JPH04364079A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04364079A
JPH04364079A JP13812491A JP13812491A JPH04364079A JP H04364079 A JPH04364079 A JP H04364079A JP 13812491 A JP13812491 A JP 13812491A JP 13812491 A JP13812491 A JP 13812491A JP H04364079 A JPH04364079 A JP H04364079A
Authority
JP
Japan
Prior art keywords
layer
impurity concentration
region
conductivity type
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13812491A
Other languages
Japanese (ja)
Inventor
Katsumi Yamada
克己 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP13812491A priority Critical patent/JPH04364079A/en
Publication of JPH04364079A publication Critical patent/JPH04364079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

PURPOSE:To prevent deterioration of characteristic due to the appearance of charges by forming an outer most surface layer having a first conductivity type and high impurity concentration to the region other than that having the second conductivity type in the low impurity concentration region. CONSTITUTION:A thin N layer is formed at the surface of a N<-> layer 2. A diode having the dielectric strength of 60V to 900V is fabricated using a silicon substrate having an N<-> epitaxial layer 2 of various impurity concentrations. In the diode having formed an N layer 12 having impurity concentration of 5X10<15>/cm<2> and diffusion depth of 1mum, operation life is extended. However, if impurity concentration of the N layer 12 is too high or diffusion depth is too deep, extension of depletion layer is remarkably interfered when an inverse bias is applied across an anode electrode 5 and a cathode electrode 6. Therefore, dielectric strength is lowered and it becomes difficult to suppress the surface sensitivity. In other words, the effective concentration range of the N layer 12 is 1X10<15> to 1X10<16>/cm<2> and diffusion depth range 18 0.2 to 2mum.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体素体の上に拡散
領域に接触する電極を形成後、その表面をパッシベーシ
ョン膜で覆った半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device in which an electrode in contact with a diffusion region is formed on a semiconductor body and the surface thereof is then covered with a passivation film.

【0002】0002

【従来の技術】シリコン基板の表面に酸化膜を形成し、
その酸化膜の開口部から不純物を拡散して所定の導電型
の領域をシリコン基板内に形成し、酸化膜の開口部でシ
リコン基板内の領域に接触する電極を設けるプレーナ技
術はよく知られている。そのようなプレーナ技術による
半導体装置においては、酸化膜が表面保護の働きを持つ
[Prior art] An oxide film is formed on the surface of a silicon substrate,
Planar technology is well known in which impurities are diffused through the openings of the oxide film to form regions of a predetermined conductivity type in the silicon substrate, and electrodes are provided in contact with the regions within the silicon substrate through the openings of the oxide film. There is. In semiconductor devices based on such planar technology, an oxide film has a surface protection function.

【0003】ダイオード, トランジスタ, MOSF
ET, IGBT等の半導体装置を高耐圧化するために
は、使用するシリコン基板の不純物濃度を下げてやるこ
とが一般的であるが、逆バイアス印加時に空乏層の伸び
る領域の不純物濃度を下げると表面電荷の影響を受けや
すくなることも知られている。そのため、水素イオン等
の外来電荷をしゃ断する意味で、りんガラス (PSG
) 膜や窒化珪素 (SiN) 膜をパッシベーション
膜として表面を被覆する方法が採用されている。
[0003]Diode, transistor, MOSF
In order to increase the breakdown voltage of semiconductor devices such as ETs and IGBTs, it is common to lower the impurity concentration of the silicon substrate used. It is also known that it becomes more susceptible to the effects of surface charges. Therefore, in the sense of blocking external charges such as hydrogen ions, phosphorus glass (PSG)
) film or silicon nitride (SiN) film as a passivation film.

