. On the other hand, it has been reported that a catalyst in which palladium, platinum, or rhodium is supported on a basic carrier, such as Pd/La2O3, shows good results (E. Ramaroson,
R. Kieffer, A. Kienneman
n, J. Chem. Soc. , Chem. Co
mmun. , 645 (1982)).

【0003】0003

【発明が解決しようとする課題】銅−亜鉛系触媒による
メタノール合成の場合、選択率は低く、主生成物は逆水
性ガスシフト反応(CO2+H2→CO+H2O)から
得られる一酸化炭素である。その中で比較的良好な結果
を与える三酸化クロムの水溶液に酸化銅と酸化亜鉛を加
えて触媒を調製する方法がある(荻野義定,触媒,2,
 301 (1960))。しかしながらこの方法は、
酸化銅の粉末と酸化亜鉛の粉末を混合するだけであるた
め、原子レベルで銅と亜鉛が均一に分散しておらず、メ
タノールの収率は低い。さらに、触媒活性が反応開始後
すぐにある程度低下すると言う触媒としては致命的な欠
点を持つ。一方、パラジウム又は白金(T. Inou
e, T. Iizuka, J. Chem. So
c.,Faraday Trans. I, 82, 
1681 (1986))又はレニウム(T. Iiz
uka,M. Kojima, K. Tanabe,
 J. Chem. Soc., Chem. Com
mun., 638 (1983) )などの貴金属を
各種酸化物に担持した触媒においては、二酸化炭素の転
化率そのものが低く、したがってメタノールの選択率が
高い場合においてすらメタノ−ルの収率は微量であり、
さらに、多くの場合メタンが副生するなどの欠点も含ん
でいる。このように従来の方法は、メタノ−ルの製造に
対して収量、選択率の点について十分であるとは言えな
かった。
In the case of methanol synthesis using a copper-zinc catalyst, the selectivity is low and the main product is carbon monoxide obtained from the reverse water gas shift reaction (CO2+H2→CO+H2O). Among them, there is a method of preparing a catalyst by adding copper oxide and zinc oxide to an aqueous solution of chromium trioxide, which gives relatively good results (Yoshino Ogino, Catalyst, 2,
301 (1960)). However, this method
Since copper oxide powder and zinc oxide powder are simply mixed, the copper and zinc are not uniformly dispersed at the atomic level, resulting in a low methanol yield. Furthermore, it has a fatal drawback as a catalyst in that the catalytic activity decreases to some extent immediately after the reaction starts. On the other hand, palladium or platinum (T. Inou
e, T. Iizuka, J. Chem. So
c. , Faraday Trans. I, 82,
1681 (1986)) or rhenium (T.
uka, M. Kojima, K. Tanabe,
J. Chem. Soc. , Chem. Com
mun. , 638 (1983)), the conversion rate of carbon dioxide itself is low, and even when the methanol selectivity is high, the yield of methanol is very small.
Furthermore, it also has drawbacks such as methane being produced as a by-product in many cases. As described above, conventional methods cannot be said to be sufficient in terms of yield and selectivity for methanol production.

【0004】本発明は、二酸化炭素からのメタノール合
成に対する従来の触媒の活性、選択性の限界、制約を克
服した高性能触媒を提供するものである。
The present invention provides a high performance catalyst for methanol synthesis from carbon dioxide that overcomes the activity and selectivity limitations and constraints of conventional catalysts.

【0005】[0005]