【0004】図3は従来の高耐圧ダイオードのシリコン
基板の周縁部を示し、N+ 母板1とその上のN− エ
ピタキシャル層2とからなるシリコン基板の中央の素子
活性部21にはP型アノード領域3が形成され、表面上
の酸化膜4の開口部でアノード電極5が接触している。 このアノード電極5に対向してN+ 層全面に接触する
カソード電極6が設けられている。アノード電極5とカ
ソード電極6に印加される逆電圧に対する耐圧構造部2
2には、アノード領域3と同時に形成される同じ深さの
P型ガードリング7が複数個、この場合は3個存在し、
また基板端部にはP型コンタクト領域8が形成されてい
て、基板の側面, コンタクト領域8を介してカソード
電極6と等電位になるストッパ電極9が接触している。 そして、P領域8の露出部, ストッパ電極9, 酸化
膜4および接続部を除くアノード電極5を、例えばSi
N膜からなるパッシベーション膜10が被覆している。 図4は別の従来の高耐圧ダイオードを示し、図3と異な
る点は、耐圧構造部22にP型ガードリング部7に接触
してそれと等電位になるフィールドプレート11が表面
上に設けられていることである。
FIG. 3 shows the periphery of a silicon substrate of a conventional high voltage diode. A P-type anode is located at the center active region 21 of the silicon substrate, which consists of an N+ motherboard 1 and an N- epitaxial layer 2 thereon. A region 3 is formed, and the anode electrode 5 is in contact with the opening of the oxide film 4 on the surface. A cathode electrode 6 is provided opposite to the anode electrode 5 and in contact with the entire surface of the N+ layer. Voltage-resistant structure 2 against reverse voltage applied to anode electrode 5 and cathode electrode 6
2, there are a plurality of P-type guard rings 7 of the same depth formed at the same time as the anode region 3, in this case three,
Further, a P-type contact region 8 is formed at the end of the substrate, and a stopper electrode 9 having the same potential as the cathode electrode 6 is in contact with the side surface of the substrate via the contact region 8. Then, the anode electrode 5 excluding the exposed portion of the P region 8, the stopper electrode 9, the oxide film 4, and the connecting portion is made of, for example, Si.
It is covered with a passivation film 10 made of N film. FIG. 4 shows another conventional high-voltage diode, which differs from FIG. 3 in that a field plate 11 is provided on the surface of the voltage-resistant structure 22 in contact with the P-type guard ring 7 to have the same potential. It is that you are.

【0005】[0005]

【発明が解決しようとする課題】しかし、パッシベーシ
ョン膜を被覆して外来イオン等の電荷をしゃ断する方法
では、膜自身にピンホール, マイクロクラック等の微
小欠陥が存在する場合は、半導体装置の蒸気加圧試験等
の信頼性評価を行うときに、微小欠陥部から電荷が侵入
し、空乏層の状態が変化して初期特性を維持することが
できず、もれ電流の増大, 耐圧の劣化等の不具合が生
ずることがあった。
[Problems to be Solved by the Invention] However, with the method of covering the passivation film to cut off charges such as foreign ions, if the film itself has minute defects such as pinholes and microcracks, the vapor of the semiconductor device may When conducting reliability evaluations such as pressurization tests, charges enter from minute defects and the state of the depletion layer changes, making it impossible to maintain the initial characteristics, resulting in increased leakage current, deterioration of withstand voltage, etc. Problems may occur.

【0006】本発明の目的は、上述の問題を解決し、パ
ッシベーション膜は検出しにくい微小欠陥部であっても
、電荷の侵入による特性劣化の生じない高信頼度の半導
体装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems and to provide a highly reliable semiconductor device in which characteristics do not deteriorate due to charge intrusion even if the passivation film has minute defects that are difficult to detect. be.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、第一導電型の低不純物濃度の領域の表
面層内に第二導電型の領域が設けられ、その領域に主電
極の一つが接触する半導体装置において、低不純物濃度
の領域の第二導電型の領域以外の部分に第一導電型で高
不純物濃度の最表面層が形成されたものとする。そして
、第一導電型の高不純物濃度の最表面層の不純物濃度が
1×1015〜1×1016/cm3 で深さが0.2
〜2μmであることが効果的である。また、第一導電型
の高不純物濃度の最表面層の領域中に第二導電型のガー
ドリングが設けられてよく、あるいはその領域の表面に
導電性のフィールドプレートが設けられてもよい。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a second conductivity type region in a surface layer of a first conductivity type low impurity concentration region, and In a semiconductor device that is in contact with one of the main electrodes, an outermost surface layer of a first conductivity type and having a high impurity concentration is formed in a region of a low impurity concentration other than a region of a second conductivity type. The impurity concentration of the first conductivity type high impurity concentration outermost layer is 1 x 1015 to 1 x 1016/cm3, and the depth is 0.2.
~2 μm is effective. Further, a guard ring of the second conductivity type may be provided in the region of the outermost surface layer having a high impurity concentration of the first conductivity type, or a conductive field plate may be provided on the surface of the region.

【0008】[0008]

【作用】表面電荷に敏感な低不純物濃度の領域の表面層
に同一導電型の高不純物濃度層を設けることにより、表
面敏感性を抑えることができ、パッシベーション膜に欠
陥があっても半導体装置の特性が劣化するまでに至らな
い。
[Operation] By providing a high impurity concentration layer of the same conductivity type in the surface layer of a low impurity concentration region that is sensitive to surface charge, surface sensitivity can be suppressed, and even if there are defects in the passivation film, the semiconductor device The characteristics do not deteriorate.

【0009】[0009]

【実施例】図1は図3と同様な耐圧構造部22を有する
高耐圧ダイオードにおける本発明の一実施例で図3と共
通の部分には同一の符号が付されている。図3のダイオ
ードと異なる点はN− 層2の表面に薄いN層12が形
成されていることである。このような構造のダイオード
を、種々の不純物濃度のN− エピタキシャル層2を有
するシリコン基板を用いて耐圧60Vクラス, 500
 Vクラス, 800 〜900 Vクラスに対して製
作した。そして、耐湿性試験における寿命を測定した結
果を図5に示す。図3の構造の従来のダイオードでは、
実線31に示すように耐湿性寿命は60Vクラスから5
00 Vクラス, 800 〜900 Vクラスへと耐
圧向上のためにN− エピタキシャル層2の不純物濃度
を低下させるに従って寿命が短くなっている。これに対
し、不純物濃度5×1015/cm3 , 拡散深さ1
μmのN層12を形成した図1の構造のダイオードでは
、点線32に示すように寿命の低下が減少した。しかし
、N層12の不純物濃度が高すぎるかあるいはその拡散
深さが大きすぎると、アノード電極5とカソード電極6
の間に逆バイアスを印加したときに空乏層の伸びが著し
く阻害されるため耐圧の低下をもたらし、耐圧を維持し
つつ表面敏感性を抑えることが困難であった。すなわち
、N層の濃度は1×1015〜1×1016/cm3 
, 拡散深さ0.2〜2μmの範囲が有効であった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the present invention in a high voltage diode having a breakdown voltage structure 22 similar to that shown in FIG. 3, and parts common to those in FIG. The difference from the diode shown in FIG. 3 is that a thin N layer 12 is formed on the surface of the N- layer 2. A diode with such a structure is manufactured using a silicon substrate having an N- epitaxial layer 2 with various impurity concentrations to achieve a breakdown voltage class of 60V, 500V.
Manufactured for V class, 800 to 900 V class. The results of measuring the lifespan in the moisture resistance test are shown in FIG. In a conventional diode with the structure shown in Figure 3,
As shown by the solid line 31, the moisture resistance life is from 60V class to 5
As the impurity concentration of the N- epitaxial layer 2 is lowered to improve the withstand voltage from 00 V class to 800 to 900 V class, the lifetime becomes shorter. On the other hand, impurity concentration 5×1015/cm3, diffusion depth 1
In the diode having the structure shown in FIG. 1 in which the N layer 12 of .mu.m is formed, the decrease in lifetime is reduced as shown by the dotted line 32. However, if the impurity concentration in the N layer 12 is too high or its diffusion depth is too large, the anode electrode 5 and the cathode electrode 6
When a reverse bias is applied during this period, the elongation of the depletion layer is significantly inhibited, resulting in a drop in breakdown voltage, making it difficult to suppress surface sensitivity while maintaining breakdown voltage. That is, the concentration of the N layer is 1 x 1015 to 1 x 1016/cm3.
, a diffusion depth range of 0.2 to 2 μm was effective.