【課題を解決するための手段】かかる本発明は、二酸化
炭素と水素との反応から、新規な調製法によるIB族元
素―亜鉛―クロム触媒を用いて、メタノールを好収率か
つ高選択的に製造することを特徴とするものである。一
般に高活性な多元系触媒ではそれぞれの金属が原子レベ
ルで均一なる構造を持つことが必要とされており、単純
な酸化銅と酸化亜鉛の混合ではこのような均一構造は期
待できない。そこで、本発明者らは、原子レベルで均一
に分散したIB族―亜鉛―クロムの複合酸化物を調製す
る方法を鋭意研究した結果、まずIB族元素の炭酸塩及
び炭酸亜鉛の複合塩を共沈法によって調製し、この複合
炭酸塩を三酸化クロムの濃厚溶液に混合し反応させるか
、あるいはこの複合炭酸塩を焼成して得られるIB族元
素―亜鉛の複合酸化物にした後、三酸化クロムの濃厚溶
液に混合させた後、自然乾燥することによって高活性な
メタノール合成触媒を調製することに成功した。
[Means for Solving the Problems] The present invention enables methanol to be produced in good yield and with high selectivity from the reaction of carbon dioxide and hydrogen using a group IB element-zinc-chromium catalyst according to a novel preparation method. It is characterized by manufacturing. In general, highly active multi-component catalysts require each metal to have a uniform structure at the atomic level, and such a uniform structure cannot be expected from a simple mixture of copper oxide and zinc oxide. Therefore, as a result of intensive research into a method for preparing a composite oxide of group IB-zinc-chromium that is uniformly dispersed at the atomic level, the present inventors first discovered that the carbonates of group IB elements and the composite salts of zinc carbonate were combined together. Prepared by the precipitation method, this composite carbonate is mixed with a concentrated solution of chromium trioxide and reacted, or this composite carbonate is calcined to obtain a composite oxide of group IB element-zinc, and then mixed with a concentrated solution of chromium trioxide. We succeeded in preparing a highly active methanol synthesis catalyst by mixing it with a concentrated chromium solution and drying it naturally.

【0006】すなわち、IB族元素の硝酸塩と硝酸亜鉛
の水溶液に炭酸ナトリウムの水溶液を加えることにより
生成した炭酸塩の複合塩である沈澱(ゲル)は、原子レ
ベルでIB族元素原子と亜鉛原子が均一に分散している
。またこのゲルを焼成して得られる複合酸化物も均一な
分散構造を持っている。複合炭酸塩あるいは複合酸化物
を三酸化クロムの水溶液に加え反応を行うことによりI
B族金属、亜鉛及びクロムの均一な三元系触媒を得るこ
とができる。
[0006] That is, the precipitate (gel), which is a complex salt of carbonate, is produced by adding an aqueous solution of sodium carbonate to an aqueous solution of nitrates of group IB elements and zinc nitrate. Evenly distributed. Furthermore, the composite oxide obtained by firing this gel also has a uniformly dispersed structure. I by adding a complex carbonate or complex oxide to an aqueous solution of chromium trioxide and carrying out a reaction.
A homogeneous ternary catalyst of group B metals, zinc and chromium can be obtained.

【0007】硝酸塩と炭酸ナトリウムを反応させ、均一
な沈澱を調製する際の温度は60ー100℃であり、好
ましくは90℃前後が良い。複合塩の沈澱の乾燥温度は
、80―120℃であり、通常100℃付近がふさわし
い。複合塩を酸化物にするための焼成温度は350―4
00℃であり、通常は350℃で焼成する。
[0007] The temperature at which nitrate and sodium carbonate are reacted to prepare a uniform precipitate is 60-100°C, preferably around 90°C. The drying temperature for precipitating the complex salt is 80-120°C, usually around 100°C. The firing temperature for converting composite salt into oxide is 350-4
00°C, and is usually fired at 350°C.

【0008】IB族元素としては、銅、銀、金の化合物
があげられ、単独あるいは複合して使用される。IB族
金属、亜鉛及びクロムの複合酸化物は、アルミナ、シリ
カ等の担体と組み合わせて使用しても良い。
[0008] Examples of the IB group elements include compounds of copper, silver, and gold, which are used singly or in combination. The composite oxide of group IB metal, zinc and chromium may be used in combination with a support such as alumina or silica.

【0009】以上のようにして調製した複合酸化物触媒
は、二酸化炭素の水素化反応により、選択性高くメタノ
ールを与え、かつ触媒活性の低下も見られない。
The composite oxide catalyst prepared as described above provides methanol with high selectivity through hydrogenation reaction of carbon dioxide, and no decrease in catalytic activity is observed.

【0010】0010

【作用】本発明における触媒は、三酸化クロムに共沈法
により得られた複合炭酸塩あるいは焼成後の複合酸化物
を加えることにより調製され、二酸化炭素を水素化しメ
タノールを与えるIB族元素、亜鉛及びクロムの複合酸
化物からなる触媒であり、以下のような特徴を有する。 二酸化炭素を接触水素化しメタノールを製造する際、従
来の触媒の多くは二酸化炭素の転化率が低い場合が多い
。しかしながら、今回発明した触媒では二酸化炭素は、
反応温度200―250℃、50 atm、流速50 
ml/minという従来と変わらない反応条件で、10
―30%という高い転化率を示す。
[Operation] The catalyst in the present invention is prepared by adding a composite carbonate obtained by a coprecipitation method or a composite oxide after calcination to chromium trioxide, and is an IB group element, zinc, which hydrogenates carbon dioxide and gives methanol. It is a catalyst consisting of a composite oxide of chromium and chromium, and has the following characteristics. When producing methanol by catalytic hydrogenation of carbon dioxide, most conventional catalysts often have a low conversion rate of carbon dioxide. However, with the newly invented catalyst, carbon dioxide is
Reaction temperature 200-250℃, 50 atm, flow rate 50
Under the same reaction conditions as before, ml/min, 10
- Shows a high conversion rate of 30%.

【0011】その上で、選択率は80―100%という
高い水準をも持ち合わせている。従来の触媒で、このよ
うに高いメタノール選択性を示す触媒はほとんど報告さ
れていない。また、反応開始後24時間後の結果は、反
応開始直後の結果とほとんど変化がなかった。このよう
に、本発明により従来の三酸化クロムを用いる触媒の致
命的欠点であった触媒活性の急激な低下も同時に防ぐこ
とが出来た。
[0011] Furthermore, the selectivity is at a high level of 80-100%. Few conventional catalysts have been reported to exhibit such high methanol selectivity. Furthermore, the results obtained 24 hours after the start of the reaction were almost unchanged from the results immediately after the start of the reaction. As described above, the present invention has also made it possible to simultaneously prevent the rapid decline in catalytic activity, which was a fatal drawback of conventional catalysts using chromium trioxide.

【0012】0012

【実施例】以下、実施例によって本発明を具体的に説明
するが、本発明はこれらの実施例だけに制限されるもの
ではない。
[Examples] The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples.

【0013】[0013]

【実施例1】 (1)触媒の調製 銅−亜鉛−クロム触媒を次のように調製した。硝酸銅(
Cu(NO3)2・3H2O)18g、硝酸亜鉛(Zn
(NO3)2・6H2O)52gを水約250mlに溶
解した水溶液に、溶液の温度を約90℃に保温しながら
、炭酸ナトリウム(Na2CO3)79gを約750m
lに溶解した水溶液をpH6.8になるまでゆっくり滴
下した。滴下終了後、生成した沈澱を濾過洗浄し、10
0℃で約3時間乾燥した。こうしてできた銅及び亜鉛複
合炭酸塩4.9gを三酸化クロム(CrO3)1.0g
の10ml水溶液にゆっくり加え、よくかき混ぜた後、
そのまま約2日放置し自然乾燥した。
Example 1 (1) Preparation of catalyst A copper-zinc-chromium catalyst was prepared as follows. Copper nitrate (
Cu(NO3)2.3H2O) 18g, zinc nitrate (Zn
While keeping the temperature of the solution at about 90°C, add 79 g of sodium carbonate (Na2CO3) to about 750 ml of water.
An aqueous solution dissolved in 1 ml was slowly added dropwise until the pH reached 6.8. After the dropwise addition was completed, the precipitate formed was filtered and washed, and
It was dried at 0°C for about 3 hours. 4.9 g of the copper and zinc composite carbonate thus produced was combined with 1.0 g of chromium trioxide (CrO3).
Slowly add to 10ml aqueous solution of and stir well.
It was left as it was for about 2 days and air-dried.