【0010】図2は図4と同様の耐圧構造部22を有す
る高耐圧ダイオードにおける本発明の別の実施例で図4
と共通の部分には同一の符号が付されている。この実施
例でもN層12を形成することにより、図5に示したの
と同様の効果を得ることができた。
FIG. 2 shows another embodiment of the present invention in a high voltage diode having a voltage resistance structure 22 similar to that shown in FIG.
The same parts are given the same reference numerals. Also in this example, by forming the N layer 12, the same effect as shown in FIG. 5 could be obtained.

【0011】本発明はダイオードに限らず、プレーナ型
で高耐圧のバイポーラトランジスタ, MOS電界効果
トランジスタ, 絶縁ゲート型バイポーラトランジスタ
などの半導体装置において実施でき、低不純物濃度層が
N型でもP型でも実施できる。また耐圧構造部のストッ
パ部, ガードリングあるいはフィールドプレートのな
い半導体装置においても実施できる。
The present invention is not limited to diodes, but can be implemented in semiconductor devices such as planar high-voltage bipolar transistors, MOS field effect transistors, and insulated gate bipolar transistors, and can be implemented even when the low impurity concentration layer is N-type or P-type. can. It can also be applied to semiconductor devices without a stopper part of a voltage-resistant structure, a guard ring, or a field plate.

【0012】0012

【発明の効果】本発明によれば、逆バイアス印加時に空
乏層の伸びる低不純物濃度領域の表面敏感性を、その領
域の最表面層に同導電型の高不純物濃度層を浅く形成す
ることによって抑えることが可能になり、パッシベーシ
ョン膜に欠陥があっても外来電荷による特性の劣化がな
くなり、耐湿性試験等における寿命が長くなって、安定
化された半導体装置を得ることができた。
According to the present invention, the surface sensitivity of a low impurity concentration region where a depletion layer extends when a reverse bias is applied is reduced by forming a shallow high impurity concentration layer of the same conductivity type in the outermost layer of the region. As a result, even if there is a defect in the passivation film, there is no deterioration in characteristics due to external charge, and a stable semiconductor device with a longer life in moisture resistance tests and the like can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の高耐圧ダイオードの周縁部
の断面図
FIG. 1 is a cross-sectional view of the periphery of a high voltage diode according to an embodiment of the present invention.

【図2】本発明の別の実施例の高耐圧ダイオードの同様
の断面図
FIG. 2 is a similar cross-sectional view of a high voltage diode according to another embodiment of the present invention.

【図3】従来の高耐圧ダイオードの同様の断面図[Figure 3] Similar cross-sectional view of a conventional high voltage diode

【図4
】従来の別の高耐圧ダイオードの同様の断面図
[Figure 4
】Similar cross-sectional view of another conventional high voltage diode

【図5】
図1および図3に示した高耐圧ダイオードの耐湿性試験
における寿命とN− 層不純物濃度との関係線図
[Figure 5]
Relationship diagram between life and N-layer impurity concentration in the moisture resistance test of high voltage diodes shown in Figures 1 and 3

【符号の説明】[Explanation of symbols]

1    N+ シリコン母板 2    N− エピタキシャル層 3    P型アノード領域 4    酸化膜 5    アノード電極 6    カソード電極 7    ガードリング 10    パッシベーション膜 11    フィールドプレート 12    N層 1 N+ Silicon motherboard 2 N- epitaxial layer 3 P-type anode region 4 Oxide film 5 Anode electrode 6 Cathode electrode 7 Guard ring 10 Passivation film 11 Field plate 12 N layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】第一導電型の低不純物濃度の領域の表面層
内に第二導電型の領域が設けられ、その領域に主電極の
一つが接触するものにおいて、低不純物濃度領域の第二
導電型の領域以外の部分に第一導電型で高不純物濃度の
最表面層が形成されたことを特徴とする半導体装置。
Claim 1: A region of a second conductivity type is provided in the surface layer of a region of a low impurity concentration of a first conductivity type, and one of the main electrodes is in contact with the region; A semiconductor device characterized in that a top surface layer of a first conductivity type and having a high impurity concentration is formed in a portion other than a region of a conductivity type.
【請求項2】第一導電型の高不純物濃度の最表面層の不
純物濃度が1×1015〜1×1016/cm3 で深
さが0.2〜2μmである請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the high impurity concentration outermost layer of the first conductivity type has an impurity concentration of 1×10 15 to 1×10 16 /cm 3 and a depth of 0.2 to 2 μm.
【請求項3】第一導電型の高不純物濃度の最表面層の領
域中に第二導電型のガードリングが設けられた請求項1
あるいは2記載の半導体装置。
Claim 3: Claim 1, wherein a guard ring of the second conductivity type is provided in the region of the outermost surface layer having a high impurity concentration of the first conductivity type.
Alternatively, the semiconductor device according to 2.
【請求項4】第一導電型の高不純物濃度の最表面層の領
域の表面に導電性のフィールドプレートが設けられた請
求項1あるいは2記載の半導体装置。
4. The semiconductor device according to claim 1, wherein a conductive field plate is provided on the surface of the region of the first conductivity type highly impurity-concentrated outermost surface layer.
JP13812491A 1991-06-11 1991-06-11 Semiconductor device Pending JPH04364079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13812491A JPH04364079A (en) 1991-06-11 1991-06-11 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13812491A JPH04364079A (en) 1991-06-11 1991-06-11 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH04364079A true JPH04364079A (en) 1992-12-16