【0014】(2)反応 24―40メッシュに分級した上記の銅−亜鉛−クロム
触媒1.0gをステンレス反応管に充填し、窒素で1%
に希釈した水素気流中250℃で約12時間処理の後、
所定の反応温度、反応圧において、H2/CO2=3の
混合ガスを流通させ、反応を行った。以上の操作により
得られた反応生成物および未反応物はガスクロマトグラ
フィーにより分析した。結果を表1に示す。
(2) Reaction: Fill a stainless steel reaction tube with 1.0 g of the above copper-zinc-chromium catalyst classified into 24-40 mesh, and add 1% nitrogen to the reaction tube.
After treatment at 250°C for about 12 hours in a hydrogen stream diluted with
At a predetermined reaction temperature and reaction pressure, a mixed gas of H2/CO2=3 was passed through to carry out the reaction. The reaction products and unreacted products obtained by the above operations were analyzed by gas chromatography. The results are shown in Table 1.

【0015】           表1    二酸化炭素からのメ
タノ―ル合成                   
                         
                         
     反応温度  CO2       収率(%
)    メタノール               
               転化率       
               選択率       
                (℃)   (%)
  MeOH   CO    HC     (%)
                         
                         
                         
                150      
5.3    5.3   0.0   0.0   
  100.0                  
       200      9.6    8.
9   0.7   0.0      92.7  
                       25
0     19.0    8.7  10.3  
 0.0      45.8           
              300     25.
3    6.0  19.3   0.0     
 23.7                    
             (24時間後の結果)  
                         
             150      5.2
    5.2   0.0   0.0    10
0.0                      
    200      8.5    7.9  
 0.6   0.0     92.9      
                    250  
   17.3    7.3  10.0   0.
0     42.2               
           300     26.1  
  6.1  20.0   0.0     23.
4                       反
応条件:触媒 1 g (24―40 mesh), 
圧力 50 atm, 流速 50ml/min, H2/CO2=3.
Table 1 Methanol synthesis from carbon dioxide


Reaction temperature CO2 yield (%
) methanol
Conversion rate
selection rate
(℃) (%)
MeOH CO HC (%)



150
5.3 5.3 0.0 0.0
100.0
200 9.6 8.
9 0.7 0.0 92.7
25
0 19.0 8.7 10.3
0.0 45.8
300 25.
3 6.0 19.3 0.0
23.7
(Results after 24 hours)

150 5.2
5.2 0.0 0.0 10
0.0
200 8.5 7.9
0.6 0.0 92.9
250
17.3 7.3 10.0 0.
0 42.2
300 26.1
6.1 20.0 0.0 23.
4 Reaction conditions: catalyst 1 g (24-40 mesh),
Pressure: 50 atm, flow rate: 50 ml/min, H2/CO2=3.

【00
16】
00
16]

【実施例2】実施例1と同様な方法で調製した銅・亜鉛
複合塩を100℃で約3時間乾燥の後、350℃で約五
時間焼成した。こうして得られた銅―亜鉛複合酸化物 
3.2gを三酸化クロム1.0gを10mlに溶かした
水溶液にゆっくり加え、十分にかき混ぜ、そのまま2日
間自然乾燥した。実施例1の触媒の代わりに上記の方法
で調製した触媒を用い、実施例1と同様な条件で反応し
た。結果を表2に示す。(以下余白)
Example 2 A copper-zinc composite salt prepared in the same manner as in Example 1 was dried at 100°C for about 3 hours and then calcined at 350°C for about 5 hours. Copper-zinc composite oxide thus obtained
3.2 g was slowly added to an aqueous solution of 1.0 g of chromium trioxide dissolved in 10 ml, thoroughly stirred, and air-dried for 2 days. A reaction was carried out under the same conditions as in Example 1, using the catalyst prepared by the above method instead of the catalyst in Example 1. The results are shown in Table 2. (Margin below)

【0017】           表2    二酸化炭素からのメ
タノ―ル合成                   
                         
                         
    反応温度  CO2       収率(%)
    メタノール                
             転化率         
            選択率          
             (℃)   (%)  M
eOH   CO    HC     (%)   
                         
                         
                         
           150      1.9  
  1.9   0.0   0.0    100.
0                        
 200      7.4    6.9   0.
5   0.0     93.2         
                250     1
8.7    9.6   9.1   0.0   
  51.3                   
      300     25.2    6.2
  19.0   0.0     24.6    
           反応条件:触媒 1 g (24―40 mesh),
 圧力 50 atm,流速 50ml/min, H
2/CO2=3.
Table 2 Methanol synthesis from carbon dioxide


Reaction temperature CO2 yield (%)
methanol
Conversion rate
selection rate
(℃) (%) M
eOH CO HC (%)



150 1.9
1.9 0.0 0.0 100.
0
200 7.4 6.9 0.
5 0.0 93.2
250 1
8.7 9.6 9.1 0.0
51.3
300 25.2 6.2
19.0 0.0 24.6
Reaction conditions: catalyst 1 g (24-40 mesh),
Pressure 50 atm, flow rate 50ml/min, H
2/CO2=3.

【0018】[0018]

【実施例3】硝酸銅5.2g、硝酸銀(AgNO3)5
.0g、硝酸亜鉛42gを用い、実施例1と同様な方法
で得た銀―亜鉛の複合炭酸塩20gを三酸化クロム5.
0gの50mlの水溶液に加え実施例1と同様に処理し
、触媒を調製した。反応方法も実施例1と同じである。 結果を表3に示す。(以下余白)
[Example 3] Copper nitrate 5.2g, silver nitrate (AgNO3) 5
.. 20 g of silver-zinc composite carbonate obtained in the same manner as in Example 1 using 5.0 g of chromium trioxide and 42 g of zinc nitrate.
A catalyst was prepared by adding 0 g to 50 ml of an aqueous solution and treating in the same manner as in Example 1. The reaction method was also the same as in Example 1. The results are shown in Table 3. (Margin below)

【0019】          表3     二酸化炭素からのメ
タノ―ル合成                   
                         
                         
 反応温度   CO2       収率(%)  
 メタノール                   
        転化率              
       選択率               
    (℃)   (%)  MeOH   CO 
   HC     (%)            
         150      1.3    
0.3   0.0   0.0    100.0 
                     200 
     4.9    0.9   0.0   0
.0    100.0              
        250     14.2    3
.2   1.0   0.0     76.7  
                    300  
   24.3    5.8   8.5   0.
0     40.5                     反応条件:触媒 1 g (24―
40 mesh),圧力 50 atm, 流速 50ml/min, H2/CO2=3.以上
Table 3 Methanol synthesis from carbon dioxide


Reaction temperature CO2 yield (%)
methanol
Conversion rate
selection rate
(℃) (%) MeOH CO
HC (%)
150 1.3
0.3 0.0 0.0 100.0
200
4.9 0.9 0.0 0
.. 0 100.0
250 14.2 3
.. 2 1.0 0.0 76.7
300
24.3 5.8 8.5 0.
0 40.5 Reaction conditions: catalyst 1 g (24-
40 mesh), pressure 50 atm, flow rate 50 ml/min, H2/CO2=3. that's all

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】共沈法によって調製したIB族金属―亜鉛
の複合炭酸塩またはそれを焼成して得られたIB族金属
―亜鉛の複合酸化物に三酸化クロムの水溶液を混合して
調製したIB族金属―亜鉛―クロム複合酸化物触媒を用
いる二酸化炭素の接触水素化によるメタノ−ル製造方法
Claim 1: Prepared by mixing an aqueous solution of chromium trioxide with a composite carbonate of group IB metal-zinc prepared by a coprecipitation method or a composite oxide of group IB metal-zinc obtained by calcining the carbonate. A method for producing methanol by catalytic hydrogenation of carbon dioxide using a group IB metal-zinc-chromium composite oxide catalyst.
JP3068768A 1991-03-08 1991-03-08 Method for producing methanol by hydrogenation of carbon dioxide Expired - Lifetime JPH0699340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3068768A JPH0699340B2 (en) 1991-03-08 1991-03-08 Method for producing methanol by hydrogenation of carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3068768A JPH0699340B2 (en) 1991-03-08 1991-03-08 Method for producing methanol by hydrogenation of carbon dioxide