Family

ID=15214535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13812491A Pending JPH04364079A (en) 1991-06-11 1991-06-11 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH04364079A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177713B1 (en) 1998-07-29 2001-01-23 Mitsubishi Denki Kabushiki Kaisha Free wheel diode for preventing destruction of a field limiting innermost circumferential layer
WO2012081664A1 (en) * 2010-12-17 2012-06-21 富士電機株式会社 Semiconductor device and process for production thereof
JP5992094B2 (en) * 2013-04-03 2016-09-14 三菱電機株式会社 Semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177713B1 (en) 1998-07-29 2001-01-23 Mitsubishi Denki Kabushiki Kaisha Free wheel diode for preventing destruction of a field limiting innermost circumferential layer
WO2012081664A1 (en) * 2010-12-17 2012-06-21 富士電機株式会社 Semiconductor device and process for production thereof
JP5641055B2 (en) * 2010-12-17 2014-12-17 富士電機株式会社 Semiconductor device and manufacturing method thereof
EP2654084A4 (en) * 2010-12-17 2015-05-27 Fuji Electric Co Ltd Semiconductor device and process for production thereof
US9570541B2 (en) 2010-12-17 2017-02-14 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing the same
US10204979B2 (en) 2010-12-17 2019-02-12 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing the same
JP5992094B2 (en) * 2013-04-03 2016-09-14 三菱電機株式会社 Semiconductor device
US9577086B2 (en) 2013-04-03 2017-02-21 Mitsubishi Electric Corporation Semiconductor device

Similar Documents

Publication Publication Date Title
US6326656B1 (en) Lateral high-voltage transistor
CA1037160A (en) Semiconductor device having at least one pn junction and channel stopper surrounded by a protective conducting layer
US8013340B2 (en) Semiconductor device with semiconductor body and method for the production of a semiconductor device
US5453390A (en) Method of producing semiconductor device with current detecting function
US6570229B1 (en) Semiconductor device
KR20010090598A (en) Lateral thin-film silicon-on-insulator (soi) pmos device having a drain extension region
US4908682A (en) Power MOSFET having a current sensing element of high accuracy
JPH02114646A (en) High breakdown strength planar p-n junction
US4631561A (en) Semiconductor overvoltage suppressor with accurately determined striking potential
US5426320A (en) Integrated structure protection device for protecting logic-level power MOS devices against electro-static discharges
US4801995A (en) Semiconductor device
US8153481B2 (en) Semiconductor power device with passivation layers
US7535075B2 (en) Semiconductor device
JP2601143B2 (en) Semiconductor device
JP3869580B2 (en) Semiconductor device
KR100960738B1 (en) Semiconductor device for surge protection
JPH04364079A (en) Semiconductor device
US20210234038A1 (en) Semiconductor device
JP2000294770A (en) Semiconductor device
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JPH05259479A (en) Semiconductor device
JP4795613B2 (en) Semiconductor device
JP2785792B2 (en) Power semiconductor device
US3453508A (en) Pinch-off shunt for controlled rectifiers
JP2550702B2 (en) Power semiconductor device