Publications (2)

Publication Number Publication Date
JPH04364141A true JPH04364141A (en) 1992-12-16
JPH0699340B2 JPH0699340B2 (en) 1994-12-07

Family

ID=13383246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3068768A Expired - Lifetime JPH0699340B2 (en) 1991-03-08 1991-03-08 Method for producing methanol by hydrogenation of carbon dioxide

Country Status (1)

Country Link
JP (1) JPH0699340B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116273020A (en) * 2023-02-23 2023-06-23 鄂尔多斯市瀚博科技有限公司 Catalyst for preparing methanol by hydrogenation of carbon dioxide and synthesis method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315996A (en) * 1976-07-27 1978-02-14 Kowa Sangiyou Kk Method of assembling corrugated cardboard structure
JPS6427645A (en) * 1987-06-22 1989-01-30 Ici Plc Catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315996A (en) * 1976-07-27 1978-02-14 Kowa Sangiyou Kk Method of assembling corrugated cardboard structure
JPS6427645A (en) * 1987-06-22 1989-01-30 Ici Plc Catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116273020A (en) * 2023-02-23 2023-06-23 鄂尔多斯市瀚博科技有限公司 Catalyst for preparing methanol by hydrogenation of carbon dioxide and synthesis method

Also Published As

Publication number Publication date
JPH0699340B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
US4307248A (en) Process for hydrogenating organic compounds by use of non-ferrous group VIII aluminum coprecipitated catalysts
US4105674A (en) Production of gamma-butyrolactone from maleic anhydride with a hydrogenation catalyst
CA1194013A (en) Catalytic system and process for producing mixtures of methanol and higher alcohols
Inoue et al. Hydrogenation of carbon dioxide and carbon monoxide over supported rhodium catalysts under 10 bar pressure
US4532351A (en) Process for hydrogenating organic compounds by use of Group VIII aluminum-silicate catalysts
CA1208194A (en) Catalyst composition and its use in a process for the production of alcohols from synthesis gas
JPS6045938B2 (en) Method for producing oxalic acid diester hydrogenation catalyst
JP2000176287A (en) Catalyst for methanol synthesis and synthetic method of methanol
US2178454A (en) Production of olefin oxides
JPH05154383A (en) Catalyst for hydrogenation reaction of carbon monoxide or carbon dioxide
US4318829A (en) Non-ferrous group VIII aluminum coprecipitated hydrogenation catalysts
GB1560374A (en) Process for the preparation of nitrobenzene
JP7227564B2 (en) Catalyst for alcohol synthesis and method for producing alcohol using the same
US4273939A (en) Process for hydrogenating organic compounds by use of non-ferrous group VIII aluminum coprecipitated catalysts
JPH04364141A (en) Production of methanol by hydrogenation of carbon dioxide
EP0029675A1 (en) Non-ferrous group VIII aluminium coprecipitated hydrogenation catalysts, process for preparing these catalysts and their use in hydrogenation processes
JPS5870839A (en) Catalyst for steam reforming of methanol
CN109096029A (en) The preparation method of isopropylbenzene
JPH09221437A (en) Production of ethanol
JP2841500B2 (en) Method for producing propane by hydrogenation of carbon dioxide
JPH08176034A (en) Synthesis of methanol
US3939191A (en) Process for methanol synthesis
JPS6256788B2 (en)
JP3153526B2 (en) Catalyst for partial hydrogenation of aromatic olefin and method for partial hydrogenation thereof
CN114433100B (en) Hydrogenation catalyst, preparation method and application thereof, and method for preparing succinic anhydride by maleic anhydride hydrogenation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term